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CAPTURING THE DATA SIMILARITY AMONG ORGANIZATIONS OF

SAME NATURE

ABSTRACT

The vertical collaborative clustering aims to unravel the hidden structure of data

(similarity) among different sites, which will help data owners to make a smart deci-

sion without sharing actual data. For example, various hospitals located in different

regions want to investigate the structure of common disease among people of dif-

ferent populations to identify latent causes without sharing actual data with other

hospitals. Similarly, a chain of regional educational institutions wants to evaluate

their students’ performance belonging to different regions based on common latent

constructs. The available methods used for finding hidden structures are compli-

cated and biased to perform collaboration in measuring similarity among multiple

sites. In this dissertation, the author proposed two approaches of vertical collab-

orative clustering, namely (1) Vertical Collaborative Clustering Model (2) Vertical

Collaborative Clustering based on Bit-Plane Slicing, with superior accuracy over the

state of the art approaches.

The Vertical Collaborative Clustering Model (V CCM) manages the collaboration

among multiple data sites using Self-Organizing Map (SOM). It includes standard

procedure and tuning of the exchanged information in specific proportionality to

augment the learning process of the clustering via collaboration. Moreover, the

VCCM unravels hidden information without compromising the data confidentiality.

The aim of the model is to set an ideal environment for the collaboration process

among multiple sites. The VCCM is evaluated by purity measurement, using four

datasets (Iris, Geyser, Cancer and Waveform). The findings of this study show

the significance of the VCCM by comparing the collaborative results with the local

results using purity measurement. The VCCM unlocks possible reasons determin-

ing impact of collaboration based on related and unrelated patterns. The results

demonstrate that the proposed VCCM improves local learning by collaboration and
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also helps the data owner to make better decisions on the clustering. Additionally,

the results obtained have better accuracy than the existing approaches.

The proposed Vertical Collaborative Clustering based on Bit-Plane Slicing (VCC-

BPS) is simple and unique approach with improved accuracy, manages collabora-

tion among various data sites. The VCC-BPS transforms data from input space to

code space, capturing maximum similarity locally and collaboratively at a particular

bit plane. The findings of this study highlight the significance of those particular

bits which fit the model in correctly classifying clusters locally and collaboratively.

Thenceforth, the data owner appraises local and collaborative results to reach a

better decision. The VCC-BPS is validated by Geyser, Skin and Iris datasets and

its results are compared with the composite dataset. It is found that the VCC-

BPS outperforms existing solutions with improved accuracy in term of purity and

Davies-Bouldin index to manage collaboration among different data sites. It also

performs data compression by representing a large number of observations with a

small number of data symbols.

Keywords: Collaborative clustering, Collaboration, Vertical collaborative

clustering, Cluster combination, Purity measurement, Similarity mea-

surement.
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TEZİN TÜRKÇE ADI

ÖZET

Dikey işbirlikçi kümeleme, farklı siteler arasındaki gizli veri yapısını (benzerliği) or-

taya çıkarmayı amaçlayarak, veri sahiplerinin gerçek verileri paylaşmadan akıllıca

bir karar vermelerine yardımcı olacaktır. Örneğin, farklı bölgelerde bulunan çeşitli

hastaneler, gerçek verileri diğer hastanelerle paylaşmadan gizli nedenleri belirlemek

için farklı popülasyonlardan insanlar arasındaki ortak hastalık yapısını araştırmak

ister. Benzer şekilde, bir bölgesel eğitim kurumları zinciri, öğrencilerinin farklı

bölgelere ait performanslarını ortak örtük yapılara göre değerlendirmek ister. Gi-

zli yapıları bulmak için kullanılan mevcut yöntemler karmaşıktır ve birden çok site

arasındaki benzerliği ölçmede işbirliği yapmak için önyargılıdır. Bu tezde, yazar

iki dikey işbirlikçi kümeleme yaklaşımı önerdi, yani (1) Dikey İşbirlikçi Kümeleme

Modeli (2) Bit Düzlemi Dilimlemeye dayalı Dikey İşbirliğine Dayalı Kümeleme, son

teknoloji yaklaşımlarına göre üstün doğrulukla.

Dikey İşbirlikçi Kümeleme Modeli (VCCM), Kendi Kendini Düzenleyen Harita (SOM)

kullanarak birden çok veri sitesi arasındaki işbirliğini yönetir. İşbirliği yoluyla

kümelemenin öğrenme sürecini artırmak için, belirli orantılı olarak değiş tokuş edilen

bilginin standart prosedürü ve ayarlanmasını içerir. Dahası, VCCM gizli bilgileri veri

gizliliğinden ödün vermeden çözer. Modelin amacı, birden çok site arasında işbirliği

süreci için ideal bir ortam oluşturmaktır. VCCM, dört veri seti (Iris, Geyser, Cancer

ve Waveform) kullanılarak saflık ölçümüyle değerlendirilir. Bu çalışmanın bulgu-

ları, işbirlikçi sonuçları saflık ölçümünü kullanarak yerel sonuçlarla karşılaştırarak

VCCM’nin önemini göstermektedir. VCCM, ilişkili ve ilgisiz modellere dayalı olarak

işbirliğinin etkisini belirleyen olası nedenleri ortaya çıkarır. Sonuçlar, önerilen VCCM,

nin işbirliği yoluyla yerel öğrenmeyi geliştirdiğini ve ayrıca veri sahibinin kümeleme

konusunda daha iyi kararlar almasına yardımcı olduğunu göstermektedir. Ek olarak,

elde edilen sonuçlar mevcut yaklaşımlardan daha iyi doğruluğa sahiptir.

Bit Düzlemi Dilimlemeye (VCC-BPS) dayalı önerilen Dikey İşbirliğine Dayalı Kümeleme,
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gelişmiş doğrulukla basit ve benzersiz bir yaklaşımdır ve çeşitli veri siteleri arasındaki

işbirliğini yönetir. VCC-BPS, verileri giriş alanından kod alanına dönüştürerek, be-

lirli bir bit düzleminde yerel olarak ve işbirliği içinde maksimum benzerliği yakalar.

Bu çalışmanın bulguları, modele uyan belirli bitlerin, sınıf etiketlerini yerel olarak ve

işbirliği içinde doğru bir şekilde sınıflandırmadaki önemini vurgulamaktadır. Bun-

dan sonra, veri sahibi daha iyi bir karara varmak için yerel ve işbirliğine dayalı

sonuçları değerlendirir. VCC-BPS, Gayzer, Skin ve Iris veri kümeleri tarafından

doğrulanır ve sonuçları bileşik veri kümesiyle karşılaştırılır. VCC-BPS’nin, farklı veri

siteleri arasındaki işbirliğini yönetmek için saflık ve Davies-Bouldin indeksi açısından

iyileştirilmiş doğrulukla mevcut çözümlerden daha iyi performans gösterdiği bu-

lunmuştur. Ayrıca, çok sayıda gözlemi az sayıda veri sembolü ile temsil ederek veri

sıkıştırması gerçekleştirir.

Anahtar Sözcükler: İşbirlikçi kümeleme, İşbirliği, Dikey işbirlikçi kümeleme,

Küme kombinasyonu, Saflık ölçümü, Benzerlik ölçümü.
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1. INTRODUCTION

1.1 Preface

Data have become valuable asset for the data owners such as companies, institutes,

organizations etc. to make smart decision. This requires data behavior understand-

ing to unlock the hidden information. Having a dataset A, with number of observa-

tions n = {n1, n2....nn} that are measured by number of features X = {x1, x2....xm},

provokes an intensive task of finding answers for questions that can contribute to

the data owner benefits. In other words, how can we learn from the behavior of this

dataset? Ultimately, to learn something, first, you must have a goal. If the goal

is to predict an output value y for given dataset A, that can be done via decision

procedure known as h : X → Y where Y = {y1, y2....yn} . In this case, A turns into

a training dataset that helps to train a mathematical algorithm model ”SA” where

its output is to predict a value y. Straightforward, substitute an observation nj

measured value vector X = {x1, x2....xm} to model ”SA” the output is a prediction

of yj value. This goal is known as a supervised learning approach. This approach

can be easily evaluated by using the evaluation set or cross-validation technique to

predict an output value of the model [1]. On the contrary, if the goal is not to

predict an output value of y, but to disclose possible hidden structure in dataset A,

then such an approach would be known as unsupervised learning. The mathematical

algorithm of this approach can find the type of underlying structure that the user

has established either directly or indirectly in their approach. Sometimes, besides,

the approach also provides some level of significance of the discovered structure.

Clustering as a type of unsupervised learning approach, segregates observations into

groups, called clusters, which may be mutually exclusive or overlap, relying on the
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technique used. The observations within a cluster are more similar to each other

than the observations from another cluster. The similarity measure is of outstanding

importance to define clusters that can be disclosed in the data. Different types of

distances have been introduced in the literature with respect to the problem and

context of the study [3].

1.2 Research Focus

Supposing that the owner of the dataset A has the goal of using an unsupervised

learning approach. For the sake of argument, let’s assume that the owner has essen-

tially adhered to some criteria before adopting the approach, criteria such as defining

the type of cluster will be looked for, organizing search space, validation methods

(all of which will be introduced in the literature section). As a result of applying

the approach, Figure 1.1 illustrates the clustering result of the dataset, represented

in two dimensions. This result of clustering has been reached using {x1, x2, ..., xm}

of features on {n1, n2, n3, ..., nn} of observations where m and n represent number

of features and observations respectively for dataset A.

Figure 1.1 An example of clustering

The question is with same number of features {x1, x2, ..., xm}, however added a
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greater number of observations {n1, n2, n3, ..., nn+1, nn+2, nn+n}, will the result of

clustering remain the same? Will it be any better or worse? Another scenario, if

the features have changed to a greater number, with the same observations, will

the result again remain the same? Or even if both features and observations have

changed, the same questions apply. Learning the behavior of 100 observations can

help to discover a pattern. However, if the number grows to 1000 or more, posi-

tively the pattern would be more intelligent. To this end, a concept of “combining

the clustering” is introduced. According to “combining the clustering” approach,

the same clustering method can be applied over two or more datasets, then re-

sults are shared and merged to associate clusters of one site with other site(s) to

identify similarity. This requires the selection of suitable clustering method(s), an

adjustment in parameter values, number of features and observations, etc., to obtain

unbiased outputs. This approach adds parallelization, scalability and robustness to

the desired solution [4, 27]. One of combining the clustering inspiration ideas is

known as collaborative clustering.

Let us assume that the owners of dataset A and B, having the same features, ap-

ply the same clustering algorithm and obtain local results RA and RB respectively.

Now, is there any way that both owners can exchange information about the two

results RA and RB? If that is possible, then both owners will evaluate the final

clustering result obtained from other site(s) in addition to their local data. The

benefit here is augmenting the learning process of clustering the local data through

external clustering information from other site(s). Technically speaking, different

approaches are introduced to implement the idea, one of which is known as horizon-

tal collaborative clustering (HCC) and the other is known as vertical collaborative

clustering (VCC). In HCC approach, different datasets have same observations with

different features, while in VCC approach, different datasets contain same features

with different observations collaborate the clustering results [2, 28].

Different researchers worked on both of these approaches to explore hidden infor-

mation and measure similarity among various independent datasets. This study

focuses on vertical collaborative clustering by considering two or more independent

3



organizations having data of same nature (feature space). For example, different

hospitals located in various regions want to investigate the common disease among

people of different populations. Notably, these organizations, companies or hospi-

tals expressed in same feature space, are not allowed to share the actual data due to

data confidentiality. Moreover, pooling of different organizational data with same

feature space into single tall dataset (combined dataset with a large number of ob-

servations) is not feasible for data analysis. The reasons are bandwidth restriction

and performance issues such as latency and large memory computations etc. The

vertical collaborative clustering using Self-Organizing Mapping (SOM) [20, 22] and

Generative Topographic Mapping (GTM) [10, 16, 29, 34] are existing approaches to

apprehend data information among different data sites but have certain limitations

which are mentioned as under:

1. SOM is sensitive to learning rate and neighborhood function in generating

results which affects similarity measurement [23]. In SOM, all results rely

on size of the map and a collaborative matrix which consists of collaborative

coefficients, determines strength of each collaborative link, and degrade results

if not set correctly [20, 32, 33]. Moreover, it lacks simplicity in calculating

coefficients, which affects accuracy and performance. For further reading on

SOM (see e.g.[15, 17])

2. GTM is non-linear approach of unsupervised learning and more precise than

linear approaches but has higher run time complexity than linear approaches [16,

32]. GTM uses likelihood function for fast convergence and better tuning of

topographic map parameters, which may not guarantee global convergence for

all algorithms. Moreover, fast convergence does not ensure results of good

quality [14, 31].

3. Accuracy of existing solutions is not verified by comparison of local and col-

laborative results with global result for which datasets are pooled (all datasets

are combined). Additionally, test data results are not mentioned to evaluate

model generalization.
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This study aims to use unsupervised learning approach to associate clusters similar-

ity of one data site with that of other independent site(s) in distributed environment

by sharing data results, not the actual data. In this dissertation, two approaches are

proposed to implement the concept of the vertical collaborative clustering (VCC).

These approaches are namely, the Vertical Collaborative Clustering Model (V CCM)

and Vertical Collaborative Clustering based on Bit-Plane Slicing (V CC −BPS) to

overcome the above-mentioned limitations.

The Vertical Collaborative Clustering Model (V CCM) manages the collaboration

among multiple data sites using Self-Organizing Map (SOM). It includes standard

procedure and tuning of the exchanged information in specific proportionality to

augment the learning process of the clustering via collaboration. Moreover, the

VCCM unravels hidden information without compromising the data confidentiality.

The aim of the model is to set an ideal environment for the collaboration process

among multiple sites. The findings of the VCCM outputs show its significance by

comparing the collaborative results with the local results using purity measurement.

The VCCM unlocks possible reasons determining impact of collaboration based on

related and unrelated patterns. The results demonstrate that the proposed VCCM

improves local learning by collaboration and also helps the data owner to make

better decisions on the clustering. Additionally, the results obtained have better

accuracy than the existing approaches.

The another proposed approach, the Vertical Collaborative Clustering based on

Bit-Plane Slicing (VCC-BPS) is simple, accurate and compresses data, managing

collaboration among different data sites. It performs clustering, data reduction and

visualization simultaneously. The VCC-BPS consists of two phases i.e. local and

collaborative phase to find a bit plane at which model fits the data to identify max-

imum similarity locally and collaboratively. The working principle of this approach

is to transform input data to code (discrete or latent) space using bit plane slicing

approach, where the model fits the data with maximum similarity at particular bit

plane. This approach consists of the two phases as follows:

1. Local Phase: The object of the local phase is to look for that specific bit plane
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at which observations are grouped based on maximum similarity within the

local dataset. It is an iterative process, searching for a bit plane at which

similar observations are represented by particular code map where model fits

the data to capture maximum similarity locally.

2. Collaborative Phase: In a collaborative phase, the basic requirements of the

VCC are fulfilled to capture similar behavior among participating data sites.

This is achieved by exchanging the local result table developed at each local

site with that of other participating site(s). And then both the local and

external results (result received from other site(s)) are merged with respect to

certain rules to identify maximum similarity. The rules in detail are mentioned

in section 4.2, ensure symmetry in behavior among participating sites.

Finally, the data owner decides whether collaboration brings any new insight

to uncover hidden information (similarity). The local and collaborative results

are evaluated by purity and David-Bouldin index.

The author contributions in this dissertation are:

1. Interaction is developed between two or more data sources having same feature

space to reveal similarities among participating sites without compromising

data confidentiality. The proposed approaches do clustering, data reduction

and visualization simultaneously.

2. The VCCM works as a coordinator to organize and manage the collaboration

process between local and outdoor site(s) using standard procedure to enhance

local learning. Moreover, the proposed model provides suitable environment

for collaboration.

3. The VCC-BPS is simple novel approach, can be used as a tool by different

organizations to make smart decisions without compromising data confiden-

tiality. It performs compression to represent a large number of observations

by small data codes.
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1.3 Overview of the Study

The overview of the dissertation is organized as follows. Chapter 1 presents impor-

tance, problem statement and aim of the study with motivation. Chapter 2 includes

comprehensive review of the literature, describing topics and theories related to the

clustering, collaborative clustering and its types with different approaches. Chap-

ter 3 elaborates the proposed vertical collaborative clustering model (VCCM) to

analyze the data. Chapter 4 explains the proposed vertical collaborative clustering

based on bit-plane slicing (VCC-BPS) approach to examine and interpret the data

among different sites. Chapter 5 consists of the main results obtained from the

proposed study. Chapter 6 discusses the analytical findings with final implications.

Finally, chapter 7 mentions the summary of the theoretical contributions and also

discuss the limitations with potential avenues for the future work.
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2. LITERATURE REVIEW

This chapter explains clustering, collaborative clustering with its requirements,

types, importance, existing approaches and bit plane slicing.

2.1 Clustering

The goal of clustering as a type of unsupervised learning, is to group clusters of

observations that can be mutually exclusive or overlapped. The similarity is an im-

portant factor to decide the observations that are grouped together. Two approaches

are mostly known for clustering [5]:

1. Generative approach is often based on statistical model, where the objective

is to determine parameters that maximize how well the model fits the data.

2. Discriminative approach mostly depends on optimization criteria and similar-

ity measurements to group the data.

Let us consider a buzzword known as ill-defined problem [6, 7]. This problem is

considered from the idea that mathematically, the similarity is not a transitive re-

lation while belonging to the same cluster. In other words, different methods may

give inconsistent clustering outputs for the same data. Moreover, proper heuristics

be employed to manage the computational cost. The following points need to be

considered before adopting clustering approaches:

1. The first thing is to define the type of clusters being looked for, which relies

on the context and our goal. The reason is that the same set of observations

can be clustered in different ways, depending on type of distance used [8].
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For example, measuring a distance between observations in the input space

or between an observation and a cluster, may lead to a different clustering

model [3].

2. The learning process of clustering is affected by the organization of the search

space which is based on the number of features, their degree of dependence, the

type of normalization, etc. [2] discusses how the escalation of dimensionality

increases the volume of the space exponentially.

3. The last matter is considering the validation step of the clustering model.

Since there is no post validation method to compare true classes with the

classes discovered by the algorithm for test data, clustering output evaluation

is a delicate task. A few statistical procedures have been introduced to test the

importance of the clustering result. They are based on measuring deviations of

some statistical quantities but have certain limitations which create hindrances

in getting the true findings [21].

2.2 Collaborative Clustering and the Vertical Type

The clustering algorithms use two types of information during their computations:

1. Information about observation membership.

2. Information about internal parameters, such as the number of clusters antici-

pated, the coordinates of observations, and so on.

If we consider these two kinds of information developed from each local dataset,

then the question is: Is it possible to exchange this information with another site

that has a similar structured dataset? The answer is “yes”. The concept, of doing

so, is known as the collaborative clustering [9]. The goal is that the local clustering

process can benefit from the work done by the other collaborator. In other words,

collaborative clustering helps the local algorithm to escape from local minima (i.e.

by only operating over a local dataset) by discovering better solutions (i.e. by

exchanging information with another site that has a similar dataset). The validity
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is measured by the assumption that useful information be shared between the local

sites. Important benefits of collaboration occur due to [2]:

1. Operating on local data in addition to information from other sites can help

the algorithm to enhance the learning process.

2. The algorithm can escape local optima by using external information to get

better solutions.

3. The local bias can be managed by using external information. However, this

information can also be subject to other types of bias.

The core of this approach is accomplished by the exchange of information. Here

information can be about the local data, or current hypothesized local clustering,

or the value of one algorithm’s parameters. In other words, what can be shared

between experts is information about data (e.g. features found useful, distances

used, etc.) or information on the observation itself, such as the characteristic of

an observation measured by a fixed feature vector. Important to mention is the

performance measurement in clustering. It is hard to introduce an answer to such

a question or in other words, no perfect answer can be reached. Therefore, there

is no specific way of measuring the absolute quality of partitioning the data points.

However, as mentioned above in the validity line that the assumption always lays

on as the useful information is shared between the local sites. Nonetheless, some

measurements are still a pioneer metric to measure the performance or the validity

of the cluster. For example, [11] introduces a technique by defining the similarity

between input clusters based on the graph structure. Notable, that the way the

cluster is viewed can be a good matter of measuring the performance or the validity

of the cluster. But still, as the goal is to look for a common structure among

different datasets, it is no longer possible to make direct comparisons at the level of

the observation since they are different. Only descriptions of the clusters found by

the local algorithm can be exchanged, and a consensus measure must be defined at

this level [12].

Following the above paragraph, it is important to discuss an important question that
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is how to control the collaboration phase? There are different approaches introduced

in this domain, here are some of them [13]:

1. Synchronous or asynchronous operations : The former occurs when each local

clustering process has its own goal and exchanges information only in the

search of its local goal. The latter one is generally needed when the result

depends on all local achievements.

2. Iterative or one-time process : The former occurs when the computations per-

formed by each local algorithm can consider partial solutions shared by other

algorithm sites and is therefore iterative. In a one-time process, all algorithms

compute their local solution, after which a master algorithm combines them

and outputs the final solution.

3. Local or global control : The former works with an asynchronous control strat-

egy, while the latter is linked with the computation of a final combined overall

solution [14].

However, regardless of the method of controlling, termination condition is of main

concern in collaborative approaches. Where it is required that a clustering algo-

rithm stops when a condition is met, even though the solution obtained might not

be meeting the global optimization criterion [14].

To conclude this section, we will introduce the two most common types of imple-

menting collaborative clustering. Noteworthy, other types are there, however, the

focus of this paper is to discuss one type in particular. The two types known in

collaborative clustering are [10]:

1. Horizontal collaborative clustering, the idea of it as the name may suggest,

same observations are expressed in different feature space as shown in Fig-

ure 2.1 (a). In other words, let dataset A with set of observations {n1, n2....nn},

operates over the feature space {x1, x2....xm}. Another dataset with the same

set of observations can be investigating again, however in different feature

spaces such as {z1, z2....zm} as shown in the Figure 2.1 (b). For example, same
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patient visits kidney and heart disease hospitals as shown in the Figure 2.1 (b).

This forms independent datasets of same patients in two or more hospitals. For

further detail on the HCC, see e.g. [26, 30, 31].

2. Vertical collaborative clustering describes datasets in the same feature space

but with different observations. In other words, let dataset A with set of obser-

vations {n1, n2....nn}, operates over the feature space {x1, x2....xm}. Another

dataset B with different set of observations {o1, o2....on}, however, operates in

the same feature space {x1, x2....xm} as shown in the Figure 2.2 (a). For exam-

ple, different patients having common disease (kidney), visits various hospitals

located in different regions. These Kidney disease hospitals have same fea-

tures to diagnose common disease among people of different regions as shown

in Figure 2.2 (b). This forms independent datasets, consisting of various ob-

servations expressed in same feature space.

The proposed work considers the last type of collaborative clustering which is the

vertical collaborative clustering (VCC), has the following basic requirements [22]:

1. Type and number of features must be the same among data sites.

2. Share local findings with other sites, such that collaborative results obtained at

each site are as if obtained from the pooled dataset (all datasets are combined).

The benefits of such an approach are as follow [22]:

1. Reduces time and space complexity.

2. Keeps data confidentiality.

3. Enhances scalability.

2.3 Self-Organizing and Generative Topographic Mapping

Self-Organizing Map (SOM) is linear approach of unsupervised learning, performs

clustering by mapping high dimensional data into two-dimensional map. It displays

clustering and visualization, as well (Algorithm 1) [16, 17]. In SOM, the dataset
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Figure 2.1 Horizontal Collaborative Clustering Description: (a) Various
independent datasets having same set of observations, expressed in different

feature space in the distributed environment. (b) Dataset A and B are of Kidney
and Heart disease hospitals, where same patient having both diseases visit them

(features of Kidney disease data are different from that of Heart).

Figure 2.2 Vertical Collaborative Clustering Description: (a) Various independent
datasets having same feature space with different observations in the distributed
environment. (b) Both datasets A and B are Kidney disease hospitals. Different

patients visit Kidney disease hospitals having same features (data of same nature).

is fed to a randomly initialized map, where the weight vector of the nodes in the

map are gradually adjusted towards observations in the dataset. The SOM uses two

stages i.e. competition and cooperation stage to associate similar observations from

input space to same node in the discrete (latent) space. In the competition stage,

the node in map whose weight vector is the most similar to the input observation

vector is selected as the best matching unit (BMU) for that observation (Line 5).

In cooperation stage, the weight vectors of the BMU and nodes close to the BMU

in the map are adjusted with respect to the input observation vector (Line 9). The

influence of one node over other nodes depends upon the degree of closeness. We

use Gaussian distribution to capture such relation among neighbor nodes due to its

13



monotonic decaying property (Line 8) [6, 15]. The weight of an activated node is

updated using the following formula:

wj(n+ 1) = wj(n) + α(n)× θj,i(n)× (x(n)− wj(n)) (2.1)

Where n refers to the index of current iteration, i is the index of the BMU for the

current observation x(n), j is the index of activated node, wj is the weight vector of

activated node, θj,i(n) is the neighbourhood function describing the distance between

the BMU i and the activated node j at iteration n, and α(n) is a learning-rate

parameter. The change in weight of nodes decrease with time and distance from the

BMU via θj,i(n) and α(n).

In [33], hybrid collaborative clustering approach which is a combination of verti-

cal and horizontal collaborative clustering, uses the Self Organizing Map (SOM)

algorithm to find common structure by exchange of information. [35] explains col-

laborative classification among different information sources (data sites) with same

features using SOM to reveal common structure of distributed data. Collaborative

filtering makes use of available preference to predict unknown preferences based on

clustering similarity measurement [36]. Alternatively, Generative topographic map-

ping (GTM) is probabilistic model using expectation maximization as an alternate

to SOM based on following limitations of SOM:

• Neighborhood preservation is not guaranteed.

• Convergence of prototypes are not guaranteed as well.

• There is no theory about parameter initialization.

GTM is non-linear approach of unsupervised learning and more precise than linear

approaches but has higher run time complexity than linear approaches [23]. Re-

cently [10, 34], proposed the probabilistic approaches of the collaborative learning

using generative topographic mapping (GTM) based on principle of vertical collab-

orative clustering to exchange the information for tunning the topographic maps

parameters. [32] introduces nonlinear classification approach to interpolate missing

data and performs nonlinear mapping between data and latent space using Gener-
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ative Topographic Map (GTM). GTM uses likelihood function for fast convergence

and better tuning of the topographic map parameters, which may not guarantee

global convergence for all algorithms. Moreover, fast convergence does not ensure

results of good quality [22]. Additionally, the expectation maximization algorithm

relies on type of data distribution to be known.

Contrary to GTM, our concern is to develop a technique that ensures unbiased en-

vironment among multiple data sites. For this purpose, VCCM use SOM with a

concern that all datasets must be initialized with same weight, grid size and its ori-

entation, number of iterations and size of data sets. Such symmetry in initialization

among multiple data sites ensures preservation in neighborhood. This neighborhood

function is based on radius which in turn is function of iteration. Moreover, conver-

gence of prototypes can be guaranteed by symmetry in number of iterations using

heuristic approach. Based on above assumptions, an unbiased environment can be

developed to manage collaborative process among multiple data sites.

2.4 Bit Plane Slicing

The Bit Plane Slicing (BPS) is an image compression technique that divides a pixel

of 8 bits image into 8-bit planes. Bit plane ranges from least significant bit (LSB)

represented as bit-level 0 to most significant bit (MSB) marked as bit-level 7. The

least and most significant bit plane contains all low and high order bits in the byte

respectively. Change in low order bits of LSB does not change value much because

they lack high contrast, while the change in high order bits of MSB signifies the

change in data. Therefore, the most significant bit contains the majority of signif-

icant data and forms an image approximately similar to the original 8-bit image.

This highlights the relative importance of specific bits in the image to reduce the

image size. Based on such a strong characteristic of BPS, an 8-bit image containing

a large amount of data is compressed into an image of small size with high simi-

larity [24, 25]. The pictorial representation of bit plane slicing is shown in Fig 2.3

for an image composed of pixels, where each pixel occupies 8-bits memory and is

represented by eight single-bit planes. The equation (2.2) is used to form kth bit
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plane with respect to kth bit selected from all pixels. [38]:

BitP lanek = Remainder{1

2
floor[

1

2k
Image]} (2.2)

Where the value of k varies from 0 to 7. Suppose a gray scale image contains a pixel

of intensity value 220. To find appropriate value for fourth bit plane, equation (2.2)

will return 1.

Figure 2.3 Bit Plane Slicing Description [37]
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3. VERTICAL COLLABORATIVE CLUSTERING

MODEL

This chapter mentions the functionality, architecture and technical detail of the

proposed approach Vertical Collaborative Clustering Model (VCCM).

3.1 VCCM Functionality

The VCCM functionality is to operate as a coordinator among different sites which

are interested to share the clustering results. The proposed VCCM will enable a local

data owner (e.g. business companies, government agencies and institutions, etc.) to

justify whether the collaborating information from outdoor site(s) would unravel

more hidden structure in implementing unsupervised clustering technique on the

local data. As a result, that hopefully would lead to a better decision. The VCCM

architecture is illustrated in the Figure 3.1 to organize and manage collaboration

process between the local and outdoor site(s). Following are the VCCM steps to

enhance local learning:

1. Clustering process is run over local data using same initialization parameters

such as weight (Wo), map size etc. to produce local SOM map at each data

site.

2. Local clustering process is re-run over the local data (say A) using the external

shared result say WB. The output of this step is termed as collaborative SOM

map.

3. SOM map may be shared among more than two sites one after another, forms

chain mapping (WBC) as shown in the Figure 3.1.

4. K-means approach is applied over the local and collaborative SOM maps to
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Figure 3.1 Description of the VCCM Architecture

extract clusters.

5. The clusters over SOM map are evaluated by the purity index.

3.2 VCCM Technicality

Technically in the V CCM , the collaboration between the data sites is based on map-

ping of the similar observations to same nodes using Self-Organizing Map (SOM).

Since this learning requires unbiased environment to manage collaboration among

sites, we propose local clustering be initialized with parameters of same values.

Such initialization ensures preservation in the neighborhood and prototype conver-

gence. The collaborative re-clustering phase (re-clustering process) processes local

data using shared map of other data site(s). This shared map represents mapping

information from continuous observation space (input space) to discrete map space
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for respective data sites. Moreover, if more than two data sites are involved in

collaboration, the map shared among more than two sites, initialized with same

parameters forms chain mapping to represent similar observations in discrete map

space as shown in the Figure 3.1. The output of re-clustering process gives final

map to capture the local behavior with respect to the shared information of the out-

door site(s). In other words, this information exchanged expands local learning to

discover hidden structure in local data by adding clustering information from other

sites, which can lead to a better local clustering result. The proposed VCCM algo-

rithm consists of three phases to manage collaboration between data sites, which are

local clustering, collaborative re-clustering and evaluation. Algorithm 2 elaborates

our VCCM proposition for a given local data site A, while other sites B, C, etc.

participate in collaboration with site A.

3.2.1 Local Clustering

In local clustering phase, to ensure unbiased environment for the collaboration,

data sites initialize parameters with same values, such as map size, learning rate,

neighborhood parameter, size of data set and number of iterations etc., prior to the

SOM clustering algorithm. The SOM algorithm 1 is then applied over the local

data set to compute the clustering results, namely the local map W loc
A (Line 1 of

Algorithm 2).

3.2.2 Collaborative Re-clustering

To establish collaboration, the VCCM exchanges local clustering map information

among data sites (Lines 2 and 3 of Algorithm 2). The VCCM then accommodates

the proportionality of collaboration among data sites via collaborative map W ′ based

on coefficient per site (σi) and respective exchanged clustering map W loc
i (Lines 4

and 5 of Algorithm 2). In Line 6 of Algorithm 2, a new SOM is reconstructed from

operation on the local dataset XA in addition to the collaborative map W ′, to get
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Algorithm 1 Self-organizing map (SOM)

Input: Dataset X, Map W

x(t) : observation vector

wj : weight vector of activated node j

i : index of the best matching unit (BMU) with respect to x(t)

θj,i : neighbourhood function describing the distance between BMU i and j

α0 : value of learning-rate parameter α at the initiation of the SOM

r0 : value of radius parameter r at the initiation of the SOM

Output: Adjusted map W

1: for n = 1 to λ do . iterations

2: α← α0 × λ−n
λ

. learning-rate parameter

3: r ← en×
log(r0)
λ . radius parameter

4: for t = 1 to |X| do . observations

5: wi ← arg min
j

||x(t)− wj||, j ∈ W . finding the BMU i

6: for j = 1 to |W | do . map nodes

7: d2j,i ← ||rj − ri||2 . rj: position of node j, ri: position of BMU i

8: θj,i ← e−
d2j,i

r2 . neighbourhood between i and j

9: wj ← wj + α× θj,i × (x(t)− wj) . adjusting node weight

10: end for

11: end for

12: end for

the collaborative map W col
A by modifying equation (3.1) as following:

w′j(n+ 1) = w′j(n) + α(n)× θj,i(n)× (x(t)− w′j(n)) (3.1)

Where w′j(n) is collaborative mapping weight. The term x(t) − w′j(n) determines

the impact of collaboration among datasets in equation (3.1). Larger the difference

means that local data observation and collaborative map node have different pat-

terns, and hence the collaboration captures new information. On the other hand,

the small difference means that local data observation and collaborative map node

follow similar patterns. To put it simply, the ith and jth observations of data sites
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Algorithm 2 Vertical Collaborative Clustering Model (VCCM)

Input: Dataset XA, Initialized map W0

Output: Adjusted map WA

1: W loc
A ← SOM(XA,W0) . call SOM with initialized parameters

2: send W loc
A to datasites B,C, ...

3: W loc
B ,W loc

C , ...← get map from datasites B,C, ...

4: σB, σC , ...← determine coefficients such that
∑

i∈W σi = 1 .

W = {W loc
B ,W loc

C , ...}

5: W ′
BC ←

∑
i∈W σi ×W loc

i

6: W col
A ← SOM(XA,W

′
BC)

7: WA ← Evaluate W loc
A and W col

A based on purity

A and B respectively, have smaller distance from common node on local and shared

map. This means both observations are highly similar and belong to same cluster.

Therefore, collaboration discloses similar patterns among different data sites via new

SOM map constructed from operation on local dataset + information from outdoor

site(s).

3.2.3 Evaluation

To evaluate the local map W loc
A and the collaborative map W col

A results, we calculate

the purity of each map based on clustering of the map and label of observations (Line

7 of Algorithm 2). The purity measures the percentage of observations belonging to

majority of class labels in the given cluster [10], as follows:

Purity =
1

|X|
∑
k∈C

max
l∈L

| clk | (3.2)

Where X refers to observations, C refers to clusters, L refers to labels and |clk| is the

number of observations with label l in cluster k. Based on the comparison between

the local and collaborative purity results, the data owner makes decision whether

the collaboration unlocks the hidden pattern among different data sites.
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3.3 Summary

In this chapter, the Vertical Collaborative Clustering Model (V CCM) is proposed

to manage the collaboration among multiple data sites using Self-Organizing Map

(SOM). It includes standard procedure and tuning of the exchanged information in

specific proportionality to augment the learning process of the clustering via collab-

oration. Moreover, the VCCM unravels hidden information without compromising

the data confidentiality. The aim of the model is to set an ideal environment for the

collaboration process among multiple sites.
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4. VERTICAL COLLABORATIVE CLUSTERING

BASED ON BIT-PLANE SLICING

The prime reason for proposing vertical collaborative clustering using bit plane

slicing, in addition to all benefits of using collaborative clustering, will enable a local

data owner (e.g. business owners, government and private institutions, individuals,

etc.) to find hidden structure in the process of implementing clustering techniques.

This aim is logically explained since local data owner has the local capacity within

the size of his/her data. However, enlarging the narratives that help to find hidden

structure (in term of similarity among data sites without sharing data) by adding

other information about clustering results from different sites, which happen to have

same feature space with different observations, and can lead to better local clustering

results by collaboration. In other words, clusters of one data site are associated with

that of other site (s) with respect to certain criteria, identifying similarities where

participating sites have same feature space. For example, various hospitals located in

different regions want to investigate the structure of common disease among people

of different populations, identifying latent causes without sharing actual data with

other hospitals. Similarly, a chain of regional educational institutes wants to evaluate

their students’ performance belonging to different regions based on common latent

constructs.

The proposed approach is termed as Vertical Collaborative Clustering based on Bit

Plane Slicing (VCC-BPS), which performs collaboration among data sites by asso-

ciating the local clustering outputs of one data site with that of other data site(s) to

capture similarity. The working principle of this approach is to transform the input

data to the code space using bit plane slicing approach, where the model fits the data

with maximum similarity as shown in Fig 4.1. In other words, mapping of similar
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Figure 4.1 Transformation from Input space to Code space

data inputs to a particular code map is done by searching for adequate common bit

plane among sites where the model fits data with maximum similarity. The novelty

of this approach is to capture not only similarity in local behavior but it also quali-

fies for collaboration to apprehend similarity among different data sites concerning

common code space. This learning demands an unbiased environment where data

of the same nature at different sites performs vertical collaborative clustering based

on the following assumptions:

• Number of features and their type be the same (Requirement of VCC).

• Type of clustering method must be the same at all sites to avoid the influence

of one clustering method over the other [27].

• Binary form after the decimal point is considered for computation.

• Bit plane consists of a single bit per feature to generate code.

• Number of clusters be the same at all sites to deal with inconsistent output

during collaboration [27].

The vertical collaborative clustering using bit plane slicing consists of two phases

i.e. local and collaborative phase to manage collaboration among data sites. The

block diagram of the proposed approach is shown in Figure 4.2.
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Figure 4.2 Proposed Approach Block Diagram

4.1 Local Phase

According to the local phase, the unlabeled dataset is first normalized to form

common analytical plate form and then K-means clustering approach is used to

cluster the given data. The normalized value of each observation for given feature

space is converted into binary form. Then, BPS approach is used to transform

binary input data into code space where code vectors are developed and associated

with corresponding cluster for each observation. Finally, simple voting algorithm

is applied over the training data in code space to find cluster for the code vector

called code map, based on its most frequent occurrence for selected bit plane. It

captures data behavior where similar observations are represented by particular

code map associated with same cluster. In this phase, large volume of local data is

compressed and represented as code map. Following are the different steps involved

in the local phase:

1. Conversion to binary form and bit plane generation: In this step, dataset with

features X1 and X2 is first normalized using following min-max normalization

equation [40]:

N =
x− xmin

xmax − xmin
(4.1)

Where x is observation value, min and max denotes minimum and maximum

value. The normalized values lie between 0 and 1. The normalized valued are

then clustered using the K-Means clustering approach as shown in column 7

(Cluster predicted) of Tablee 4.1. Then the next is to convert the normalized

values into binary form as shown in column 4 (Binary form) of Table 4.1.

Moreover, the observation value of each feature consists of 8 bits and represents
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8 bit-plane. Bit plane is defined as a set of bits corresponding to the same

bit position among all observations in a data array (feature vector) shown in

column 5 (Bit Plane 4 and 3) of Table 4.1.

2. Code vector generation: We are inspired by the Bit Plane Slicing approach [24,

25] which compresses image with high resemblance to the original one by con-

sidering the most significant bits. This study exploits such a strong charac-

teristic of BPS when used with vertical collaborative clustering, highlights the

relative importance of specific bits whether they are most or least significant

bits or combination of both least and most significant bits in data, capturing

maximum similarity. The purpose of using BPS is to transform binary input

obtained from step 1 of the local phase into code space for a particular bit

plane. Then code vector (CV ) is formed for each observation by concatenating

bit plane (feature vector or column vector) of one feature with that of other

feature in the local data as shown in column 6 (Code Vector) of Table 4.1.

The generated code vector column in Table 4.1 for feature X1 and X2 are with

respect to 4 and 3 bit planes which belongs to 5th and 4th bit position in the

byte of respective features. The size of the code vector depends on the number

of features. For example, number of features are two in a dataset, then number

of bits per code(b) are two, assuming 1 bit per feature. Moreover, number of

code vectors are Cv = 2b = 22 = 4 (00,01,10,11). Similarly, in case of four

features, Cv = 24 = 16. A code vector is a compressed form of actual data for

a given observation at a particular bit plane.

3. Voting Algorithm: This step aims to correctly map the code vectors obtained

from step 2 of the local phase with the respective cluster predicted (column

7). It is found in step 2 that certain observations have the same code vector

mapping to different clusters, thus forming the dual nature of the code vec-

tor. Notably, the same code vector must not belong to more than one cluster.

Such dual nature is shown in column 6 (Code Vector) versus column 7 (Cluster

Predicted) of Table 4.1. To solve such dual behavior, simple voting algorithm

is used to group observations with same code vector, associated with most

frequent cluster predicted (column 7) i.e. clusters in majority with respect to
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Table 4.1 Code Map with Bit Plane Clusters

Obs.

Features

Values

Normalized

Values
Binary form

Bit Plan

4 and 3
Code

Vector

Cluster

Predicted

Code

Map

Bit Plane

Cluster
X1 X2 X1 X2 X1 X2 X1 X2

1 1.933 49 0.0951 0.1132 00011000 00011100 1 1 11 C-1 11 C-1

2 4.35 74 0.7857 0.5849 11001001 10010101 0 0 00 C-2 00 C-2

3 4.933 88 0.9523 0.8491 11110011 11011001 1 1 11 C-2 11 C-1

4 1.867 53 0.0763 0.1887 00010011 00110000 1 0 10 C-1 10 C-2

5 2.883 55 0.3666 0.2264 01011101 00111001 1 1 11 C-1 11 C-1

6 4.8 94 0.9143 0.9623 11101010 11110110 0 0 00 C-2 00 C-2

7 4.65 90 0.8714 0.8868 11011111 11100011 1 0 10 C-2 10 C-2

8 4 70 0.6857 0.5094 10101111 10000010 0 0 00 C-2 00 C-2

9 1.7 59 0.0286 0.3019 00000111 01001101 0 1 01 C-1 01 C-1

10 2.483 62 0.2523 0.3585 01000000 01011011 0 1 01 C-1 01 C-1

11 4.5 84 0.8286 0.7736 11010100 11000110 1 0 10 C-2 10 C-2

12 4.367 82 0.7906 0.7358 11001010 10111100 0 1 01 C-2 01 C-1

13 4.567 84 0.8477 0.7736 11011001 11000110 1 0 10 C-2 10 C-2

14 1.817 59 0.0620 0.3019 00001111 01001101 0 1 01 C-1 01 C-1

15 2.133 67 0.1523 0.4528 00100110 01110011 0 0 00 C-1 00 C-2

code vector. Such clusters developed after simple voting algorithm are called

bit plane clusters and corresponding code vector is known as code map. In

other words, the simple voting algorithm helps to train the model at particular

bit plane where code vectors are associated with the most frequent clusters as

shown in column 8 (Code Map) and 9 (Bit Plane Cluster) of Table 4.1 re-

spectively. Such mapping via simple voting algorithm correctly groups similar

observations to large extent with the least inaccuracy.

The local phase of the proposed approach is an iterative approach to look for

those bit planes in the local dataset at which observations are grouped based

on maximum similarity in code space as shown in Fig 4.1. Here, a search is

made to determine a bit plane at which there is large contrast among obser-

vations to correctly group (cluster) them with least inaccuracy. For example,

three observations with code vector 00 are clustered as cluster-2 (C-2) and one

observation as cluster-1 (C-1) as shown in Fig 4.1, after transformation from

input to code space using BPS. It is found in Table 4.1 that code vector 00

represents three observations {2, 6, 8} belonging to C-2 and one observation
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{15} belonging to C-1, thus reveals its dual behavior when bit plane is (4,3).

Now in such scenario, using simple voting approach at particular bit plane

(4,3) of feature X1 and X2 respectively, cluster C-2 dominates in match to C-1

at code vector 00, therefore all observations i.e. {2, 6, 8, 15} in local dataset

corresponding to code vector 00 are updated as cluster C-2 (cluster in the

majority called bit plane cluster). Moreover, observation {15} whose actual

cluster is C-1 for code vector 00, is misclassified by the proposed approach.

The same analogy is applied to other code vectors as shown in Table 4.1. The

detail description of the local phase in the context of the simple voting algo-

rithm is explained in Figure 4.3. It is important to mention that the same

approach can be applied to the datasets with more than two clusters.

In this phase, data is compressed to code map with most frequent clusters for

selected bit planes. This forms the most important attribute of the proposed

approach capturing not only similarity in local behavior but also qualifies for

collaboration to apprehend similarity among different data sites for the same

shared code space.

Figure 4.3 The Description of Voting Algorithm Step in the Local Phase
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4.2 Collaborative Phase

This phase aims to fulfill the basic requirement of vertical collaborative clustering,

which is to share the local findings with other sites, such that collaborative results

obtained at each site are as if obtained from the pooled dataset [22]. This challenging

task is addressed by the proposed approach using certain rules to identify similarities

among participating sites. The rules are as follow:

1. The same code map must represent the same cluster among all participating

sites at a particular bit plane. For example, code map 00 maps to the cluster

C-2 at A with respect to particular bit plane, then the same code map must

represent the same cluster for the same bit plane at B as shown in Figure. 4.4.

2. There must be a common bit plane during the collaboration phase.

3. Only those local bit plane combinations are considered for collaboration that

give local purity greater than 70% as threshold level.

4. More than one code map may represent the same cluster locally. For example,

at site A, code map 11 for an observation (x1), maps to cluster C-1. Similarly,

code map 01 for other observation (x2), maps to cluster C-1 at A. It means

both code maps fall in the same group (cluster) as C-1 as shown in Figure. 4.5.

Figure 4.4 The Visual Description of Rule 1 in the Collaborative Phase
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Figure 4.5 The Visual Description of Rule 4 in the Collaborative Phase

Figure 4.6 Description of Different Scenarios that do not qualify for Collaboration

It is noticeable that those bit plane combinations where local results do not obey the

above-mentioned rules, do not qualify for collaboration due to mismatch in behavior

among participating sites. For example, observations with code map 00 maps to the

cluster C-2 at A and the same code map represents observations with different cluster

(C-1) at B with respect to common bit plane. Then such bit plane combination in the

light of first rule do not qualify for collaboration due to mismatch in behavior among

the participating sites as shown in scenario 2 of Figure 4.6. Likewise, if observations

with code maps 00 and 01 maps to the cluster C-2 at site A and the code maps 00

and 10 represent observations with cluster C-2 at site B with respect to common bit

plane, then such bit plane combination is not considered for collaboration in light

of the fourth rule as shown in scenario 1 of Figure 4.6. Here the code maps at A

differ from that of B to capture similar behavior. Similarly, scenario 3 in Figure 4.6

shows that data behavior at site A and B is similar but bit plane combination at A
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is different from that at B, do not qualify for collaboration under rule 2.

In collaborative phase, the participating sites share their local results called the local

result table. It consists of code vector with predicted cluster and code map with bit

plane cluster (code vector associated with the cluster in the majority) for different

bit plane combinations. When one data site local behavior matches with that of

another data site in light of the above mentioned rules, then the results are merged

to compute the collaborative purity. The collaborative purity is measured as the

mean of local purities by merging shared results with local results at common bit

plane combination such that code map(s) of local site exactly matches with that of

other data site(s). These rules ensure symmetry i.e. code map of one data site is

exactly similar to another site with respect to common bit plane combinations. Such

symmetry gives collaborative purity as the mean of all local purities with respect to

common bit plane combinations among the participating sites where code map(s)

at one site is similar to that at another site. Likewise, the collaborative DB index

is measured by sharing local data clusters centroid and their variances among the

participating sites under same rules.

4.3 Summary

This chapter presents the proposed approach, the vertical collaborative clustering

using a bit plane slicing (VCC-BPS), as a simple and unique approach with improved

accuracy. It manages collaboration among various data sites by transforming data

from input space to code space. This results in capturing maximum similarity locally

and collaboratively at a particular bit plane. The findings of this study highlight

the significance of those particular bits which fit the model to correctly cluster the

data locally and collaboratively. Thenceforth, the data owner appraises local and

collaborative results to reach a better decision.
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5. RESULTS EVALUATION

This chapter consists of the main results obtained from the proposed study. It

includes the result evaluation details for the VCCM and VCC-BPS in the sections

5.1 and 5.2 respectively.

5.1 VCCM Experimental Details

This section introduces the datasets used, evaluation metrics and experimental re-

sults.

5.1.1 VCCM Datasets

To evaluate the Vertical Collaborative Clustering Model (VCCM), we applied our

algorithm on four multivariate datasets with features of real values, which are

Geyser [18], Iris, Breast Cancer Wisconsin (Cancer) and Waveform datasets [19]

(Appendix A.1). To set distributed environment for the vertical collaborative clus-

tering, datasets are randomly divided into two data sites with same features, named

as A and B except Waveform dataset which is divided into four sites and named as

A, B, C and D as mentioned in the Table 5.1.

Table 5.1 VCCM Dataset Description

Dataset # of Observations # of Features # of Classes

Iris 75 × 2 sites 4 3

Geyser 136 × 2 sites 2 2

Cancer 284 × 2 sites 30 2

Waveform 1250 × 4 sites 40 3
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5.1.2 Evaluation Metrics and Experimental Results

The phases of VCCM, which are local clustering, collaborative re-clustering and

evaluation, are processed at each data sites. The local and collaborative purity in-

dex are measured using equation (3.2) to evaluate local and collaborative maps. In

the local clustering, both data sites apply the SOM algorithm 1 on their local data

with a given initialized map. Data is normalized prior to SOM algorithm. We use

5 × 5 map for Iris, Geyser and Cancer data sites and 10 × 10 for Waveform data

sites. To ensure unbiased environment, data sites are initialized with parameters of

the same values, including the map.

In Collaborative re-clustering phase, the local clustering map results are first ex-

changed between both sites. At each data site, the SOM algorithm 2 is then re-run

over their local data with respect to the shared collaborative map. It is important

to note that during the VCCM process (1) no real data is exchanged and therefore,

data confidentiality is maintained, (2) the local site is fed through map representing

the data of other sites, (3) chain mapping is done if there are more than two partic-

ipating sites and (4) local data site discloses hidden pattern by exploiting map from

other sites.

In Evaluation, each data site compares the local and collaborative map results based

on purity measurement. This facilitates the data owner to make decision whether

collaboration brings any new insight to uncover hidden information. It is important

to mention that since SOM does not perform direct clustering and is coupled with

K-means approach to extract clusters [10]. The experimental results of the VCCM

are mentioned in the Table.5.2.

5.2 VCC-BPS Experimental Details

This section mentions the datasets used, reason of their selection, evaluation metrics

and experimental results.
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Table 5.2 Experimental Results of VCCM

Dataset Site Local

Purity

Collaborative

Purity

σA σB σC σD Impact

Iris
Airis 80.00 86.67 - 1

n/a

↗

Biris 80.00 89.33 1 - ↗

Geyser
Ageyser 93.38 93.38 - 1 -

Bgeyser 96.32 96.32 1 - -

Cancer
Acancer 91.54 92.25 - 1 ↗

Bcancer 92.95 93.30 1 - ↗

Waveform

Awave 59.28

59.28 - 1 - - -

57.76 - - - 1 ↘

61.92 - 0.33 0.67 - ↗

61.92 - 0.25 0.50 0.25 ↗

Bwave 55.68 55.68 1 - - - -

Cwave 57.92 57.92 - - - 1 -

Dwave 56.08

56.08 - - 1 - -

57.04 1 - - - ↗

59.12 0.40 0.60 - - ↗

59.12 0.25 0.25 0.50 - ↗
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5.2.1 VCC-BPS Datasets

To evaluate the proposed approach (VCC-BPS), three multivariate datasets i.e.

Geyser [18], Skin segmentation (Skin) [19] and Iris [39] are used with features of real

values (Appendix A.1). Skin dataset is tall dataset, consists of large number of ob-

servations with three features. To avoid computational complexity, these datasets of

low dimensionality are chosen to explain and implement this novel approach simply

and clearly. For example, a dataset with two features has 8-bit planes per feature

and thus has (82) 64-bit plane combinations for given feature space. Similarly, in

case of five features, search space for finding optimal solution consists of (85) 32,768-

bit plane combinations. This shows how much the search space explodes with the

increase in number of features as shown in Fig 5.1. Therefore, datasets with small

feature space are selected to reduce the search space to find a suitable bit plane.

Such selection does not mean that proposed approach has limited application to

perform clustering and visualization simultaneously.

It is important to mention that as all features in the data are not necessary to

give desirable solutions. Analysis with large features consumes large memory space

and computational power. The domain experts’ use feature reduction approaches

to remove redundant features. This can lead to subset of features that preserves

relevant structure of the data in particular domain, producing desirable solutions.

Such process of data reduction be applied in pre-processing step prior to the pro-

posed approach. The combination of both approaches will perform clustering, data

reduction and visualization simultaneously to produce clustering results for given

data.

To prepare the datasets for vertical collaborative clustering, having same features in

a distributed environment (i.e. fulfilling the first requirement of VCC), the dataset is

randomly divided into two data sites with same features, which are named as dataset

A and B as shown in the Table 5.3. The datasets mentioned in the Table 5.3 are

subjected to the K-means approach for clustering the observations into two groups

(i.e. C-1 and C-2) in case of Geyser and Skin data, while three groups in case of Iris
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Figure 5.1 Computational Cost of Measuring the Purity

data before BPS. The local and collaborative phases of the proposed approach are

processed at each data site and then evaluated by purity and Davies-Bouldin index.

Table 5.3 VCC-BPS Dataset Description

Dataset # of Observations # of Features # of Clusters

Geyser [18] 136 × 2 sites 2 2

Skin [19] 122528 × 2 sites 3 2

Iris [39] 75 × 2 sites 4 3

5.2.2 Evaluation Metrics

To evaluate the local results, the local purity is calculated for given observations

based on their respective cluster predicted and bit plane cluster at a particular bit

plane using equation (5.1).

P i =
1

|n|
∑
k∈C

max
l∈L
| clk | (5.1)
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Where P i denotes local purity of the ith data site, n and C refers to number of the

observations and clusters respectively. L denotes the labels (bit plane clusters) and

|clk| describes the number of observations with label l in cluster k. The purity is the

average proportion of the majority label in each cluster [22, 28].

The equation (5.2) is used to compute collaborative purity under certain rules (refer

to section 4.2) to merge respective results. The proposed collaborative purity equa-

tion (5.2) is used to associate the clusters of one data site with that of other data

site such that code map of one data site exactly matches with that of other site at

common bit plane.

P = Avg
CiM∼C

j
M

(Pi,Pj)BP (5.2)

Where P is collaborative purity, P i and P j denote local purities of the ith and

jth data sites with respect to common bit plane combinations BP such that code

map(s) at ith data site (Ci
M) must be similar to that at jth site. In addition to local

and collaborative purity, the global purity is also used to evaluate the accuracy of

collaborative outcome. For measuring the global purity, datasets are pooled and

then purity is measured over the combined dataset clustering final map. The global

purity with the local and collaborative purity is visually explained in Fig 5.2.

In addition to the purity as external index, Davies-Bouldin index (DB) is used as

internal quality index to assess the compactness and separation of the local clustering

results [10] using equation (5.3).

DB =
1

K

K∑
i=1

max
j 6=i

Si + Sj
d(i, j)

(5.3)

Where Si and Sj are local dispersion of ith and jth clusters, d(i, j) is centroid to

centroid (inter-cluster) distance for K number of given clusters of local dataset and

DB refers to local Davies-Bouldin index. Local dispersion Si and their corresponding

inter-cluster distance, i.e. d(i,j) can be computed using equation (5.4) and (5.5).

Si =
1

Ti

Ti∑
l=1

‖ xl − µi ‖2 (5.4)

d(i, j) =‖ µj − µi ‖2 (5.5)
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Figure 5.2 The Local, Collaborative and Global purity measurements: (a) The
local purity is computed at data site A without collaboration.(b) The collaborative
purity is computed at A with respect to the result shared from site B, enhancing

the learning while data confidentiality is maintained.(c) The global purity is
measured with respect to the pooled dataset where the data confidentiality is

compromised. This is done to check whether the collaborative results similarity are
close to global similarity result.

Where xl is an input of observation of the given dataset, associated with ith cluster

of size Ti, having centroid µi. Moreover, µi and µj refers to the centroid of the

ith and jth cluster of same dataset (local dataset). The two clusters are considered

similar, if they have large dispersion relative to their distance. Lower value of local

DB indicates a cluster of better quality. Equation (5.6) is used to associate the

clusters of dataset A with that of B to measure collaborative DB index:

DB =
1

K

K∑
i,j=1

max
i,j∈K

SAi + SBj
D(iA, jB)

(5.6)

Where DB is collaborative DB index, D(iA, jB) is the centroid to centroid distance

between ith and jth cluster of dataset A and B respectively. Likewise, SAi and SBj are
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dispersion of ith and jth clusters of dataset A and B respectively. It is noticeable that

low local DB value means observations within clusters are compact and clusters are

well separated, whereas high collaborative DB value for dataset A and B means both

have similarity in behavior and vice versa. In other words, equation (5.3) reveals

that local DB value is small when inter-cluster distance (d(i, j)) is large. Likewise,

equation (5.6) shows that collaborative DB value is large when centroid to centroid

distance (D(iA, jB)) between clusters of A and B is small i.e. ith cluster of A is

similar to jth cluster of B.

5.2.3 Experimental Results-VCC-BPS

In this section, the local and collaborative results are evaluated by purity and DB

index. It also presents the comparison of proposed approach (VCC-BPS) with ex-

isting approaches VCC-SOM [20] and VCC-GTM [10].

In local phase of VCC-BPS, the normalized training datasets (A and B) of Geyser

are clustered using K-means approach. Then normalized values are converted into

binary form and then subjected to BPS generating code vector associated with clus-

ters, followed by simple voting algorithm to find code map with clusters in the

majority at particular bit planes as shown in Table 5.4. The Table 5.4 consists of

Geyser Data Local Result Table for site A and B, which explains that dataset A

has 46 and 68 observations in majority, belonging to cluster C-2 and C-1, respec-

tively, using simple voting algorithm with respect to bit plane (6,7). Similarly, the

dataset B has 38 and 77 observations in majority, belonging to cluster C-2 and C-1,

respectively at bit plane (6,7). The code maps 00 and 10 participate to associate

observations with cluster C-2 and C-1 at A and B, respectively as shown in local

and collaborative code map diagram column of Table 5.8. Code maps 01 and 11 do

not participate in capturing similarity locally at A and B when BP (6,7). The local

purity is measured using equation (5.1) for Geyser data at A and B, consisting of

120 training observations each as follows: Local purity at A = PA =(46+68)/120

= 0.95 and PB = (38+77)/120 = 0.958 such that code maps are 00 and 10 at both

sites with BP (6,7). The detail about other bit plane combinations for Geyser data
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are shown in the discussion column of Table 5.4. The detail about Iris data having

three classes, are mentioned in Table 5.5 with respect to only single bit plane com-

bination (5,7,1,2) to avoid large computational local result table. The same analogy

is applied to Skin datasets to generate local result table.

In collaborative phase of VCC-BPS, data site A and B of Geyser share their local

result table (RA and RB) and then collaborative purity is measured with respect to

common bit plane as shown in Table 5.8. The collaborative purity for Geyser data at

site A and B is measured using equation (5.2) as follows: P = Avg
CAM∼C

B
M

(PA, PB)BP =

Avg
00,10

((46 + 68)/120, (38 + 77)/120)(6,7) = 0.954. The Table 5.8 consists of the local,

collaborative, global purity and DB indexes at site A and B with respect to par-

ticular bit plane for Geyser datasets. The same analogy is applied to Skin and Iris

data consisting of 2 and 3 clusters with detail mentioned in discussion column of

Tables 5.9 and 5.10 respectively.

The Davies-Bouldin index is used to evaluate the results of our proposed approach

for Geyser, Skin and Iris data locally and collaboratively at A and B. The local

and collaborative DB index values are computed using equations (5.3) and equation

(5.6) respectively. The details about computing local and collaborative DB for Iris

data are mentioned in Table 5.6 and Table 5.7. The same analogy is applied to

Geyser and Skin data to measure their respective local and collaborative DB values

as mentioned in Table 5.8 and Table 5.9. To check the generalization of the pro-

posed approach, test data is passed through the model and accuracy is determined

for different bit planes as shown in Table 5.8, 5.9 and 5.10.

The existing approaches which are VCC using SOM [20] and GTM [10] are

implemented and tested over Geyser, Skin and Iris datasets for comparison with

the proposed approach as shown in Table 6.1. The results of VCC-SOM and VCC-

GTM approaches are topographic maps, representing compressed form of original

dataset for given number of clusters mentioned in Table 5.3. Since SOM and GTM

do not perform direct clustering, but are coupled with K-means approach and EM

algorithm respectively over final map to extract clusters [10]. Then purity and

Davies-Bouldin index are measured over final map using equations (5.1) and (5.3)

respectively [10, 29, 34]. The size of the map is 5 × 5 for existing approaches to
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Table 5.6 Iris Dataset Local Result Table for A and B (RA, RB) using Local
Davies Bouldin Index

Data

site

Bit

Plane
Cluster

Cluster Centroid
Local

Dispersion

(Si)

Local cluster to

cluster distance d(i,j)
Si+Sj
d(i,j)

Local

DBCluster

X1 X2 X3 X4 1 2 3 1 2 3

A

(7,3,1,2)

1 0.276 0.61 0.142 0.123 0.275 0.000 0.716 1.087 0 0.690 0.446

0.8392 0.46 0.304 0.599 0.543 0.219 0.716 0.000 0.470 0.690 0 0.913

3 0.696 0.460 0.820 0.846 0.210 1.087 0.470 0.000 0.446 0.913 0

B

1 0.198 0.567 0.110 0.096 0.242 0 0.757 1.151 0 0.637 0.410

0.8772 0.419 0.284 0.584 0.564 0.240 0.757 0 0.471 0.637 0 0.997

3 0.733 0.385 0.815 0.809 0.230 1.151 0.471 0 0.410 0.997 0

A

(7,4,5,2)

1 0.18 0.5960 0.075 0.051 0.136 0 0.674 1.147 0 0.673 0.324

0.9562 0.4370 0.3750 0.496 0.454 0.318 0.674 0 0.505 0.673 0 1.097

3 0.667 0.438 0.788 0.79 0.236 1.147 0.505 0 0.324 1.097 0

B

1 0.144 0.56 0.073 0.062 0.176 0 0.681 1.140 0 0.678 0.410

0.9822 0.364 0.322 0.5 0.482 0.286 0.681 0 0.509 0.678 0 1.133

3 0.697 0.378 0.768 0.753 0.291 1.140 0.509 0 0.410 1.133 0

A

(7,6,1,2)

1 0.2220 0.6330 0.072 0.059 0.163 0 0.788 1.140 0 0.464 0.350

0.8372 0.4730 0.3080 0.576 0.505 0.203 0.788 0 0.429 0.464 0 1.023

3 0.645 0.432 0.791 0.81 0.236 1.140 0.429 0 0.350 1.023 0

B

1 0.155 0.563 0.074 0.063 0.173 0 0.770 1.161 0 0.565 0.351

0.9002 0.398 0.296 0.556 0.543 0.262 0.770 0 0.466 0.565 0 1.068

3 0.723 0.395 0.785 0.764 0.235 1.161 0.466 0 0.351 1.068 0

A

(6,2,1,2)

1 0.2220 0.6330 0.072 0.059 0.163 0 0.813 1.134 0 0.466 0.345

0.8382 0.4360 0.2920 0.585 0.545 0.216 0.813 0 0.434 0.466 0 1.024

3 0.69 0.454 0.79 0.78 0.228 1.134 0.434 0 0.345 1.024 0

B

1 0.161 0.579 0.074 0.063 0.117 0 0.784 1.122 0 0.418 0.306

0.8372 0.393 0.275 0.565 0.54 0.211 0.784 0 0.417 0.418 0 1.047

3 0.679 0.37 0.761 0.752 0.226 1.122 0.417 0 0.306 1.047 0

A

(5,7,1,2)

1 0.2130 0.6230 0.074 0.06 0.156 0 0.775 1.114 0 0.465 0.350

0.8182 0.4200 0.3040 0.561 0.527 0.204 0.775 0 0.441 0.465 0 0.994

3 0.687 0.449 0.777 0.762 0.234 1.114 0.441 0 0.350 0.994 0

B

1 0.161 0.579 0.074 0.063 0.184 0 0.764 1.105 0 0.509 0.399

0.8412 0.352 0.245 0.543 0.528 0.205 0.764 0 0.459 0.509 0 1.006

3 0.675 0.38 0.754 0.737 0.257 1.105 0.459 0 0.399 1.006 0
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Table 5.7 Collaborative Davies Bouldin Measurement for Iris Data

Bit Plane

Cluster

SAi SBj

D(iA,jB) SAi +SBj
D(iA,jB)

DBA B Cluster

i j 1 2 3 1 2 3

(7,3,1,2)

1 1 0.275 0.242 0.098 0.719 1.088 5.253 0.717 0.464

6.2722 2 0.219 0.240 0.759 0.052 0.446 0.607 8.758 1.008

3 3 0.210 0.230 1.152 0.493 0.092 0.393 0.913 4.804

(7,4,5,2)

1 1 0.136 0.176 0.052 0.689 1.135 5.986 0.612 0.376

5.2312 2 0.318 0.286 0.673 0.198 0.481 0.734 3.051 1.267

3 3 0.236 0.291 1.153 0.532 0.079 0.357 0.981 6.656

(7,6,1,2)

1 1 0.163 0.173 0.097 0.783 1.146 3.464 0.543 0.347

4.5332 2 0.203 0.262 0.783 0.087 0.425 0.480 5.329 1.030

3 3 0.236 0.235 1.153 0.454 0.098 0.355 1.097 4.806

(6,2,1,2)

1 1 0.163 0.117 0.082 0.795 0.795 3.432 0.471 0.489

5.5682 2 0.216 0.211 0.807 0.051 0.373 0.413 8.434 1.186

3 3 0.228 0.226 1.150 0.478 0.094 0.300 0.918 4.839

(5,7,1,2)

1 1 0.156 0.184 0.068 0.775 1.092 4.987 0.466 0.378

5.2502 2 0.204 0.205 0.771 0.092 0.390 0.503 4.455 1.182

3 3 0.234 0.257 1.130 0.513 0.078 0.370 0.855 6.308
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capture similar behavior among participating data sites. The Table 6.1 mentions

local and collaborative results (i.e. collaboration of A with B and vice versa) for

existing approaches using purity and DB index.

5.3 Summary

In this chapter, the proposed approaches are evaluated by various datasets using

different evaluation metrics. The over all findings of this study shows the significance

of the proposed approach by comparing the local, collaborative and global results.
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6. DISCUSSION

In this chapter, the analytical findings with final implications are discussed. Section

6.1 includes the discussion for the VCCM approach, whereas section 6.2 mentions

discussion for the VCC-BPS.

6.1 VCCM Discussion

The experimental results for all data sites are shown in Table 5.2, explained as

follows:

• At site Airis and Biris, collaborative purities are higher than the respective

local purities at Airis and Biris, which reveals the significance of collaboration

to capture hidden information. Moreover, impact of collaboration is high at

Biris than Airis (i.e 89.33% > 86.67%).

• In case of Geyser, local and collaborative purity remains same at both Ageyser

and Bgeyser. This means that both sites have similar information, therefore

VCCM does not reveal unique hidden pattern.

• In case of Cancer, collaboration is effective for both Acancer and Bcancer to reveal

hidden information. The reason of slight improvement is that the majority of

patterns between both sites are similar.

• In case of Waveform data, four data sites participate in collaboration:

– When only site Bwave shares its local map with site Awave, purity before

and after collaboration at Awave remains same, meaning that both sites

have similar information.

– When site Awave only uses the local map of site Dwave, purity at Awave

decreases after collaboration, which is due to unrelated patterns at Dwave.
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Therefore, Awave may avoid collaboration with Dwave.

– When site Bwave and Cwave collaborate with Awave with coefficients 0.33

and 0.67 respectively, this expands learning from 59.28% to 61.92%.

– However, adding site D to the previous scenario with coefficients 0.25,

0.50 and 0.25 for B,C and D, respectively have no effect to enhance col-

laborative purity beyond 61.92%. This reveals that Dwave participates as

redundant in process of collaboration.

– The same analogy is applied to other sites acting as local site.

In [20], if local purity at one data site is low while high at other data site, then data

site with low purity will benefit from collaboration while other does not. According

to our findings, in VCCM, (1) if observation patterns among sites are similar, then

purity will remain unchanged, (2) if patterns are unrelated, then purity will fall,

(3) if patterns are unique among sites then purity will increase. Contrary to [20],

we decide the impact of collaboration via related and unrelated patterns instead

of the magnitude of local purity, providing better collaboration to disclose hidden

information.

6.2 VCC-BPS Discussion

In our proposed work, the vertical collaborative clustering using bit plane slicing

approach is studied and applied over all eight-bit planes per feature of Geyser, Skin

and Iris datasets. Since there are 2, 3 and 4 features in Geyser, Skin and Iris data,

therefore, the numbers of bit plane combinations are 64 (82), 512 (83) and 4096 (84)

respectively. The findings reveal BP (5,6) and (7,6,7) as the most significant bits

combinations for Geyser and Skin data, whereas BP (6,2,1,2) as both most and least

significant bits combinations for Iris data, capturing similarity. These bit plane com-

binations have such important bits which capture contrast between the given clusters

as the least or most significant bits or both to correctly group the observations at

particular bit plane with the maximum similarity. They have high purity with good

compactness (DB) value in comparison to existing approaches. It is not necessary
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that the collaborative purity will always be the mean of the local purities for all

methods. For instance, our proposed approach (VCC-BPS) returns exact mean of

local purities but existing approaches return collaborative purity not exactly equal

to the mean of the local purities. The reason behind such symmetric and asymmet-

ric collaborative purity is that the existing approaches have topographic map of fix

size having nodes to represent similar observations. These nodes may be surplus

and do not participate to represent data or have the least data observations at one

site in match to another site. This deteriorates the final map results once K-mean

algorithm is applied [27]. As a result, the collaborative purity corresponding to the

existing approaches is asymmetric. Therefore, the collaborative purity measured at

site A is different from that at B. Our proposed approach is very effective to deal

with such problem by considering only those code maps which participate to cap-

ture similarity locally and collaboratively, and discard other code maps which do

not participate. This forms symmetry, giving collaborative purity as the mean of

the local purities.

This study shows that 120 training observations of the Geyser data at site A and B

each, are compressed into 4 code maps (2 bits per code map) locally and collabora-

tively at bit plane (5,6). In case of Iris data, the contrast among three given clusters

is captured and 66 training observations at site A and B are compressed into 14 code

maps (4 bits per code map) and 2 code maps (0001 and 1101) do not participate in

data compression locally and collaboratively at bit plane (6,2,1,2). Likewise, using

same approach for Skin dataset, contrast between two given clusters is captured and

more than 98000 training observations at site A and B each, are compressed into 8

code maps locally and collaboratively at bit plane (7,6,7).

The proposed collaborative purity reflects the similarity among the participating

sites as high if the difference between the local and collaborative purity is low and

vice versa. Moreover, if the local purity is less than the collaborative purity, means

local learning enhanced by collaboration and accordingly collaborative DB increases

based on equation (5.6). Such increase in collaborative DB confirms similarity be-

tween respective clusters of different data sites, whereas the low local DB shows the

quality clustering within the local data. The Table 6.1 shows the out-performance
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of the proposed approach in comparison to the existing approaches with quality

clustering in terms of increased purity and collaborative DB with high test data ac-

curacy. Notably, the bit plane at which an optimal solution is obtained, varies from

dataset to dataset. Moreover, if the dataset with large number of features is used

then the accuracy will not be compromised but computational cost will increase.

Additionally, the collaborative purity results are closer to the global purity, verifies

accuracy of our proposed approach. It also reveals that the proposed approach is

successful to capture distributed hidden behavior which is similar to that of pooled

dataset. The performance comparison based on evaluation metrics for the existing

and proposed approaches using different data, is graphically shown in the Figure 6.1.

Table 6.1 Comparison of Existing and Proposed Work

Methods Data site
Purity Davies Bouldin Index

Local Collaborative DB DB

Existing

VCC-SOM [20]

AGeyser 93.38 94.85 0.546 0.531

BGeyser 96.32 95.48 0.533 0.554

ASkin 73.16 71.89 0.865 0.901

BSkin 70.62 72.13 0.881 0.876

AIris 80 80 0.702 0.702

BIris 80 82.45 0.702 0.678

VCC-GTM [10]

AGeyser 93.4 94.64 0.547 0.536

BGeyser 95.88 94.23 0.541 0.567

ASkin 74.64 72.77 0.872 0.875

BSkin 70.91 73.12 0.88 0.866

AIris 84.3 85.17 0.712 0.701

BIris 86.04 84.29 0.668 0.691

Proposed

VCC-BPS at BP (5,6)
AGeyser 98.33

97.92
0.389

7.144
BGeyser 97.5 0.423

VCC-BPS at BP (7,6,7)
ASkin 74.23

75.70
0.953

0.916
BSkin 77.16 0.863

VCC-BPS at BP (6,2,1,2)
AIris 86.36

86.36
0.838

5.568
BIris 86.36 0.837
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Figure 6.1 Graphical comparison between existing and proposed approaches for
Geyser, Skin and Iris data using purity and DB indices.
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7. CONCLUSION AND FUTURE WORK

This chapter mentions the summary of the theoretical contributions. It also discusses

the limitations with potential avenues for the future work. Section 7.1 mentions the

conclusion and future work for the VCCM. Likewise, section 7.2 includes conclusion

and potential avenue for the future work of VCC-BPS.

7.1 VCCM Conclusion

This work proposes Vertical Collaborative Clustering Model (VCCM) as a unique

model to manage the collaborative clustering process among different sites using a

vertical approach and self-organizing map (SOM). In principle, VCC is a process

where two or more data owners work together to reveal hidden structure in the local

dataset with respect to the knowledge shared by outdoor data sites. However, the

challenge is how to ensure that collaboration can bring improvement locally. And it

is also much more challenging to control the process without any sort of a standard

procedure while implementing. Instinctively, the collaboration is valuable provided

the final local clustering have higher quality than if there had been no exchange

of information between the local processes. Therefore, extreme attention must be

taken to ensure that the collaborative process can improve the performance of each

local clustering algorithm, and the controlling approach must be carefully crafted.

Thus, VCCM sets an ideal environment (i.e. a standard procedure) for the col-

laboration by implementing methodical steps at both sites, which are interested to

collaborate, before delivering the final collaborative results to the data owner. As a

result, that would reduce the risk of misjudgment by the data owner, after imple-

menting the collaborative clustering in a biased environment. In addition, it ensures

that the collaboration brings improvement locally. VCCM ensures unbiased envi-
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ronment for the collaboration by proposing same initialization parameters among all

participating sites. Additionally, the VCCM improves clustering by exchanging lo-

cal clustering results without compromising data confidentiality and accommodates

collaboration by tuning collaborative map in a specific proportionality to disclose

hidden patterns. The results demonstrate that the proposed VCCM improves local

learning by collaboration and also helps the data owner to make better decisions on

the clustering.

However, in the proposed VCCM, the findings show that the map consisting of the

nodes of fixed size represents similar data. These nodes may be empty or have least

observations at one site in comparison to other which deteriorates the clustering

results. The possible extension of the proposed work would be to deal with such

maps which participate in collaboration.

7.2 VCC-BPS Conclusion

The vertical collaborative clustering based on bit plane slicing manages collabora-

tion among different sites. In this novel approach, an adequate common bit plane

is determined among participating data sites, at which model fits the data with

maximum similarity to unlock hidden patterns. Investigation shows that there is at

least one-bit plane which captures relative important information commonly shared

among different data sites. Notably, the bit planes, which contribute the most to rep-

resent relative important information, vary from dataset to dataset. The comparison

of the proposed with the existing approaches reveals that VCC-BPS outperforms by

having superior accuracy in term of high purity with improved DB and compress a

large number of observations into smaller code space. The proposed collaborative

results are close to that of pooled data output which verifies its accuracy. Addition-

ally, it develops interaction between two or more data sources having same feature

space to reveal similarities among datasets without compromising data confidential-

ity. The proposed approach does clustering, data reduction (compress large number

of observations to small code map) and visualization simultaneously.

However, the proposed approach has a vast search space finding bit planes with

54



an adequate solution for a dataset with large feature space. This requires further

investigation to add an extra computational layer such as using a data compression

technique before simple voting algorithm to unravel the most informative bit plane

and reduce the computational cost of measuring similarity both locally and collabo-

ratively. Additionally, the probabilistic approach could also be used as an alternate

solution to reduce the size of search space in finding the optimal bit plane, capturing

maximum similarity. Moreover, we plan to develop correlation between local and

collaborative evaluation metrics to validate the clustering outputs.
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APPENDIX A:

The general profile of different datasets used in this study are as follow:

A.1 Datasets

• Skin Segmentation Dataset : This dataset consists of 245057 observations with

3 features i.e. B,G,R. Moreover, it has 2 classes, labeled as skin and non-skin.

• Wisconsin Diagnostic Breast Cancer (WDBC) Dataset : This dataset has 569

observations with 32 features. Each observation is labeled as benign or malig-

nant .

• Iris Dataset : This is multi-variate dataset, consists of 4 features with 150

observations with 3 clusters.

• Geyser Dataset : It is multi-variate dataset of real values. It consists of 272

observations with 2 features.

• Waveform Dataset : This dataset consists of 40 features with 5000 observations,

grouped into 3 clusters.

56



REFERENCES

1. Caruana, R., Karampatziakis, N., & Yessenalina, A. (2008, July). An empirical

evaluation of supervised learning in high dimensions. In Proceedings of the 25th

international conference on Machine learning (pp. 96-103). ACM.

2. Cornuejols, A., Wemmert, C., Gancarski, P. & Bennani, Y. (2018), Collaborative

clustering: Why, when, what and how, Information Fusion, 39, pp.81-95.

3. Celebi, M. E. (Ed.). (2014). Partitional clustering algorithms. Springer.

4. Fred, A. L., & Jain, A. K. (2005). Combining multiple clusterings using evidence

accumulation. IEEE transactions on pattern analysis and machine intelligence,

27(6), 835-850.

5. Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D.,

Smith, A. F. M., & West, M. (2007). Generative or discriminative? getting the

best of both worlds. Bayesian statistics, 8(3), 3-24.

6. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning:

From theory to algorithms. Cambridge university press.

7. Ackerman, M., Ben-David, S., & Loker, D. (2010). Towards property-based clas-

sification of clustering paradigms. In Advances in Neural Information Processing

Systems (pp. 10-18).

8. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical

learning: data mining, inference, and prediction, Springer Series in Statistics
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