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IN SILICO DESIGNING OF ISOFORM-SELECTIVE INHIBITORS AGAINST 

CLASS IIA HISTONE DEACETYLASES 

 

 

ABSTRACT 

The fundamental cause of human cancer is strongly influenced by down- or upregulations 

of epigenetic factors. Upregulated histone deacetylases (HDAC) have been shown to be 

effectively neutralized by the action of HDACs inhibitors (HDACi). However, 

cytotoxicity has been reported in normal cells because of non-specificity of several 

available HDACis that are in clinical use or at different phases of clinical trials. Constant 

Search for specific HDAC isoform inhibitors is increasingly developing to avoid this side 

effect. Because of the high amino acid sequence and structural similarity among HDAC 

enzymes, it is believed to be a challenging task to obtain isoform-selectivity. The essential 

aim of the present study was to examine the similarity of class IIa HDACs (4, 5, 7, and 

9) by aligning their structures and amino acid sequences, active site extraction, and 

recognition of the key amino acid residues within the catalytic channel. X-ray crystal 

structure of the human HDAC4 was used as a template for homology modeling of human 

HDACs 5 and 9. Consequently, isoform-selective inhibitors against class IIa HDACs 

were identified via structure- and ligand-based drug design. Based on the highest binding 

affinity and isoform-selectivity, the top-ranked inhibitors were in silico tested for their 

absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, 

which were classified as drug-like compounds. Later, molecular dynamics simulation 

(MD) was carried out for all compound-protein complexes to evaluate the structural 

stability and the biding mode of the inhibitors, which showed high stability throughout 

the 100 ns simulation. Free binding energy predictions by MM-PBSA method showed 

the high binding affinity of the identified compounds towards their respective targets. 

Hence, these inhibitors could be used as drug candidates or as lead compounds for more 

in silico or in vitro optimization to design safe isoform-selective HDACs inhibitors. 

 

Keywords: Homology modeling, structure-based drug design, ligand-based 

pharmacophore modeling, ADMET, selective HDAC inhibitors.  
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SINIF IIA HISTON DEASETİLAZLARINA KARŞI ISOFORM SEÇİCİ 

İNHİBİTÖRLERİN IN SİLİKO TASARIMI 

 

 

ÖZET 

Yüksek regüle edilmiş histon deasetilazların (HDAC), HDAC inhibitörleriyle (HDACi) 

etkisiyle etkili bir şekilde azaltıldığı gösterilmiştir. Bununla birlikte, sitotoksisitenin, 

klinik kullanımda olan veya klinik araştırmaların farklı safhalarında bulunan mevcut 

çeşitli HDAC inhibitörlerinin seçimli olmaması nedeniyle normal hücrelerde de olduğu 

görülmüştür. Seçimli HDAC izoform inhibitörlerinin geliştirilmesiyle birlikte gölenen 

buy an etkilerin de önleneceğine  inanılmaktadır. Bu çalışmanın temel amacı, sınıf IIa 

HDAC'lerin (4, 5, 7 ve 9) benzerliğini, yapılarını ve amino asit dizilerini hizalayarak, 

aktif bölgede ve katalitik kanal içindeki anahtar amino asit kalıntılarının tanımlanmasını  

incelemektir. İnsan HDAC4'ün X ışını kristal yapısı, şablon olarak kullanılarak  insan 

HDAC5 ve HDAC9'un homoloji modellemesi yapılmıştır. Sonuç olarak, sınıf IIa 

HDAC'lere karşı izoform seçici inhibitörler, yapı ve ligand bazlı ilaç tasarımı yoluyla 

tasarlanmıştır. En yüksek bağlanma afinitesi ve izoform seçiciliğine dayalı olarak, en üst 

sıradaki inhibitörler, ilaç olabilecek bileşikler olarak değerlendirilerek onların 

absorpsiyon, dağılım, metabolizma, eliminasyon ve toksisite (ADMET) özellikleri in-

siliko yöntemler kullanılarak tespit edilmiştir. Daha sonra, inhibitörlerin yapısal 

stabilitesini ve bağlanma modunu değerlendirmek için tüm bileşik-protein 

komplekslerinin moleküler dinamik simülasyonu (MD) gerçekleştirildi. 100 ns 

simülasyonu süresi boyunca bütün kompleksler yüksek stabilite davranışları 

göstermişlerdir. MM-PBSA yöntemiyle serbest bağlanma enerjisi tahminleri, tanımlanan 

bileşiklerin ilgili hedeflerine karşı yüksek bağlanma afinitesini gösterdiği tespit 

edilmiştir. Bu nedenle, bu inhibitörler ilaç adayları olarak kullanılabilirler veya ilaç 

öncüleri olarak   daha ileri in siliko veya in vitro optimizasyonlarla güvenilir ve isoform 

seçimli inhibitor olarak tasarlamada  kullanılabilirler. 

 

Anahtar Kelimeler Homoloji modelleme, Yapı bazlı ilaç tasarımı, Ligand bazlı 

farmakofor modelleme, ADMET, seçimli HDAC inhibitörleri.  
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1. INTRODUCTION 

1.1. CANCER: AN OVERVIEW 

The cell cycle in mammals enables organisms to survive and to reproduce their own kind 

and is extremely regulated and organized process, which drives the cell division and the 

genetic material duplication. The rate and the time of the cell division are critical. Thus, 

cell division regulation consists of proteins and growth-regulatory signals that check for 

any genetic abnormalities and control the integrity of the genetic material (Otto & 

Sicinski, 2017). Unregulated growth of abnormal cells and the ability of these cells to 

spread to different parts of the body is defined as cancer. Cancer cell divides excessively 

where it does not respond to the growth-regulatory signals and fails to go through 

apoptosis or programmed cell death (G. H. Williams & Stoeber, 2012). Cancer or tumor 

can be classified as malignant or benign, where benign tumors do not have the ability to 

spread to other parts of the body (metastasis) and they retain control of differentiation 

(Schäfer & Werner, 2008). Commonly, malignant cells display major features: invade 

distant or adjacent tissues, development of a combination of unrelated differentiated cell 

types, increasing of the proliferation rate, cellular organization disruption, and developing 

of secondary tumors or metastases (Baba & Câtoi, 2007). In 2000, Hanahan and 

Weinberg proposed that for tissues to be described as cancer there are six fundamental 

changes that must occur to alter the normal cell physiology. Despite how these changes 

arise, they are essential and adequate to trigger malignant development. These alterations 

include immunity to apoptosis (programmed cell death), infinite duplication ability, 

metastasis and spread to different parts of the body, constant angiogenesis, self-

sufficiency in growth signals and resistance to antigrowth signals (Hanahan & Weinberg, 

2000). 

Cancer treatment has been developed during latest decades and various treatment options 

are available nowadays. Cancer treatment depends on its location, type, and progression 

stage. More than two thirds of all current treatment trials in the world are focusing on 

treating cancer (Wu et al., 2006). Surgery is considered as conventional cancer treatment 
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and it is believed to be one of the most favorable treatment for several malignant and 

benign tumors where it removes the affected tissues with minimum harm to other adjacent 

tissues (A. Wagner et al., 1995). Radiation-based surgery, also known as radiosurgery, is 

a surgery which uses radiation for cancer treatment where no blade is involved in the 

treatment process. However, radiosurgery is described as a surgery because the result of 

the treatment is quite similar to the conventional operations results. In radiosurgery, the 

tumor is exposed to high dose of ionizing radiation which destroys cancerous tissues 

within an organ. Based on the radiation source, there are several types of radiosurgery 

like stereotactic radiosurgery (SRS), gamma knife systems, linear accelerator (LINAC) 

systems, and proton beam therapy or cyclotron (Rahman et al., 2009). 

Radiation therapy in cancer treatment is used to destroy the cancer cells by applying 

ionizing radiation. This radiation will electrically charge the small particles in the cell 

and produce energy that precisely alter the genetic material, which in turn will halt the 

cell division and causes cells to die. Radiation therapy techniques may include 

fractionation, 3D conformal radiotherapy (3DCRT), intensity-modulated radiation 

therapy (IMRT), and image-guided radiotherapy (IGRT) (Goldblum et al., 2013). 

Chemotherapy terminates cancer development by stopping their ability to divide or grow 

and enforcing cell death. Chemotherapeutic drugs are categorized as cytotoxic or 

cytostatic (biological drugs). More than one hundred chemotherapeutic drugs are 

approved by the Food and Drug Administration (FDA) and are commercially available. 

However, chemotherapeutic drugs come with various side effects such as nausea, 

vomiting, and hair loss as they target normal cells alongside with cancerous cells 

(Rodgers et al., 2012). Alkylating agents such as Temodar® and Cytoxan® directly 

damage the deoxyribonucleic acid (DNA) of cancer cells and halt cell division. Various 

types of tumors are treated with alkylating agents such as multiple myeloma, leukemia, 

lymphoma, and sarcoma (O’Shaughnessy, 1999). Antimetabolites drugs such as 

Xeloda®, Gemzar® and Alimta® are DNA and ribonucleic acid (RNA) unit analogs that 

interfere with the S phase of the cell cycle and stop the cancer cells growth (Peters et al., 

2000). Anthracyclines drugs such as Adriamycin® and other antitumor antibiotics are 

used with critical limitations to treat cancer by targeting DNA replication enzymes, thus 

disrupting the cell cycle in all phases (Minotti et al., 2004). Topoisomerase drugs such as 
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Mitoxantrone®, Teniposide®, and Irinotecan® have been commonly used as 

chemotherapeutic agents for cancer treatment. DNA duplication is blocked by 

topoisomerase inhibitors which prevent the unwinding of DNA and hence stop the cell 

division (Liang et al., 2019). Mitotic drugs such as Taxotere®, Vindesine®, and Emcyt® 

are naturally derived products which interfere with cell cycles, specifically the mitotic 

phase, and inhibit the synthesis of proteins essential for cell division. Mitotic inhibitors 

are used to treat several cancer types including lymphoma, myelomas, breast cancer, and 

leukemia (N. Jiang et al., 2006). 

In cell biology, hormones play a fundamental role in the control of cell growth and in the 

regulation of cancerous tissues. More than 30% of cancers are believed to be caused by 

hormonal imbalances and disturbances. Unlike chemotherapy treatment, hormone 

therapy is safer and more efficient to treat tumors without cytotoxicity. Drugs such as 

Prednisone medication group, Solu-Medrol®, and Decadron® are hormone-based drugs 

that are used in treatment of many types of cancer like multiple myeloma and lymphoma 

(Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)), 2005; Picot et al., 

2011). 

In spite remarkable developments have been made in cancer therapy, cancer is still one 

of the most substantial challenges for the public health globally. There is still an urgent 

need and serious efforts to search for better ways to detect, treat and prevent cancer 

(Baselga et al., 2015). 

1.2. EPIGENETIC REGULATION 

DNA is the heritable genetic unit which is present almost in all living cells. Epigenetics 

in biology describes the variations in gene expression and differences in the inherited 

phenotypes, which are not coded in the DNA itself (Klein & Hainer, 2020). DNA is found 

in the nucleus of human cells and packed with the help of histone proteins, which is 

biologically known as ‘beads in a string.’ DNA-histone complex forms what so-called 

chromatin, and the essential and basic structure of the chromatin is the nucleosome. 

Nearly 146 base pairs (BP) of double-stranded DNA wrapped around eight histone 

proteins (two H2A-H2B dimers attached to two H3-H4 dimers) to form a single 
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nucleosome. Moreover, H1 histone protein (linker histone) links two adjacent 

nucleosomes together to form the chromatosome (Aguilar & Craighead, 2013; Campos 

& Reinberg, 2009; Schones et al., 2011). Chromatosomes undergo further folding and 

compressed into the chromatid (Figure 1.1). 

 

Figure 1.1. Chromatin Organization. Double-stranded DNA coiled around octameric core of histone 

proteins to produce the nucleosomes. Nucleosomes go through multiple levels of folding to produce the 

chromatin (Annunziato, 2008). 

Based on the functional state of chromatin in the cell cycle, chromatin is present in two 

forms, an open state in which the gene expression is active, and it is called euchromatin, 

and a closed state where it is transcriptionally inactive and is known as heterochromatin. 

There are different epigenetic modifications that control and regulate these two states, 

which have biological influences on the gene expression, thus display variations in the 
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phenotype. Epigenetic organization is responsible for the cell differentiation and the 

phenotype conservation in living cells (Goldberg et al., 2007; Kouzarides, 2007). 

Epigenetic modifications can be classified into three types: DNA methylation, RNA-

associated silencing, and histone modifications. DNA methylation suppresses the gene 

expression in two ways. The first mechanism is derived by DNA methyltransferases 

(DNMTs), which insert a methyl group (-CH3) to DNA at 5-carbon position of the 

cytosine ring producing the 5-methylcytosine (5-mC). This modification occurs strictly 

on the cytosine guanine dinucleotides clusters (CpG) which are found primarily in the 

gene regulatory regions of the somatic cells in humans, thus repress the gene expression. 

In contrast, the removal of the methyl group from DNA, a mechanism known as 

demethylation, is catalyzed by the ten-eleven translocation methylcytosine dioxygenase 

(TET) and thymine DNA glycosylase (TDG) enzymes (Jin et al., 2011; Neri et al., 2015). 

The second mechanism is catalyzed by the methyl-CpG-binding protein family (MBPs) 

such as the methyl-CpG binding protein 2 (MeCP2) enzyme that binds to methylated 

cytosine (FAN & HUTNICK, 2005). 

RNA sequences play a significant role in epigenetic regulation. RNA interference (RNAi) 

and long non-coding RNAs (lncRNAs) have been associated in many studies with the 

gene expression regulation and are believed to have their effect on the cell differentiation. 

These RNA sequences participate in the formation of the heterochromatin and gene 

silencing. Some studies have shown that interrupting with the RNAi machinery has 

damaged the DNA and blocked histone modifications at specific locations (Holoch & 

Moazed, 2015; J.-W. Wei et al., 2017). 

Histone modifications are another epigenetic mechanism that involved in the regulation 

of the transcription. These modifications are posttranscriptional modifications (PTMs) 

that occur at the n-terminal of histones and involve acetylation, ubiquitylation, 

methylation, phosphorylation, and others (Table 1.1). 
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Table 1.1. Type of histone modifications (Kouzarides, 2007). 

Chromatin Modifications Residues Modified Functions Regulated 

Acetylation K-ac Transcription, Repair, 

Replication, Condensation 

Methylation (lysines) K-me1 K-me2 K-me3 Transcription, Repair 

Methylation (arginines) R-me1 R-me2a R-me2s Transcription 

Phosphorylation S-ph T-ph Transcription, Repair, 

Condensation 

Ubiquitylation K-ub Transcription, Repair 

Sumoylation K-su Transcription 

ADP ribosylation E-ar Transcription 

Deimination R > Cit Transcription 

Proline Isomerization P-cis > P-trans Transcription 

As previously mentioned, histone proteins are the foremost components of chromatin that 

pack the DNA into nucleosomes and play a crucial role in gene expression. Histone 

proteins are rich in arginine and lysine, that undergo different post-translational 

modifications. In absence of histones, DNA would be unwound in living cells and as very 

long form. Histones are classified as core histones, which involve H2A, H2B, H3 and 

H4, and linker histones, which include H1 and H5. Based on the location of histones 

expression, they are divided into canonical histones that are expressed during the S phase 

of the cell cycle and encoded by replication-dependent genes, and histone variants that 

are encoded by replication-independent genes and expressed during the entire cell cycle 

(Boyle, 2005; Jang et al., 2015; Redon et al., 2002; Youngson, 2006). The n-terminal of 

histones, which is also known as histone tail, plays a central role in gene regulation and 

chromatin constancy, and is subjected to several epigenetic modifications. The best 

known and studied modifications involve acetylation/deacetylation, 

methylation/demethylation and phosphorylation/dephosphorylation, and there are 

specific enzymes responsible for catalyzing and reversing these modifications (Egger et 

al., 2004; K. Zhang & Dent, 2005). 

Histone methylation is catalyzed by histone methyltransferases (HMTs) that add a methyl 

group (-CH3) to lysine and arginine residues on histone tails. This mechanism influences 

the hydrophobic and basic characteristic of histone tails, thus confer with the chromatin 

activation and inactivation. For example, methylation of histone lysine residue number 9 

at histone H3 (H3K9) represses the gene transcription, while methylation of histone 3 at 
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lysine 4 (H3K4) is a signal for transcriptional activation (Greer & Shi, 2012; S. Gupta et 

al., 2010). Histone methylation mechanism can be reversed by the action of histone 

demethylases that remove the methyl group. This way, the transcription can be turned on 

or off during the cell cycle. This mechanism is highly regulated, and numerous cancer 

types occur due to methylation/demethylation dysregulation (Albert & Helin, 2010). 

In humans, histone phosphorylation plays an essential role in DNA damage repair. This 

epigenetic modification occurs on serine residue number 193 of the variant histone H2AX 

(Celeste et al., 2003; Rossetto et al., 2010). This mechanism is carried out by protein 

kinases during the entire cell cycle in response to the DNA damage response pathways 

(DDR). As soon as the DNA has been correctly restored, H2AX phosphatases derive the 

dephosphorylation mechanism to stop the action of the DNA repair pathway and to 

complete the cell cycle (Downs et al., 2000; Papamichos-Chronakis et al., 2006). Another 

mechanism of histone phosphorylation is associated with the gene expression in many 

ways. For example, epidermal growth factor (EGF) gene transcription is regulated by the 

action of the phosphorylation of histone H3 at serine residues number 10 and 28, and 

serine residue number 10 of H2B (H. S. Choi et al., 2005; Lau et al., 2011). Moreover, 

histone phosphorylation was notably linked to chromosome condensation and regulation 

of gene expression. Phosphorylation of serine residue number 10 of histone H3 is known 

to be involved in DNA compaction and relaxation during meiosis and mitosis (Y. Wei et 

al., 1999). 

Histone acetylation and deacetylation mechanisms are essential parts of gene regulation. 

Histone acetylation is linked to transcriptionally active chromatin while deacetylation is 

involved in the formation of the transcriptionally inactive heterochromatin (Berg, 1989). 

Histone acetylation process is regulated by histone acetyltransferases (HATs) that add an 

acetyl group (-C2H3O) to the positively charged ε-amine of conserved lysine residues on 

histone tails (Figure 1.2). This will block the interaction of lysine side chain to the 

negatively charged DNA, thus reduces the histone-DNA affinity and relaxes the 

condensed chromatin structure to allow the transcription factors to reach the promoter 

regions of genes (Struhl, 1998). The acetylation state is reversed by the action of histone 

deacetylases (HDACs) that remove the acetyl group from lysine residues on histone tails. 
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This mechanism or post-transcriptional modification will help in the formation of the 

heterochromatin and inactivate the gene transcription (Kurdistani & Grunstein, 2003). 

 

Figure 1.2. Histone acetylation and deacetylation epigenetic modifications. HDACs positively charge the 

deacetylated histone tails so that the DNA strands strongly wrapped around histone proteins (top). HATs 

neutralize the positively charged histones in order to loosen the double-stranded DNA (Boron & 

Boulpaep, 2016). 

Choudhary and his colleagues identified more than three thousand acetylation sites in 

nearly 1,700 proteins in humans, which shows the importance of lysine acetylation in 

epigenetic regulation in many cellular processes (Choudhary et al., 2009). In addition to 

histone proteins, HDACs “referred as lysine deacetylases” also catalyze deacetylation 

modification on many non-histone proteins such as DNA subunit repair protein (Ku70), 

heat shock proteins (HSPs), α-tubulin, transcription factors, hypoxia-inducible factor 1 

alpha (HIF-1α), myoblast determination protein 1 (MyoD), and many others (Narita et 

al., 2019; B. N. Singh et al., 2010). 
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1.3. HISTONE DEACETYLASES 

Histone deacetylases are crucial enzymes that control several cellular processes. In 

general, HDACs functioning within bulky multiprotein complexes, which remove the 

acetyl group from lysine residues on histone tails. Histone deacetylation by HDACs 

control cell differentiation and organize the gene expression. Now, it is evident that the 

effect of protein acetylation goes far beyond the epigenetic modifications as well as the 

better understanding of HDAC biology (Choudhary et al., 2009; Grozinger & Schreiber, 

2002). In human, 18 different HDACs have been found and categorized into four classes 

according to their cellular localization and sequence identity (Figure 1.3). These enzymes 

are either zinc-dependent enzymes namely HDAC, or nicotinamide adenine dinucleotide 

(NADH) dependent enzymes called sirtuin proteins (Dokmanovic et al., 2007). Zinc-

dependent HDACs are 11 enzymes and further grouped into several subclasses according 

to their homology to two types of yeast proteins: HDACs 1, 2, 3 and 8 (class I) are mainly 

close to the reduced potassium dependency-3 transcriptional factor (Rpd3) of 

Saccharomyces cerevisiae, while HDACs 4, 5, 6, 7, 9 and 10 (class II) are mostly related 

to yeast deacetylase Hda1. HDAC class IV contains only one member (HDAC11) which 

is not so related to either Rpd3 or Hda1, and does not share enough sequence similarity 

to be classified as class I or II (X. J. Yang & Seto, 2008). Unlike class I and II HDACs, 

class III members are NADH-dependent proteins and consist of seven sirtuin enzymes 

(Sirt1–Sirt7) (Frye, 2000). 
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Figure 1.3. (a) Different classes of HDAC enzymes based on their cellular localization and similarity. 

Length of bar represents the number of amino acids in a protein from N- to C-terminal; DAC: is the 

deacetylase domain location; black bars are the nuclear localization domain; UB: ubiquitin binding; 

TDAC: tubulin deacetylase domain (Khan & La Thangue, 2012). (b) Phylogenetic tree of human HDACs 

(De Ruijter et al., 2003). 

In comparison to class I HDACs, class II HDACs are larger in size and further subdivided 

into two classes based on the number of the catalytic domains; class IIa HDACs (HDAC4, 

HDAC5, HDAC7 and HDAC9) have a single catalytic domain, while class IIb enzymes 

(HADC6 and HDAC10) have two catalytic domains (Haggarty et al., 2003). 

Interestingly, the earliest X-ray crystal structure reported among HDACs proteins was 

the HDAC8 bound to a hydroxamic acid inhibitor in 2004 (Somoza et al., 2004; Vannini 

et al., 2004). Thereafter, several crystal structures of different HDAC isoforms have been 
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resolved and published at the Protein Data Bank (PDB) website including HDAC1, 2, 3, 

4, 6, 7, 8, and 10. This broadens the opportunity of employing different computational 

approaches to design and find new HDAC inhibitors (HDACi). 

1.3.1. Action Mechanisms of Histone Deacetylase 

Zinc-dependent HDACs share a substantially conserved active site where a Zn ion is 

submerged in a narrow tunnel (~5 Å diameter) for about 7 to 8 Å depth. This tunnel is 

covered with aromatic and hydrophobic residues. The buried Zn atom is linked to the 

carboxylate groups (COO−) of two conserved aspartic acid residues, and at the same time, 

to a conserved histidine residue. Furthermore, throughout the catalytic mechanisms of 

HDACs, the zinc ion is believed to be coordinated by a water molecule and the carbonyl 

group (C=O) of the acetyl lysine (Figure 1.4). HDACs binding pocket is characterized by 

its “charge-relay” system, which consists of two aspartic acids (D183 and D176) 

hydrogen bonded to two histidine residues (H143 and H142), respectively. This charge-

relay system facilitates the polarization of the imidazole rings of the histidine residues 

and increases their basicity, increases the electrophilicity of the carbonyl group of the 

acetylcysteine, and makes the water molecule more nucleophilic (Somoza et al., 2004). 

 

Figure 1.4. Proposed mechanism for charge-relay system and the interactions among the active residues 

within the active sites of the HDACs (Somoza et al., 2004). 

In 2011, Lombardi and his colleagues proposed the action mechanism of metal dependent 

HDACs according to their findings with reference to HDAC8 (Figure 1.5). The catalytic 

Zn2+ ion with the participation of histidine residue 143 boost the nucleophilic attack of 
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the water molecule, that is bound to the zinc atom, at the carbonyl group of the acetyl-L-

lysine substrate. The nucleophilic lone pair on the zinc-water molecule becomes available 

as a result of the proton abstraction. The zinc atom coordination and hydrogen bonds 

interactions found in histidine 142 and 143 and tyrosine 306 promote and stabilize the 

oxyanion mechanism of the tetrahedral intermediate and its flanking transition states. 

Histidine 143 residue functions as a general acid catalyst, that drives the tetrahedral 

intermediate breakdown to produce acetate and L-lysine following the proton transfer 

process (Lombardi et al., 2011). Based on what has been observed in similar proteins, it 

was thought that the side chain of tyrosine 306 residue can undergo a change in the 

conformation between an “out” and “in” conformations to accommodate substrate 

binding and catalysis (Bottomley et al., 2008). 

 

Figure 1.5. Schematic diagram of the proposed mechanism of HDACs (Lombardi et al., 2011). 

1.3.2. Class IIa HDACs 

This class of histone deacetylases (HDAC4, 5, 7, and 9) are exclusively expressed in 

particular cell types (Table 1.2). HDAC4 expression is extremely seen in the epiphyseal 

plate and brain cells; HDAC5 and HDAC9 are highly expressed in the brain, heart, and 

muscle tissues; HDAC7 expression is highly notable in thymocytes and endothelial cells. 

Class IIa HDACs are characterized by a large noncatalytic N-terminal domain, which is 

responsible for assigning of class IIa HDACs to certain promoters and known for its 
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regulatory role of the transportation of the enzymes between the cytoplasm and nucleus. 

This process is facilitated by the phosphorylation modification of the two conserved 

serine residues on the histone tail (Grozinger & Schreiber, 2000; Haberland et al., 2009). 

Genetic alterations to those conserved serine residues will lead to a nuclear delocalization 

of the class IIa HDACs and signal-refractory suppression of their target genes (Kasler & 

Verdin, 2006). HDAC class IIa enzymes exhibit a relatively low enzymatic activity 

among histone deacetylases family. Although, they show efficient and potent repression 

activity towards transcription process by interacting with other protein complexes that 

help in recruiting different co-repressor transcription proteins (Fischle et al., 2002; Lahm 

et al., 2007; X. J. Yang & Seto, 2008). 

Table 1.2. Class IIa HDACs expression level and tissue distribution (Kasler & Verdin, 2006). 

Tissue          HDAC4 HDAC5 HDAC7 HDAC9 

Brain           +++ ++ – +++ 

Colon           ++ ND + + 

Gall bladder    ND ND ND + 

Heart           ++ +++ +++ +++ 

Kidney          + + – + 

Liver           +/– ++ + + 

Lung            +/– + ++ –/+ 

Ovary           +++ ND + ND 

Pancreas        + + + + 

PBL             + ND + ND 

Placenta        +/– + + + 

Prostate        + ND + ND 

Skeletal muscle +++ ++ + ++/– 

Small intestine ++ ND + + 

Spleen          + – –/+ + 

Testis          + + – ND 

Thymus          ++ ND +++ ND 

PBL: peripheral blood lymphocytes; “+++” and “++” highly expressed; “+” detectable expressed; “–” not 

detected; “ND” no data. Conflicting findings are separated by slashes (e.g., +/–). 

Class IIa HDACs are found in complex with the nuclear receptor co-repressor (N-CoR) 

and silencing mediator for retinoic acid and thyroid hormone receptors (SMRT) and 

HDAC3 (SMRT-N-Cor-HDAC3) complex. In absence of SMRT-N-Cor-HDAC3 

complex, class IIa HDACs show no catalytic activity, which proposes that these enzymes 

may act as a network to recruit HDAC3-containing complexes. This may suggest that 



 

14 

 

class IIa HDACs are not activated unless HDAC3 is present. This is well explained and 

supported by the presence of other HDAC-HDAC protein interactions such as HDAC1 

and HDAC2 that are observed in a single complex at the same time (Fischle et al., 2002; 

Verdin et al., 2003). Class IIa HDACs are also found to be interacted with the myocyte 

enhancer factor 2 (MEF2), that acts as a DNA transcription factor with a substantial role 

in the muscle differentiation. This association stops the function of MEF2 and prevent 

the muscle cell differentiation. Ca2+/calmodulin-dependent kinase (CaMK) reverses the 

previous mechanism by phosphorylating the HDACs and detaching the MEF2-HDAC 

complex (McKinsey et al., 2001). Class IIa HDACs are transported between the 

cytoplasm and nucleus during muscle differentiation, which proves a precise role that 

each HDAC enzyme plays throughout the cell differentiation (De Ruijter et al., 2003). 

One of the characteristics of class IIa is the substitution of the tyrosine residue at the 

entrance to the lysine channel into histidine, as seen in HDAC4, 5, and 7, where this 

change affects the activity about a thousand degrees less compared to the rest of other 

HDACs. Unlike the side chain of tyrosine that is directed directly towards the active site 

and has an active role in the catalytic mechanism, the histidine side chain is directed away 

from the active site towards the solvent (Lahm et al., 2007; Schuetz et al., 2008). 

In addition to the catalytic zinc ion (Zn2+) found in the active site of class I, II, and III 

HDACs, class IIa HDACs have a unique conserved structural zinc-binding subdomain. 

Remarkably, this zinc ion-binding subdomain has shown to play a critical role in the 

structural conformation of the catalytic domain of the protein. Two different 

conformations have been adopted by the zinc-binding subdomain: the inhibitor-free 

protein (apo-structure) namely “closed” conformation that might offer a path for the 

substrate to catalytic Zn2+ in the binding pocket; the inhibitor-bound protein namely 

“open” conformation (Bottomley et al., 2008; Bürli et al., 2013; Schuetz et al., 2008). 

Furthermore, structural Zn2+-binding subdomain has been linked to the recruitment of 

HDAC3/N-CoR and blocking the active site of class IIa HDACs may disrupt this 

recruitment and deterring the catalytic activity that results from HDAC3-class IIa HDACs 

interaction (Bottomley et al., 2008; Fischle et al., 2002). 

Structural analysis of class IIa HDACs revealed two important loops that play a critical 

role in the enzyme activity. Large and short insertions in loops L2 and L1 were found 
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exclusively in class IIa HDACs. One cysteine residue from L2, and two cysteine and one 

histidine residue from L1 control the binding pockets of these enzymes as they coordinate 

the catalytic Zn2+ ion and stabilize the long flexible loops (Figure 1.4). These cysteine 

residues can undergo two different chemical modifications in cell: reduction and 

oxidation reactions that result in change of the nuclear localization of class IIa HDACs, 

which might be associated to the enlargement of heart muscles (cardiac hypertrophy) in 

vivo (Ago et al., 2008). 

 

Figure 1.6. Representitve crystal structure of the catalytic domain of HDAC7. Four loops are surroinding 

the active site of HDAC7: L1 and L2 loops are shown in yellow; L3 and L4 loops are shown in orange. 

Catalytic zinc ion is shown as yellow sphere. 

1.4. THE ROLE OF CLASS IIA HDACS IN HUMAN DISEASES 

Understanding the massive PTMs and class IIa HDACs localization, proves that these 

enzymes play a critical role in regulation of many cellular processes significant to human 

health. Class IIa HDAC enzymes are described to control cellular mechanisms in a tissue-

specific way and are profoundly expressed in the brain, heart, and skeletal muscle tissues. 

Deregulation of these enzymes at any cellular level has been associated to important 

health issues. Several studies in recent decades have shown the impact of class IIa 

HDACs in disease development in different organs and tissues, such as cancer, diabetes, 

muscle degenerative disorders, neurological and immunological disorders (McGee et al., 

2008; Moresi et al., 2015). Glucose transporter type 4 (GLUT4) is known for its role in 
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insulin resistance and its expression is regulated by the action of HDAC5 (McGee et al., 

2008). Muscle atrophy is identified by degeneration of motor neurons and muscle fibers 

or as a result of changes in neuromuscular junctions, which is regulated by the 

transcription factor myogenin where HDACs 4 and 5 are associated to the execution 

process (Moresi et al., 2010). In the following section, the involvement of class IIa HDAC 

enzymes will be further discussed. 

1.4.1. Nervous System and Neurological Disorders 

Class IIa HDACs are well identified in the physiological and pathological perspective of 

nervous system function and development. HDAC4 is extremely expressed in neuron 

cells and profoundly located in the cytoplasm where it is associated with the memory 

development and the plasticity of synapses (Darcy et al., 2010; Fitzsimons, 2015). In 

many studies, brachydactyly mental retardation syndrome (BDMR) has been linked to 

point mutations and microdeletions in HDAC4 gene, where patients are reported with 

learning disabilities, delayed development, anomalous behavior, aberrant skeletal, and 

craniofacial features (B. Morris et al., 2012; Villavicencio-Lorini et al., 2013; S. R. 

Williams et al., 2010). Morris et al. correlated the low expression level of HDAC4 mRNA 

to the high severity of BDMR syndrome (B. Morris et al., 2012). Haploinsufficiency of 

HDAC4 was also clinically reported in BDMR patients (Villavicencio-Lorini et al., 

2013). Huntington’s disease is another neurodegenerative disorder that was associated 

with HDAC4. Excessive number of “CAG” repeats within Huntingtin (HTT) gene at 

exon 1 is responsible for Huntington’s disease. This will lead to the generation of 

polyglutamine (polyQ) expanses in the produced protein which will result in protein 

aggregation of the misfolded protein and eventually to neurological abnormalities and 

apoptosis (Mielcarek et al., 2013). According to Mielcarek et al., HDAC4 showed the 

tendency to associate with the mutant HTT. The study confirmed that a reduction in 

HDAC4 enzyme was combined with the declination of the HTT accumulation, which led 

to the restoration of the essential function of neural synapses and an improvement in the 

vital signs in the knockout mice models (Mielcarek et al., 2013). During diffuse axonal 

injury, HDAC5 has been providing a crucial role in the axonal regeneration process by 

tubulin deacetylation mechanism. Tubulin deacetylation is promoted by the activation of 
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HDAC5 upon the protein kinase C (PKC) attachment (Cho & Cavalli, 2012). Moreover, 

PKC and calcium have been involved in the nuclear export of class IIa HDAC5, which 

leads to restoration of the transcription of pro-regenerative genes by the elevation of 

histone acetylation mechanism (Cho et al., 2013). A study by Dietrich et al. has reported 

that cocaine can promote the HDAC5 nuclear export and myocyte enhancer factor 2C 

protein (MEF2C) activation by the phosphorylation of the salt-inducible kinase 1 (SIK1) 

(Dietrich et al., 2012). Remarkably, another study has revealed that cocaine may instead 

provoke HDAC5 nuclear aggregation via cyclic adenosine monophosphate (cAMP) 

signaling and dephosphorylation of HDAC5 through protein phosphatase 2A (PP2A) 

protein (Taniguchi et al., 2012). Cerebellar granule neurons (CGNs) protection against 

cell death has been related to the cellular function of class IIa HDAC7. This 

neuroprotective role is a deacetylase-dependent activity and participates in the inhibition 

of the oncogenic transcription factor c-Jun protein (Ma & D’Mello, 2011). Hemizygously 

deletion in HDAC9 gene was involved in a minor ration of schizophrenia patients. 

HDAC9 has been reported to be profoundly expressed in mice brains exactly where the 

schizophrenia affected area was observed (Lang et al., 2011). 

1.4.2. Immune System and Immunological Disease 

In recent decades, the study of the association of HDACs with the immune system has 

become the focus of many researchers. For an instance, HDAC7 is excessively expressed 

through the generation of a cluster of differentiation 4 and 8 (CD4+ and CD8+) 

thymocytes. HDAC7 has been related to inhibition and repression of the orphan steroid 

nuclear receptor Nur77 in the cell nucleus through MEF2. Nur77 is known for its pro-

apoptotic activity and its correlation to the T cell apoptosis. T cell activation induces 

protein kinase D1-mediated HDAC7 phosphorylation and exportation to the cytoplasm, 

which will lead to the removal of the Nur77 repression and initiation of cell death 

(Dequiedt et al., 2003; Parra et al., 2005). A study by Kasler et al. in 2011 demonstrated 

a positive selection of CD4+ lymphocytes or lower survival rate in knockout mice 

because of HDAC7 deletion in double positive thymocytes as well as nuclear export of 

HDAC7 (Kasler et al., 2011). In addition, Kasler et al. in 2012 studied the effect of 

nuclear export of phosphorylation deficient mutant-HDAC7 in thymocytes. They noted 
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that the negative thymic selection was blocked. However, transgenic thymocytes were 

still able to endure positive selection and the autoreactive T cell was able to escape to the 

periphery. Consequently, this blockage may lead to the development of lethal 

autoimmune syndrome (Kasler et al., 2012). Recent study has conducted an analysis of 

HDAC7 and its effect on the natural killer T cells (NKT). The study reported that the 

NKT generation was reduced in phosphorylation deficient mutant-HDAC7 thymocytes, 

and instead, naïve-like T cells development was induced. Accordingly, a correlation 

between these observations and tissue-specific autoimmunity was confirmed (Kasler et 

al., 2018). HDAC7 deletion has shown a serious impact on B lymphocyte development 

and differentiation in conditional knockout mice models. Thus, B cell development was 

suppressed in peripheral organs and led to lymphopenia (Azagra et al., 2016). Lobera et 

al. identified an association between class IIa HDACs and monocyte differentiation by 

application of TMP195 as a selective class IIa HDACs inhibitor (HDACi). In their study, 

they treated four different cells by using TMP195: monocytes (CD14+), T cells (CD3+), 

stimulated peripheral blood mononuclear cells (PBMC) and B cells (CD19+). 

Significantly, monocytes (CD14+) were more sensitive to the HDAC7 inhibition than 

other examined cells (Lobera et al., 2013). Guerriero et al. in 2017 were first to report 

that repressing class IIa HDACs can prompt an anticancer response by manipulating the 

immune system. They found that anticancer macrophages have been promoted and 

recruited in mice models of breast cancer by using TMP195 (Guerriero et al., 2017). 

1.4.3. Cardiovascular System and Related Diseases 

Class IIa HDACs and their influence on the cardiovascular system in humans are well 

studied, especially their role in cardiac hypertrophy onset. Cardiac hypertrophy, which is 

described as cardiac tissue enlargement, can arise from a continuous response of the 

cardiac cells to the physiological and immunological stimuli. High stress caused by 

several pathophysiological conditions such as valve disease, hypertension, myocardial 

infarction, and cardiac injury can lead to hypertrophy that increases the cardiac wall 

rigidity. Nevertheless, heart failure, fibrosis, and cardiomyopathy can arise from 

persistent hypertrophy (Chien, 1999; Heineke & Molkentin, 2006; McKinsey & Olson, 

2005). Cardiac cells regeneration is promoted by the activation of the “fetal gene 
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program” which regulates proteins responsible for calcium absorption and muscle 

contraction (N Frey & Olson, 2003). “Fetal gene program” is inhibited by MEF2-HDCAs 

protein-protein interaction when no injury is found (Black & Olson, 1998; McKinsey et 

al., 2002). MEF2-HDCAs repression is reversed via phosphorylation-dependent nuclear 

export by hypertrophic stimuli that triggers the cardiac kinase. Unlike HDAC9 knockout 

mice, that exhibited a remarkable increase in the response to hypertrophic stimuli, 

mutated HDACs that lacks phosphorylation sites were hypertrophic-stimuli resistant (C. 

L. Zhang et al., 2002). 

Calcium signaling alterations have been associated to cardiac remodeling as a result of 

stress conditions and HDAC4 phosphorylation through CaMK-I and CaMK-II (Backs et 

al., 2006; Norbert Frey et al., 2000). HDACs phosphorylation level is localization-

dependent and numerous kinases can only modify particular HDAC enzymes. In 

CaMKIIδ deficient mice models, kinase activity was not affected in HDAC5, while 

diminished in HDAC4 (Fielitz et al., 2008; Little et al., 2007). In addition, kinase 

specificity is affected by alternate splicing of CaMKIIδ, that leads to HDAC4 

localization-dependent phosphorylation via activation of nuclear δB and δC isoforms of 

phenylephrine and caffeine, respectively (McKinsey, Zhang, Lu, et al., 2000). HDAC4 

can be phosphorylated by CaMKIIδ B and C isoforms and can offer comparable MEF2 

gene expression. Also, calcium regulatory proteins can be phosphorylated by CaMKIIδC 

to control Ca2+ concentrations (T. Zhang et al., 2007). Moreover, several studies have 

reported that various HDAC modification enzymes can provoke cardiac hypertrophy 

through Ca2+-independent signaling pathway. Downstream effect of protein kinase D 

(PKD) can specifically initiate HDAC5 nuclear export upon its phosphorylation (Fielitz 

et al., 2008; Vega, Harrison, et al., 2004). In hypertensive conditions, G protein-coupled 

receptor kinase-5 (GRK5) can induce MEF2 activation and nuclear export of HDAC5 

which may lead to ventricular hypertrophy (Akhter et al., 1998; I. et al., 2012). Recently, 

HDAC5 was shown to be related to left ventricle hypertrophy and elevated salt intake. 

HDAC5 phosphorylation is induced by SIK1 activation upon elevated sodium 

concentrations, and consequently improves the transcriptional activity of MEF2 and 

nuclear factor of activated T-cells (NFAT) (Frohlich et al., 1993; Popov et al., 2012; 

Schmieder et al., 1988). Haworth et al. studied HDAC enzymes phosphorylation by 

neurohormones stimuli in human myocardiocyte cells. In addition to the substantial role 



 

20 

 

of PKD in promoting the HDAC5 nuclear export and MEF2 activation, later mechanisms 

were also mediated via independent phosphorylation of β1-adrenergic receptor (β1-AR) 

(Haworth et al., 2012). In the same context, more focused studies are needed to 

understand how these mechanisms are put together to deliver a conjoint endpoint as in 

“fetal gene program” activation. It is of a great challenge to fully understand how HDAC 

enzymes are controlled in cardiovascular diseases and how MEF2 inhibition and HDACs 

retention contribute to cardiac hypertrophy prevention. Such knowledge can potentially 

be used for therapeutic purposes. Signaling pathway for phenylephrine was proved to 

induce nuclear export of HDAC4 and the formation of disulfide bonds between cysteine 

667 and cysteine 669 residues in HDAC4. Crucially, cardiac hypertrophy has been 

reduced as a result of breaking down these disulfide bonds by thioredoxin 1 enzymes 

(Ago et al., 2008). Other specific phosphorylation modifications are also known to block 

nuclear export of HDAC enzymes. 14-3-3 binding (a conserved regulatory protein that is 

expressed in human cells) is shown to be interrupted as a result of PKA-mediated 

phosphorylation of serine 279 residue in HDAC5, which can lead to cardiac hypertrophy 

inhibition and MEF2 repression (Ha et al., 2010). Importantly, PKA has a crucial 

cardioprotective function that is associated with the HDAC4 proteolytic cleavage, in 

which MEF2 is repressed by the cleaved N-terminal fragment upon its translocation to 

the nucleus (Backs et al., 2011). 

In addition to cardiac hypertrophy, comparable molecular mechanisms can also lead to 

vascular smooth muscle cells (VSMCs) hypertrophy under certain pathological 

conditions. Class IIa HDAC enzymes modifications were also seen to be regulated under 

certain vascular hypertrophy conditions. HDACs 4 and 5 phosphorylation mechanism in 

VSMCs is mediated by PKD1 and CaMKII (Jinjiang et al., 2008; Xiangbin et al., 2007). 

Mature endothelial cells (ECs) and VSMCs are known to be involved in new blood 

vessels generation namely angiogenesis (Risau, 1997). Through angiogenesis, HDACs 5 

and 7 nuclear export and 14-3-3 binding sites undergo PKD-mediated phosphorylation 

mechanism that is promoted by vascular endothelial growth factor (VEGF). These 

modifications are known to enhance VEGF-responsive genes expression, that are 

involved in micro-vessel growth, tube generation, and cell proliferation and migration 

(Chang, Bong, et al., 2008; Chang, Wang, et al., 2008; S. Wang et al., 2008). During 

atherosclerosis, localization and phosphorylation of HDAC5 are mediated by CaMK, 
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thus endothelial nitric oxide synthase (eNOS) and Kruppel-like factor 2 expression level 

is improved in ECs (W. Wang et al., 2010). Interestingly, nitric oxide, that is a product 

of nitric oxide synthase, was shown to promote HDAC4 PP2A-medited 

dephosphorylation (Illi et al., 2008). Delehanty et al. proposed that class IIa HDAC 

enzymes are not only involved in the formation of blood vessels and development of 

cardiovascular cells. They reported that HDAC5 undergo PKD-dependent 

phosphorylation as is involved in the regulation of red blood cells production, also known 

as erythropoiesis (Delehanty et al., 2012). 

1.4.4. Musculoskeletal System and Related Diseases 

Histone deacetylases class IIa are known to undergo phosphorylation modifications that 

play substantial roles in gene expression related to the differentiation of bone and muscle 

tissues and associate them with the pathophysiological conditions of the musculoskeletal 

system, such as osteoarthritis and myopathies. 

Muscular tissue formation in embryonic life stage, also known as myogenesis, involves 

myoblast cells differentiation to form myotubes. During myogenesis, large number of 

muscle-related genes undergo molecular activation mechanisms combined with 

suppression of cell proliferation genes (Maud Martin et al., 2009). In case of 

undifferentiated cells, HDACs 4 and 5 are found to be interacted with the inactivated 

form of the transcriptional factor MEF2. Upon myogenesis, MEF2-HDAC4/5 complex 

go through nuclear export as a result of the CaMK- and GIT1-mediated phosphorylation 

process of 14-3-3 binding sites (J. Lu et al., 2000; McKinsey, Zhang, & Olson, 2000; 

McKinsey, Zhang, Lu, et al., 2000). Class II HDAC proteins are known for their ability 

to relocalize themselves during different biological and cellular mechanisms. Thus, 

HDACs class IIa isoforms display diverse cellular localization forms during the 

differentiation of myoblast cells. Upon myoblast fusion, HDAC4 undergo cellular 

relocalization from the cytoplasm to the nucleus, but this transition can be inhibited by 

the calcium/calmodulin-dependent protein kinase IV (CaMKIV) (Miska et al., 2001). 

Remarkably, class II HDAC7 isoform is utterly located in the cytoplasm during myotubes 

differentiation (Gao et al., 2010). During skeletal muscle differentiation, MEF2-

interacting transcription repressor (MITR), which is a HDAC9-splice variant, can 



 

22 

 

undergo CaMK-dependent phosphorylation as well as Mirk/dyrk1B-dependent 

phosphorylation (Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B) 

(Deng et al., 2005; C. L. Zhang et al., 2001). 

Bones growth and formation including chondrocytes and osteoblast cells differentiation 

is known to be modulated by bone morphogenic proteins family (BMP) which is also 

regulated by class IIa HDACs functions (Cao & Chen, 2005; Wan & Cao, 2005). Jensen 

et al. demonstrated that HDAC7 (but not HDACs 4, 5, or 6) can be subjected to nuclear 

export by BMP2 through PKD-dependent phosphorylation (Jensen et al., 2009). This 

mechanism ensures the derepression of the runt-related transcription factor 2 (Runx2) via 

HDAC7, which is considered to be the most important transcriptional factor in the 

musculoskeletal system (Jensen et al., 2009). Enhanced levels of Runx2 and HDAC4 

nuclear transition by CaMKIV, together play a prominent role in chondrocytes 

differentiation into pre-hypertrophic chondrocytes. Premature bone ossification condition 

was observed in knockout mice models lacking HDAC4, suggesting that these regulatory 

systems are of critical importance in osteoarthritis onset (Guan et al., 2012; Vega, 

Matsuda, et al., 2004). It is thought that this prematuration mechanism can be avoided by 

the parathyroid hormone-related peptide (PTHrP) expression, which with the help of 

dephosphorylated-HDAC4, is involved in Runx2 suppression. Hence, regulation of 

HDACs phosphorylation may be considered as a potential treatment for orthopedic 

disorders such as calcification disorders and osteoporosis (Kozhemyakina et al., 2009). 

1.4.5. Cancer 

Whilst HDACs class IIa post-transcriptional modifications have been ascertained to 

influence and interfere with the pathophysiological conditions as previously discussed; 

many other studies have shown that their effects are far to count. HDACs family has been 

well known for their association with the development of cancer. Vorinostat, one of the 

most famous pan-HDACs inhibitors, has been FDA-approved since 2006 for T-cell 

lymphoma treatment, signifying the importance of HDACs as targets for preventing 

cancer progression. Class I HDAC proteins have drawn the foremost attention of cancer 

research so far, because their impaired function is related to the development of cancer 
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(Ropero & Esteller, 2007). Nevertheless, HDACs class IIa have shown significant 

functional roles in tumorigenesis development and progression in several discorders. 

In stomach cancer cells (also known as gastric cancer), due to nuclear accumulation of 

PKD2, PKD-dependent phosphorylation of HDAC7 is utterly increased which ultimately 

leads to HDAC7 nuclear export and downstream targets expression involving Nur77 

(Von Blume et al., 2007). On the contrary, in colon cancer cells, HDAC4 is located in the 

nucleus and interacts with the transcription factor Sp1 named as specificity protein 1 and 

suppress p21 transcription, thus induces growth of cancer cells (Wilson et al., 2008). Kao 

et al. demonstrated that RNAi induces repression of HDAC4 expression which results in 

reduction of HeLa cells viability. In addition, they reported that after double-stranded 

DNA break, the p53 tumor suppressor protein and HDAC4 are colocalized. This 

colocalization was observed via immunoprecipitation assay (Kao et al., 2003). In other 

pathological conditions, Kaletsch et al. reported that HDAC4 demonstrated the contrary 

effect as the expression of HDAC4 in urothelial cancer cells rather blocks the cancer cells 

proliferation (Kaletsch et al., 2018). In a different study by Geng et al., they showed that 

HDAC4 in H23 and H460 cell lines of the non-small cell lung cancer (NSCLC) have 

been exported from the cytoplasm into the nucleus upon irradiation exposure. They 

further reported that uses of the Panobinostat (pan-HDACi antitumor agent) have 

promoted the HDAC4 relocalization into nucleus and reversed the irradiation effect. γ-

H2AX is a special phosphorylated form of H2A histone family, which is involved DNA 

repair. Geng et al. also found that Panobinostat administration before the exposure to an 

irradiation extends the duration of γ-H2AX foci (Geng et al., 2006). It is captivating to 

postulate whether cytoplasmic relocalization can be induced by HDAC4 inhibition, 

which may help in the DNA repair process. It is more likely to conduct such study due to 

the availability of HDACs inhibitors to draw more attention on the potential association 

of HDAC4 with designated effects of Panobinostat. Blocking of HDAC4 nuclear 

interaction with other partners such as HDAC3 may provide an explanation of HDAC4 

nuclear export via Panobinostat. Another study by Stronach et al. demonstrated the 

association between HDAC4 expression and the platinum-based DNA damaging drugs 

resistance (Stronach et al., 2011). Sixteen matching tumor biopsies of ovarian cancer 

were taken and tested in advance and after platinum resistance occurrence. An enhanced 

expression of HDAC4 was observed in 44% in platinum-resistant biopsies. Moreover, 
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they established a molecular connection between the expression rate of HDAC4 and the 

acetylation level of signal transducer and activator of transcription 1 (STAT1), which 

plays a crucial role in tumor suppression. They found that when Cisplatin (a 

chemotherapeutic agent) was introduced to platinum-resistant cells, tyrosine 701 residue 

of STAT1 was phosphorylated and hence activated and transported into the nucleus. In 

ovarian cancer tissues, STAT1 acetylation was enhanced upon HDAC4 inhibition, which 

led to neutralizing its platinum-induced activation and increased the STAT1 sensitivity 

towards Cisplatin (Stronach et al., 2011). Cadot el al shed some light on knockdown 

(partial loss of function) and knockout (complete loss of function) of HDAC4 in normal 

and tumor cells and its impact on the progression of the cell cycle. Mitotic arrest was seen 

in HeLa cell line of the knockdown HDAC4 and consequently led to apoptosis. 

Deficiencies in chromosome segregation were just reported in p53-lacking cells (Cadot 

et al., 2009). p53-independent mechanisms may also explain how HDACs class IIa can 

promote cancer progression via the cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1). 

Expression of p21WAF1/CIP1 may increase in different types of cancer cells through 

HDAC4 suppression via small interfering RNA (siRNA). Down regulation of 

p21WAF1/CIP1 via HDAC4 was seen after the interaction with the transcription factor Sp1, 

which resulted in the binding of HDAC4-Sp1 to the Sp1/Sp3 binding site of the 

p21WAF1/CIP1 promoter region (Mottet et al., 2009). Mathias and colleagues proposed that 

other interacting proteins may participate in the suppression of the p21WAF1/CIP1 

expression, since HDAC4 alone is enzymatically inactive. This could be achieved by the 

recruitment of other transcriptional co-repressor proteins such as SMRT-N-Cor-HDAC3 

(Fischle et al., 2002). In the same context, Wilson et al. in 2008 proved that SMRT-N-

Cor-HDAC3 interaction with HDAC4 resulted in the repression of the p21WAF1/CIP1 

expression in colon cancer cells (Wilson et al., 2008). Class IIa HDAC4 was shown to 

have a caspase cleavage site at aspartic acid 289 residue, where cysteine-aspartic 

proteases (caspase) enzymes play prominent roles apoptosis (F. Liu et al., 2004; Paroni 

et al., 2004). When HDAC4 undergoes caspases cleavage, the N-terminal fragments of 

HDAC4 accumulate in the nucleus and subsequently induce the release of cytochrome C 

and promote the programed cell death via caspase-9 (Paroni et al., 2004). MEF2 binding 

site (HDAC4/1-165) was missing in the N-terminal part of HDAC4 signified that MEF2 

suppression is required for the apoptosis. MEF2-HDAC4 interaction is essential to 
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promote cancer development and cell differentiation. Mutational experiments have 

demonstrated that integral and undamaged MRF2 binding site alongside with nuclear 

localization are critical for the HDAC4 transitional activity (Di Giorgio et al., 2013). In 

2018, a study has related HDAC4 to the tumor suppressor p53-dependent senescence in 

fibroblasts and promoting cell transformation (Paluvai et al., 2018). Similar to HDAC4, 

HDAC7 is a potential tumorigenic and exhibits transforming ability (Di Giorgio et al., 

2013). In lung cancer, HDAC7 is highly expressed and associated with low survival rate. 

In addition, HDAC7 is also related to cancer development by STAT3 deacetylation which 

blocks the activation of STAT3 (Lei et al., 2017). Similar to the caspase cleavage site 

seen in HDAC4, HDAC7 as well has this feature, a caspase cleavage site at aspartic acid 

375 residue, which is a target for caspase8. The HDAC7 proteolytic cleavage was 

associated with the change in subcellular localization of the two cleaved parts and MEF2 

suppression (Scott et al., 2008). However, unlike HDAC4, the apoptotic impact of 

HDAC7 in cancer cells has not been established yet. Zhong et al. reported the correlation 

of HDAC5 to tumor-related development such as angiogenesis. They proposed that 

extreme expression of HDAC5 in lung cancer was related to the invasion ability, 

proliferation and survival of cancerous cells (Zhong et al., 2018). Earlier study 

demonstrated the contrary effect of HDAC5 overexpression in breast carcinoma cells, 

osteogenic sarcoma cells, and neuroblastoma cells, which resulted in the repression of 

cancer development and subsequently apoptosis that was related to the activation of death 

receptors signaling of tumor necrosis factor (TNF) (Y. Huang et al., 2002). Another 

publication by Huang et al. have reported an overexpression of HDACs 2 and 5 in the 

estrogen receptor positive (ER+) tamoxifen-resistant MCF7-TamC3 breast cancer cell 

line. On the other hand, decreased expression of HDACs 2 and 5 was observed in the 

MCF7 tamoxifen-sensitive cells. Additionally, overexpression of HDAC5 was linked to 

the decreased regulation of tumor suppressor microRNA-125a-5p as well as to the 

increased regulation of anti-apoptotic protein surviving. Interestingly, decreased 

expression of microRNA-125a-5p was associated with the low survival rate in patients 

with tamoxifen-treated ER+ breast cancer (W. T. Huang et al., 2017). It is possible that 

the increased or decreased expression of HDAC5 effect on the cellular responses differs 

according to the origin of the cells because of the tissue-specificity expression manner of 

class IIa HDACs. Moreover, HDACs class IIa 7 and 9 have been correlated to the cancer 
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development. Similar to HDAC5, angiogenesis has been associated with HDAC7. 

Upregulated expression of the platelet-derived growth factor receptor beta (PDGFRβ) 

and platelet-derived growth factor B (PDGF-B) has been seen in endothelial cells upon 

HDAC7 knockdown, which in turn altered the migration process and thus altered 

angiogenesis (Denis et al., 2007). In pancreatic cancer cells, high level of HDAC7 

expression was seen in the cytoplasm (Ouaïssi et al., 2008). Moreno and colleagues have 

demonstrated a correlation between the overexpression level of HDACs 7 and 9 and the 

poor prognosis in childhood acute lymphoblastic leukemia (ALL) (Moreno et al., 2010). 

Another study has shown that HDAC7 inhibition caused cellular senescence and cell 

cycle halt. HDAC7 has a direct influence on cancer cell development in a verity of cancer 

cell lines through decreased regulation of the cell cycle regulatory proteins p21 and p27 

and, at the same time, by increased regulation of the proto-oncogenic transcriptional 

factor c-Myc (C. Zhu et al., 2011). On the other hand, HDAC7 expression was reduced 

tragically in B-cell malignancies such as chronic lymphocytic leukemia (CLL). However, 

enhanced expression of HDAC7 in B-cell malignancies has led to apoptosis and 

decreased regulation of the c-Myc (Barneda-Zahonero et al., 2015). Several studies 

showed that the increased protein level of HDAC9 and its overexpression have been 

associated to different cancer cells including osteosarcoma, lymphoma and breast cancer 

(Clocchiatti et al., 2013; Lapierre et al., 2016; Moreno et al., 2010; Zhao et al., 2015). 

Improved proliferation and reduced apoptosis rates were reported in the breast cancer 

cells and correlated to the increased level of HDAC9 expression. This was also linked to 

the downregulation of cyclin dependent kinase inhibitor 1a (CDKN1A), bcl-2 associated 

x-protein (BAX), and TNF receptor superfamily member 10a (TNFRSF10A) genes. 

HDAC inhibitors effectiveness to lower the cell proliferation rate and the expression of 

CDKNA1A have been decreased in lymphoma. Gil et al. demonstrated that 

lymphoproliferative disorders and splenic marginal zone lymphoma have been reported 

in genetically modified mice models where HDAC9 was continuously expressed during 

the cell cycle. Additional investigation showed that altering survival and growth signaling 

pathways by manipulating the activity of p53 and B-cell lymphoma 6 (BCL6) might 

explain the HDAC9 contribution to lymphomagenesis (Gil et al., 2016). 
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1.4.6. Diabetes 

Class IIa HDACs function was also related to the diabetes pathological process and linked 

to the insulin resistance in several tissues like skeletal muscle tissues. Class IIa HDACs 

4, 5, and 7 nuclear preservation and dephosphorylation in mammalian cells are promoted 

by the fasting hormone glucagon (Mihaylova et al., 2011). Interestingly, HDACs class 

IIa are necessitated to the deacetylation modification and activation of the forkhead box 

protein O (FOXO) transcriptional factors that are involved in the expression of 

gluconeogenic genes, e.g., catalytic subunit of glucose 6-phosphatase (G6Pase) 

(Mihaylova et al., 2011). In this case, HDACs class IIa have shown the ability to regulate 

the blood glucose level through hormones production regulation. Moreover, GLUT4 

expression, which is a principal modifier of insulin resistance, is modulated by HDAC5 

suppression and phosphorylation-mediated nuclear export (McGee et al., 2008). 

Remarkably, upon aerobic exercises, phosphorylation of HDAC5 rate has been reported 

to be increased, which may suggest that HDACs are subjected to alterations in blood 

oxygen levels (Vissing et al., 2008). HDACs family is well known to act in response to 

alterations in cellular metabolic environs. Class III HDACs (SIRTs) activity is controlled 

by NAD+ and their catalytic activity is regulated by the accessibility to glutamine and 

glucose (Mathias et al., 2014; Pirinen et al., 2012; Poulsen et al., 2014; Y. Zhu et al., 

2013). Additionally, HDACs class I (HDAC1 and HDAC2) have been reported to 

allosterically activated via nicotinamide adenine dinucleotide phosphate (NADPH) along 

with acetyl-CoA and other CoA-derived molecules (Vogelauer et al., 2012). It is now 

evident that other metabolic regulators can affect HDACs activity such as short chain 

fatty acids including butyrate, which is considered as the base unit for the development 

of antitumor agents (Rajendran et al., 2011). High consumption of butyrate along with 

short chain fatty acids have been suggested to provide an anti-diabetic and 

cardioprotective function of whole-grain nutrition. It is thought that tempering of HDACs 

catalytic activity in diabetic patients might be linked to the changes in butyrate levels 

(Nilsson et al., 2010). 
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1.5. HISTONE DEACETYLASE KNOWN INHIBITORS 

Several human disorders such as sickle cell disease (SCD), cystic fibrosis (CF), 

inflammatory disorders, acquired immunodeficiency syndrome (AIDS), muscular 

dystrophies, and neurodegenerative have been linked to HDAC proteins as epigenetic 

targets (Tang et al., 2013; Wiech et al., 2009). With a closer look at the large number of 

scientific publications in recent years, HDACs have proven to be vital targets for 

anticancer drugs. The biological effect of inactivating HADCs in various types of cancers 

has shown their importance in treating cancer and reversing the pathological implications. 

HDACis are well established to control several molecular processes through regulating 

histone and non-histone proteins, including immune system response, cell cycle control, 

programmed cell death, and angiogenesis (Eckschlager et al., 2017; Hull et al., 2016). 

Nevertheless, their exact molecular mechanisms are still ambiguous (Kim & Bae, 2011). 

The first pharmacophore model of HDACi was established in 1997 by Jung et al., which 

led to the revolution of HDACis rational design. The mostly common and currently 

recognized HDACi pharmacophore features obey three main components: a zinc-binding 

group (ZBG) also known as chelator which can interact with catalytic zinc ion in the 

active site; a linker that normally mimics the acetyl-lysine and span through the substrate 

binding channel; and a cap group that is important for the isoform selectivity and also 

known as surface recognition domain (Figure 1.7) (Finnin et al., 1999; Jung, 2012; Jung 

et al., 1999). 

 

Figure 1.7. HDACs inhibitors pharmacophore model features (M. A. Choi et al., 2019). Also, this model 

represents the chemical structure of suberanilohydroxamic acid (SAHA), the HDAC inhibitor. 

Nonetheless, the above pharmacophore model is not entirely applied for HDACi that 

targets other pockets besides the main active site like lower pocket, foot pocket and side 
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pocket. Hence, another pharmacophore model was proposed by Melesine et al. in 2018 

which contains six components instead of three: surface cap S-cap, side pocket cap SP-

cap, lower pocket LP-group, foot pocket FP-group, ZBG, and linker (Melesina et al., 

2018). HDACi can either display an isoform selectivity or can be pan inhibitors and non-

selective. 

So far, only four HDAC inhibitors have been approved for treatment of cancer by the 

Food and Drug Administration (FDA) including the pan-inhibitor suberoylanilide 

hydroxamic acid (SAHA/Vorinostat) which is used for the treatment of patients with 

cutaneous T-cell lymphoma (CTCL), Belinostat (PXD101) and Romidepsin (FK228) are 

used for the treatment of patients with peripheral T-cell lymphoma (PTCL) and 

Panobinostat (LBH589) for the treatment of multiple myeloma. Tsuji et al. extracted one 

of the first HDACi in 1976 from Streptomyces hygroscopicus, which showed an 

antifungal activity against Trichophyton (Tsuji et al., 1976). Later in 1990, Yoshida et al. 

proved the high potency of Trichostatin A (TSA) against HDACs as it blocks the cell 

cycle of normal fibroblasts in both the G1 and G2 phases (Yoshida, 2007). Vorinostat 

was the first HDACs inhibitor to be approved by FDA in 2006, which is a non-selective 

broad-spectrum HDAC inhibitor with IC50 of ~10 nM in cell-free assays and is used in 

treatment of patients with CTCL (Mann et al., 2007; Schölz et al., 2015). Romidepsin 

(FK228) was the second HDACi to be approved by FDA in 2009, which shows a potent 

selectivity against HDACs 1 and 2 with IC50 of 36 nM and 47 nM in cell-free assays and 

is used in treating patients with CTCL and PTCL (Bantscheff et al., 2011; Ellis & Pili, 

2010). Belinostat (PXD101) was also approved in 2014 by FDA that is a broad-spectrum 

HDAC inhibitor with IC50 of 27 nM in a cell-free assay and is used in treating patients 

with PTCL (Bantscheff et al., 2011; H. Z. Lee et al., 2015). Lastly, Panobinostat 

(LBH589) got approved by FDA in 2015, which shows an IC50 activity of 5 nM in a cell-

free assay in HDACs and is used in treating patients with multiple myeloma (Laubach et 

al., 2015; Schölz et al., 2015). 

Based on the chemical structure of HDACs inhibitors, they are generally classified into 

five classes: carboxylates, hydroxamic acids, benzamides, electrophilic ketones, and 

cyclic peptide inhibitors (Table 1.3). 
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Table 1.3. Structural classification of HDACs inhibitors. 

HDAC inhibitor Classification Clinical trials Class selectivity 

Valproic acid Carboxylic acid FDA app. I 

Butyrate Carboxylic acid Phase II I and II 

Vorinostat (SAHA) Hydroxamic acid FDA app. Broad-spectrum 

Belinostat Hydroxamic acid FDA app. I 

Panobinostat Hydroxamic acid FDA app. Broad-spectrum 

Abexinostat Hydroxamic acid Phase III I and II 

Pracinostat Hydroxamic acid Phase III Broad-spectrum 

Resminostat Hydroxamic acid Phase II I and II 

Givinostat Hydroxamic acid Phase III I and II 

Quisinostat Hydroxamic acid Phase II Broad-spectrum 

Ricolinostat Hydroxamic acid Phase II HDAC6 

Citarinostat Hydroxamic acid Phase I HDAC6 

Dacinostat Hydroxamic acid N/A Broad-spectrum 

Droxinostat Hydroxamic acid N/A HDACs 3, 6, 8 

Trichostatin A Hydroxamic acid Phase I Broad-spectrum 

CUDC-101 Hydroxamic acid Phase I I and II 

Tacedinaline Benzamide Phase III I 

Chidamide Benzamide Phase III I and IIb 

Mocetinostat Benzamide Phase II I and IV 

Entinostat Benzamide Phase III I 

Tubastatin A Benzamide N/A HDAC6 

KD5170 electrophilic ketones N/A I and II 

Romidepsin Cyclic Peptide FDA app. I 

Apicidin Cyclic Peptide N/A I 

FDA app.: FDA approval. N/A: Not in clinical trials. Broad-spectrum: applied when the inhibitor covers 

more than two HDAC classes. Valproic acid was approved by FDA for other several disorders but not for 

cancer treatment. 

Carboxylates (short-fatty acid) derivative HDACi: Boffa et al. described butyric acid 

namely phenyl butyrate as one of the first HDACs inhibitors in 1978 to be investigated 

in proteins (Figure 1.8) (Boffa et al., 1978). Phiel et al. in 2001 recognized the 

anticonvulsant valproic acid as an HDAC inhibitor (Phiel et al., 2001). Carboxylic acid 

HDACs inhibitors have shown less activity in comparison to the hydroxamic acid 

inhibitors because of the low coordination level with catalytic zinc ion in the active site 

of HDAC enzymes. Regardless the less catalytic activity of carboxylic acid HDACs 

inhibitors, phenyl butyrate and valproic acid are globally well-studied histone deacetylase 

inhibitors. Phenyl butyrate and valproic acid have been broadly endorsed for the 

treatment of several cancer types and epilepsy. Interestingly, valproic acid plays a critical 
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role in several cellular pathways in the cell (Blaheta et al., 2002). Valproic acid is 

undergoing clinical trials phase I, while phenyl butyrate is undergoing clinical trials phase 

II. 

 

Figure 1.8. Carboxylic acid based HDAC inhibitors. 

Hydroxamic acids derivative HDACi: Hydroxamic acid HDAC inhibitors represent the 

largest category of HDACis as they are well-studied molecules targeting the HDAC’s 

active site. The common structural feature of these inhibitors contains a hydroxamic 

group that helps the chelation process between the zinc ion in the binding pocket and the 

hydroxamic acid moiety of the inhibitor; an aromatic ring namely cap group and acts as 

a surface recognition group; and a linear linker (saturated or unsaturated) between the 

hydroxamic group and cap group (Figure 1.7) (Breslow et al., 2000). The natural product 

TSA, and the designed SAHA (Vorinostat), are the most well-known examples of 

hydroxamic acid HDAC inhibitors (Breslow et al., 2000; Richon et al., 1996). TSA and 

SAHA are broad-spectrum HDAC inhibitors that target classes I, II and IV and are 

effective at nanomolar concentrations. TSA is undergoing clinical trials phase I, while 

SAHA has been approved by FDA in 2006 for the treatment of CTCL (Mann et al., 2007; 

E. K. Singh et al., 2010). Enormous number of hydroxamic acid derived HDACi have 

been developed and designed mimicking TSA structure. 

Benzamides derivative HDACi: In 1999, Suzuki et al. synthesized the first benzamide-

derivative HDAC inhibitors (Saito et al., 1999; Suzuki et al., 1999). These inhibitors 

share no similarity with the previous designed HDAC inhibitors. Their benzamide moiety 

ligate the catalytic zinc ion in the active site, thus impeding the histone deacetylases. Like 

carboxylates (short-fatty acid) HDACi, benzamide HDACi are mostly less potent than 

those of hydroxamic HDACi. Entinostat (MS-275) is one of the most well-studied and 

highest potent benzamide HDACi, that promotes the overexpression of p21 protein and 

increases the acetylation of nuclear histones in several cancer cells. Entinostat shows an 

inhibition activity of 5 μM and displayed effective cancer fighting in vivo (Jaboin et al., 
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2002; Saito et al., 1999). Entinostat is undergoing clinical trials phase III and is a class I 

HDACs selective inhibitor. Another benzamide derivative HDAC inhibitor is 

Tacedinaline (CI-994), which is highly potent against human and rodent tumor cells and 

is used for the treatment of patients with acute myelocytic leukemia (AML) and colon 

cancer and others. Tacedinaline is undergoing clinical trials phase III (El-Beltagi et al., 

1993; Graziano et al., 2001; Seelig & Berger, 1996). 

 

Figure 1.9. Benzamide derivative HDAC inhibitors. 

Electrophilic ketones derivative HDACi: Electrophilic ketones-based inhibitors are 

proven to be instantly hydrated and have been identified as significantly effective 

inhibitors against HDAC enzymes, which chelate the catalytic zinc ion at the bottom of 

HDAC active site (Christianson & Lipscomb, 1986; Walter et al., 1996). Trifluoromethyl 

ketones are the most well-known electrophilic ketones based HDACi. Frey et al. reported 

in 2002 a SAHA derivative linear chain trifluoromethyl ketones as a histone deacetylase 

inhibitor (R. R. Frey et al., 2002). In the following year, Wada et al. designed α-

ketoamides and α-ketoesters as histone deacetylase inhibitor (Wada et al., 2003). Various 

electrophilic ketones compounds show inhibition activity at micromolar concentrations 

in cancer cells of fibrosarcoma and breast cell lines (R. R. Frey et al., 2002). 

 

Figure 1.10. Electrophilic ketones derivative HDAC inhibitors. 

Cyclic peptide HDACi: Cyclic peptide derivative histone deacetylase inhibitors are 

described as highly complicated molecules among HDACi. Cyclic peptide-based HDAC 

inhibitors consist of main macrocycle moiety including four hydrophobic amino acid 

residues in the surface recognition group; a ZBG with a functional group; and a linker 



 

33 

 

group that has an alkyl chain (Figure 1.11). This class of HDAC inhibitors binds to the 

binding pocket of HDAC enzymes in a similar way to TSA. The alkyl (aliphatic) linker 

of these inhibitors sprawls down the protein’s tunnel placing the binding domain close to 

the catalytic zinc ion in the binding pocket, whilst the macrocycle moiety interacts with 

the rest of the active site. 

 

Figure 1.11. Main pharmacophore model of cyclic peptide derivative HDAC inhibitors. 

The macrocycle moiety of the cyclic peptide includes cyclic tetrapeptide that is 

assembled with an imino acid and D-amino acid neighboring the linker domain, which 

creates a 12 restricted membered cyclic structure with massive intramolecular hydrogen 

bonds. The D-confirmation of the amino acids is believed to be crucial for close-fitting 

of the inhibitor with the rim of the binding pocket, thus facilitate the insertion of the linker 

domain into the enzyme’s tunnel (Komatsu et al., 2001). Cyclic peptide HDAC inhibitors 

are divided into several structural classes based on the functional group of the zinc 

binding group which may include: ~epoxyketone (e.g., Chlamydocin), ~hydroxamic 

acids (e.g., Trapoxins), ~ketone (e.g., Apicidin), ~hydroxymethyl ketone (e.g., FR-

225497), ~electrophilic ketones (e.g., cyclic peptide with pentafluoroethyl ketone), 

~sulfur (e.g., FK228 and Largazole), ~carboxylic or amide group (e.g., Azumamide), and 

many others. 

1.5.1. Class IIa HDAC Inhibitors 

Mainly, three different characteristics of HDACs class IIa aided in developing and 

designing of selective inhibitors, including the enzyme’s active site involving the zinc 

atom, the cytoplasmic-nuclear localizing, and the N-terminal region. As previously 

discussed, a standard histone deacetylase inhibitor consists of three groups; a zinc-

binding group ZBG (also referred as metal binding group) with the ability of chelating 

the catalytic Zn2+ in the active site, a hydrophobic linker which mimics the acetyl-lysine, 
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and a cap group which acts as a surface recognition domain. Chemical alterations of these 

groups may affect both the potency and the selectivity of the compound. Theoretically, 

designing of isoform selective HDACi may need just minor modification to the linker 

group property to match the specific active site of HDACs class IIa. Henkes et al. in 2012 

reported that few changes in the linker group of the HDACi SAHA improved the inhibitor 

selectivity towards classes IIa and IIb HDACs (Henkes et al., 2012). Nonetheless, the 

accomplished outcomes were not as satisfied as those achieved after changes in both the 

linker and the cap group of SAHA (Marek et al., 2013), which turned to be the best 

approach to design SAHA-based isoform selective class IIa HDAC inhibitor. 

Class IIa HDACi intended for the zinc binding domain: Tasquinimod was proposed to 

be a potential HDACi that is used for treatment of patients with castration-resistant 

prostate cancer (CRPC) (Dalrymple et al., 2012; Olsson et al., 2010). Unlike many 

HDACis, Tasquinimod was not rationally identified or screened particularly for HDACs. 

Although, it showed the ability to bind to the catalytic zinc ion in the active site of 

HDAC4, thus inactivating the enzyme catalysis. Displacement of the protein-protein N-

CoR-SMRT-HDAC3 complex is caused by structural modifications of Tasquinimod 

(Isaacs et al., 2013). Remarkably, unlike all other SAHA-based molecules, previous 

observation emphasizes the steric hindrance property of the inhibitor. Nonetheless, by 

considering its specificity towards the structural zinc atom (which is one of the unique 

features of class IIa), SAHA can be replaced by Tasquinimod structural backbone as a 

pharmacophore model for the designing of isoform selective inhibitors. Isaacs and 

colleagues suggested Tasquinimod for the treatment of patients with angiogenesis 

disorders, where its cancer-fighting efficiency is still evaluated and is undergoing clinical 

trials phase III with IC50 of ~1 µM (Isaacs et al., 2013). Two aroyl-pyrrolyl–

hydroxyamides (APHAs) derivative inhibitors, MC1568 and MC1575, were designed 

specifically to target HDAC4 and HDAC6 (Fleming et al., 2014). Originally, APHAs are 

class I HDACs inhibitors. However, modifications to the linker group of APHAs resulted 

in increased selectivity towards class IIa HDACs. MC1568 was found to inhibit class IIa 

HDACs with IC50 of 0.22 µM, while MC1575 inhibits HDAC4 with IC50 of 5 µM 

(Duong et al., 2008; Mai et al., 2005; Nebbioso et al., 2010; Venza et al., 2013). MC1568 

and MC1575 showed significantly lowered cytotoxic effect in comparison to classical 

class I HDAC inhibitors (Mai et al., 2005). Although, both compounds showed some 
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cytotoxicity in ER+ breast cancer cells and in melanoma cells (Duong et al., 2008; Venza 

et al., 2013). Interestingly, MC1568 facilitates the HDAC4-MEF2D complex 

stabilization in developed C2C12 myoblasts, which resulted in impairing myogenesis 

rather than of promoting it (Nebbioso et al., 2009). A structural hybridization between 

the hydroxamic acids and the benzamides of class I HDAC inhibitors resulted in a new 

class IIa selective inhibitor, N-((6-(hydroxyamino)-6-oxohexyl)oxy)-3,5-

dimethylbenzamide namely LMK235. The hydrophobic dimethyl of the cap group in 

LMK235 fits better in the active site of class IIa than class I and led to increase in the 

selectivity towards HDAC4 and HDAC5. In comparison to class I HDACs inhibitors, 

LMK235 shows less cytotoxicity and better outcomes for the treatment of many cancer 

cells due to the structural hybridization between different inhibitor classes. Moreover, 

LMK235 increased the cancer cell sensitivity to cisplatin, more than SAHA does (Marek 

et al., 2013). In 2013, Lobera et al. designed TMP269 and TMP195, two class IIa 

HDACis in which the classical hydroxamic acid group was replaced by a 

trifluoromethyloxadiazolyl group (TFMO) (Lobera et al., 2013) that mimics the 

trifluoromethylketone (TFMK) developed by Bottomley et al. in 2008 (Bottomley et al., 

2008). Unlike the instability of the TFMK series of inhibitors, TFMO inhibitors show 

improved stability due to the presence of the ring group in the TFMO structure (Ontoria 

et al., 2009). TMP269 was found to inhibit class IIa HDACs with IC50 of 0.023~0.157 

µM, while TMP195 was found to inhibit class IIa HDACs with IC50 of 0.009~0.111 µM 

(Lobera et al., 2013). Furthermore, unlike the hydroxamates, the TFMO group interacts 

with the catalytic zinc ion by a weak electrostatic interaction where it acts as a non-

chelating metal binding domain. As a result, the TFMO inhibitors target a smaller number 

of enzymes compared to the hydroxamic acid inhibitors. Intriguingly, SAHA showed the 

ability to regulate about 4,500 genes expression in the human PBMC, whereas TMP195 

modulates about 76 genes. This specificity is indirectly supported through gene 

expression profile studies in phytohemagglutinin (PHA)-activated human PBMC (Lobera 

et al., 2013). Besterman and colleagues designed two diphenylmethylene hydroxamic 

acid inhibitors, N-hydroxy-9H-xanthene-9-carboxamide and N-hydroxy-2,2-

diphenylacetamide, that are class IIa HDACs selective inhibitors with IC50 of 0.05~0.75 

μM. The two inhibitors show a close structural symmetry, involving N-hydroxy-9H-

xanthene-9-carboxamide that may be counted for the fixation of the diphenyl group of N-
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hydroxy-2,2-diphenylacetamide. This structural change led to increase in the potency of 

the compound towards HDAC7 (Tessier et al., 2009). In 2011, and in the middle of 

screening of a commercially available library of small molecules, Haus et al. identified a 

new class IIa HDAC inhibitor. The study reported N-lauroyl-(l)-phenylalanine that 

inhibits class IIa with IC50 of 21 µM (Haus et al., 2011). This compound proved cancer 

fighting potency towards ER+ breast cancer cells, and showed the ability to modulate the 

gene expression of several MEF2 (Di Giorgio et al., 2013). Class IIa selectivity was 

assessed by standard activity measurements in addition to fluorescence assay that utilizes 

the antagonism properties between the known HDAC inhibitor and a fluorescent substrate 

(Haus et al., 2011). 2-trifluoroacetylthiophenes is a class II HDAC inhibitor that was 

developed from ethyl 5-(trifluoroacetyl)thiophene-2-carboxylate with increased 

specificity towards class IIa and HDAC6 (P. Jones et al., 2008). Originally, this 

compound was obtained during the screening of a commercially available library of small 

molecules targeting both the wild-type and the mutant HDAC4 which showed a half-

maximal inhibitory concentration of 0.22 µM. The enhanced specificity of this inhibitor 

can be justified by its multi-domain structure that consists of a trifluoromethyl ketone 

domain ,which strongly induces the chelation of the catalytic zinc ion in the HDACs 

active site; a thiophene ring in the middle that precisely matches the active site; and an 

amide domain that binds to the adjacent active residues in the binding pocket (Bottomley 

et al., 2008). In 2019, Luckhurst and colleagues identified CHDI-390576 as a new class 

IIa selective HDAC inhibitor, as a result of the structural modification in the cap region 

of the benzhydryl hydroxamic acids. In their study, CHDI-390576 interacted in a 

bidentate manner with the catalytic zinc ion in the active site. CHDI-390576 was found 

to inhibit class IIa with a half-maximal inhibitory concentration of 0.031~0.051 µM 

(Luckhurst et al., 2019). In 2016, Boskovic et al. developed a series of HDACis and 

measured their inhibition potency towards zinc-dependent HDACs. The authors reported 

BRD4354 (Compound 64 in the original study) as one of the most potent compounds that 

contain hydroxyquinoline as the zinc-triggered electrophile. BRD4354 lacks the zinc 

binding group and showed preferably inhibition towards HDAC5 and HDAC9 with IC50 

of 0.85 and 1.88 µM, respectively (Boskovic et al., 2016). Despite the absence of the 

ZBG, BRD4354 goes through zinc-catalyzed decomposition into an orthoquinone 



 

37 

 

methide that covalently moderates the nucleophilic cysteine residue inside the histone 

deacetylase enzymes, and eventually inactivating their activities (Boskovic et al., 2016). 

Class IIa HDACi targeting the cytoplasmic-nuclear localizing: The earliest effort to 

stop class IIa HDACs enzymatic activity in the cytoplasm was made by Kong et al. in 

2011 through designing several SAHA derivatives and changing the amino-phenyl 

moiety into a fluorescent dansyl moiety (Kong et al., 2011). Despite the weak catalytic 

activity of these compounds towards class I HDACs, previous structural modification 

increased the compounds selectivity for the class IIa. Compound 2 from that study 

provided the highest efficacy and led to the accumulation of HDAC4 in the cytoplasm of 

prostate cancer cells. Accumulation of class IIa HDACs in the nucleus seems to be a 

fascinating approach, since many studies reported that class IIa nuclear accumulation can 

possibly exhibit oncogenic functions (Clocchiatti et al., 2013; Di Giorgio et al., 2013). 

However, this strategy may also display few disadvantages. Class IIa HDACs have 

cytoplasmic catalytic functions as well and might be increased upon their nuclear 

localization inhibition. In addition, blocking of class I HDACs may show indirect 

influence on class IIa cytoplasmic accumulation, such as Panobinostat (class I and II 

inhibitors), that has the ability to restrict HDAC4 in the cytoplasm in non-radiated non-

small lung cancer cells. Taking into account these disadvantages, cytoplasmic-nuclear 

localizing inhibitors show less favorable feature of these enzymes (Geng et al., 2006). 

Class IIa HDACi targeting the N-terminal region: As previously discussed, the N-

terminal region of class IIa is unique where it consists of poly-glutamine domain and is 

known for its regulation of the protein-protein interaction. The N-terminal also allows 

hetero- and homodimerization between class IIa HDAC enzymes except for HDAC7 

(Clocchiatti et al., 2011). MEF2 proteins are the most perfect mates for class IIa HDACs 

(Grégoire et al., 2006; Miska et al., 1999), where various class IIa HDACs biological 

functions are recognized as a result of the transcriptional suppression of MEF2 

(Clocchiatti et al., 2013; Di Giorgio et al., 2013; M. Martin et al., 2007). Designing of an 

inhibitor that able to interfere with the interaction of class IIa HDACs and MEF2 may 

sound promising approach to achieve isoform selectivity. However, this strategy can 

block a particular amino acid sequence of class IIa (e.g., 166-184 amino acid residues of 

HDAC4) and prevent some necessary protein-protein interactions. For example, this 
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amino acid sequence is essential for class IIa HDACs interaction with the demethylase 

JARID1B (Barrett et al., 2007) and the nucleoporin Nup155 (Kehat et al., 2011). Instead, 

Jayathilaka et al. identified a new inhibitor that can target a particular region in MEF2 

(amino acids 66-69 residues) and is able to displace the class IIa HDACs. BML-210 is a 

weak benzamide derivative class I HDACs inhibitor, that can bind to the hydrophobic 

moiety of MEF2 by its aminophenyl group (Jayathilaka et al., 2012). 

Though, previous mentioned HDACs inhibitors have shown a variety of undesired effects 

that comes with their inhibition influence against numerous HDACs through numerous 

classes. Hence, current research has aimed is to identify novel isoform selective HDAC 

compound to avoid side effects and keep the cancer-fighting action of broad-spectrum 

HDACs inhibitors. 

1.6. COMPUTER-AIDED DRUG DESIGN TECHNIQUES 

The latest advances in the recent decade of computer technologies and new computational 

modeling tools provided a robust boost to the area of computer-aided drug design 

(CADD). Additionally, X-ray crystallography, nuclear magnetic resonance (NMR), and 

mass spectrometry-based assay offer abundance of information about properties of 

molecules such as their molecular structure, electron density distributions, bonds, angles, 

and many others. The profound availability of three-dimensional (3D) structure of 

biological molecules like proteins and other molecules was necessary for the 

development of the computational drug design. In the next section, several computational 

drug discovery approaches will be briefly discussed such as virtual screening, molecular 

docking, homology modeling, pharmacophore modeling, molecular dynamics 

simulations and ligand-protein free binding energy calculation (Figure 1.12). 
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Figure 1.12. Classical workflow of drug design techniques (W. Lu et al., 2018). 

1.6.1. Virtual Screening 

High-throughput screening (HTS) and virtual screening (VS) are widely approaches 

applied for in silico drug discovery in order to efficiently by screen any enormous number 

of small molecules against a particular target molecule (e.g., protein) via computational 

experiments. This approach differs from the theoretical approach, which was mainly 

established to screen large compound library and choose candidates for in vitro 

experiments (Miller, 2002; Walters et al., 1998; Waszkowycz et al., 2001). VS techniques 



 

40 

 

have become more and more popular in the last decade in which large number of 

compounds will be reduced to be examined by HTS (Kontoyianni, 2017). David E. Clark 

stated that the term “virtual screening” was probably first used by Dragos Horvath in his 

research study searching for trypanothione reductase inhibitors in 1997 (Clark, 2008). A 

number of similarity screening methods can be applied in virtual screening including 3D 

or two-dimensional (2D) structural inquiries, pharmacophore and quantitative structure-

activity relationship (QSAR) models, 2D and 3D fingerprints (Azimi et al., 2019; Gu et 

al., 2019; Pirhadi & Ghasemi, 2013). There are several successful applications of virtual 

screening in class IIa HDAC drug design. In 2017, Hsu and colleagues demonstrated six 

novel non-hydroxamate inhibitors that preferentially target class IIa HDACs (Hsu et al., 

2017). Sinha et al. in 2017 found a hydroxamic based class IIa inhibitor for the treatment 

of ataxia Type-2 using 3D-QSAR and pharmacophore modeling approach (Sinha et al., 

2017). Various filtering approaches can be utilized to exclude small molecules with 

undesired chemical properties. One of the important approaches is to eliminate 

compounds that contain toxic, reactive, or any other unwanted properties. Drug-likeness 

is one of the crucial steps in virtual screening that evaluates the safety of oral drugs, such 

as the well-known Lipinski’s rule of five applications (Lipinski et al., 1997). 

1.6.2. Molecular Docking 

Structure-based drug design (SBDD) is a common virtual screening approach that is 

widely used in docking active small molecules to larger targets as proteins, 

simultaneously with the application of the molecular dynamics simulation (MD) of 

biological systems as protein-ligand complexes. With the help of molecular docking 

methods, it is easy and efficient to predict the favored conformation and orientation of a 

particular compound, and to calculate molecular interactions between the target and the 

compound such as hydrophobic interactions, hydrogen bonds, van der Waals, and ionic 

interactions in order to create a stable complex system with the least free energy (Meng 

et al., 2011). The calculated binding free energy (ΔGbind) is obtained from a combination 

between different energy factors involving total internal energy (ΔGtotal), dispersion and 

repulsion (ΔGvdw), hydrogen bond (ΔGhbond), desolvation (ΔGdesolv), electrostatic 

contributions (ΔGelec), unbound system’s energy (ΔGunb), and torsional free energy 
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(ΔGtor) (Murcko, 1995). A decent knowledge about the theoretical context of molecular 

docking can consequently deliver significant perceptions on elemental interactions 

between ligand and protein. Molecular docking is based on two main phases: prediction 

of the compound orientation and conformation within the binding pocket, and 

approximate calculation of the binding free energy. Molecular docking methods include 

several important steps from ligands and target preparations to analysis of the outcomes. 

Generally, each compound is docked individually into a particular target with a computed 

binding affinity and given a rank consequently. The top and finest ranked conformation 

are then further assessed in either in silico studies or in vitro. Molecular docking can be 

completed by two diverse methods, the shape complementarity or simulation. In the 

shape complementarity method, both the small molecule and the target are recognized, 

and the matching between them helps identifying the compound’s best fitting in the 

target. This method is very efficient and fast and can be utilized in the HTS of compound 

databases (Lamb & Jorgensen, 1997; Shoichet et al., 2002). The simulation method is 

more sophisticated and computationally high-priced. The physical distance of the target 

and the compound are parted, and the compound tests the conformational space awaiting 

the favored orientation in the binding pocket of the target. This method involves 

experimenting rotations, torsional angle rotations and translations (Meng et al., 2011). 

Upon each individually new created conformation, the total free energy of the complex 

is being predicted. The foremost benefit of this approach is the straightforward integration 

of the compound flexibility into the free energy calculation. Though, this method is also 

more expensive and time-consuming. The simulation method has been made more 

efficient by the application of grid-based approaches and fast optimization method (Lamb 

& Jorgensen, 1997). Nowadays, there are plenty of molecular docking tools available 

commercially or as free including AutoDock, Dock, GOLD, Glide, FlexX, rDock, 

AutoDock Vina, Fred, LigandFit, and many others. These tools generally use a variety of 

search algorithms like Monte Carlo, genetic algorithms, molecular dynamics algorithms, 

and fragment-based algorithms. In general, molecular docking can be accomplished 

through three different approaches including flexible ligand docking (flexible ligand and 

a rigid target), rigid body docking (both ligand and protein are rigid), or flexible docking 

(both ligand and protein are flexible) (Gschwend et al., 1996; Lamb & Jorgensen, 1997). 

Even though ligand flexibility has been more considered in several available molecular 
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docking tools, due to the relatively large size of most targets with many degrees of 

freedom, processing the protein flexibility is still challenging and very limited. To 

overcome such dilemma, other several tactics have been carried out such as side-chain 

flexibility, molecular relaxation, and soft docking (Totrov & Abagyan, 2008). Soft 

docking is considered as the easiest strategy, in which a little ratio of overlap between 

ligand and protein is permitted and included in the scoring function as a van der Waals 

interatomic energy (Ferrari et al., 2004; F. Jiang & Kim, 1991). Side-chain flexibility 

strategy applies rotational isomer (or rotamer) datasets to experiment the conformational 

space of the binding pocket side chains (Leach, 1994). On the other hand, molecular 

relaxation strategy performs a dock-and-relax technique through docking rigid ligand into 

rigid target and later relaxing the side chains and the protein’s backbone around the ligand 

(Davis & Baker, 2009). The latter approach allows some degree of backbone flexibility 

but at the same time is considerably time-consuming. Other more sophisticated 

approaches may be needed such as MD simulation to deal with major conformational 

alterations and structural rearrangements in order to consider different structural 

conformation and produce a complete protein structure. 

1.6.3. Homology Modeling 

Homology modeling, also referred as comparative or template-based modeling, is a 

computational method that is applied to create an unidentified macromolecule structures 

such as proteins, DNA, or others (target) from a proportionally similar (homologous) 

known 3D structures (template) that have been experimentally resolved by either X-ray 

crystallography or NMR techniques (András Fiser, 2004). The theory behind this 

approach relies on the belief that similar templates with a defined sequence identity and 

a comparable 3D structure, or variations among them, are directly accounted for the range 

of changes in the structure. Therefore, the success in generating the structure of a target 

is guaranteed by the range of sequence similarity or identity (Chothia & Lesk, 1986). It 

is important to take into consideration that certain protein families, for instance the G 

protein-coupled receptors (GPCRs), share conserved 3D structure rather than conserved 

amino acid sequences (Cavasotto & Phatak, 2009). In general, Protein Data Bank (PDB) 

website offers 3D structures that can be used as templates for the homology modeling, 
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and by October 2020 it contains about 170,172 experimentally resolved structures 

(Berman et al., 2002). Although PDB offers a huge number of experimentally resolved 

structures, there is even a larger number of amino acid sequences for unknown protein 

structures available on UniProt website, that is still needed to be experimentally identified 

(Bateman, 2019). Therefore, in spite of its limitations, homology modeling proved to be 

a promising approach with several applications in SBDD. Homology modeling method 

has shown its liability to generate structures with site-directed mutation, and even higher 

quality models in comparison to some experimentally solved proteins (Ohlendorf, 1994; 

Šali & Blundell, 1993; Vernal et al., 2002). 

In homology modeling, there are main consecutive stages that are followed to generate 

the desired model: (i) identification of amino acid sequence of the target; (ii) selection of 

a template (that shares a homologous sequence with the target) which has an 

experimentally resolved structure; (iii) alignment of sequence between the template and 

the target; (iv) build the model (e.g., target) to match the template structure; (v) 

refinement of the constructed model; and (vi) validation of the generated homology 

model. Every one of these previous stages may require a variety of technical operations, 

and could be reproduced to fully generate a reliable model (Martí-Renom et al., 2000). 

1.6.4. Pharmacophore Modeling 

The pharmacophore concept was established to better understand the nature of the 

interactions between a ligand and its target based on Ehrlich’s perspective of functional 

chemical groups that are accountable for binding (haptophores) and functional chemical 

groups that are accountable for the toxicity (toxophores). In 1909, Ehrlich P. suggested 

that the catalytic activity of a drug compound is determined by a particular functional 

chemical groups (Ehrlich, 1909). In 1961, Schueler defined the earliest innovative 

description of pharmacophore. Conversely, he postulated the catalytic activity is 

determined by the abstract features of the drug molecule rather than its functional 

chemical group (Schueler, 1961). In 1967, Kier presented the earliest computational 

pharmacophore model of muscarinic receptor inhibitors (KIER, 1967), which was 

originally inspired by Beckett and colleagues work in 1963 (Beckett et al., 1963). The 

most recent description of the 3D pharmacophore was based on Schueler’s definition by 
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the International Union of Pure and Applied Chemistry (IUPAC), which states the 

following: pharmacophore is “an ensemble of steric and electronic features that are 

necessary to ensure the optimal supramolecular interactions with a specific biological 

target and to trigger (or block) its biological response” (Wermuth et al., 1998). Guner and 

Bowen demonstrated a complete revision on the advancements in the concept of 

pharmacophore (Güner & Bowen, 2014). The main concept of pharmacophore centers 

on the common features shared by a series of compounds that recognize and bind to 

related sites of particular targets (e.g., active compounds) (Leach et al., 2010). 

Consequently, pharmacophore model defines the spatial arrangement, electrical and 

chemical characteristics that are needed for a ligand to perfectly bind and fit into a 

biological macromolecule such as protein. A pharmacophore model consists of a group 

of physicochemical properties that reflect the molecular interactions, where different 

functional groups may be embodied by the same property (Leach et al., 2010). 

Despite the differences in the fundamental algorithms in various pharmacophore 

modeling software, all of them produce similar pharmacophore features that illustrate 

hydrogen bond acceptor (HBA) groups, hydrogen bond donor (HBD) groups, aromatic 

rings, metal–ion interactions, +ve/-ve ionizable/charged groups, and hydrophobic groups. 

In certain cases, some modifications in the common features are needed to meet the 

requirements of the program (Steindl et al., 2005). A successful pharmacophore model 

requires several main steps: (i) pharmacophore model generation based on either the 

knowledge of the protein-ligand interaction (which is called structure/receptor-based 

pharmacophore modeling) or by superimposing a series of active compounds with shared 

bioactivity features (which is known as ligand-based pharmacophore modeling); (ii) 

dataset designing, in which it contains several active compounds for the pharmacophore 

model generation; and (iii) assessment and theoretical validation of the generated 

pharmacophore models (Langer et al., 2006). 

1.6.5. ADMET Prediction in CADD 

A drug compound undergoes several complicated evaluation steps including bioactivity 

measurements, cytotoxicity, chemical assessment, metabolic stability, and many other 

measurements before being described as a safe treatment. Several chemical molecules 
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are filtered out and excluded from the acceptable normal range of properties that have 

been acknowledged in drug compounds. The process of excluding those molecules that 

lack the normal range of bioactivity assisted in the creation of a variety of drug-like 

compounds libraries. The concept of drug-like has been emphasis the physicochemical 

properties that the majority of oral drugs share in common. Lipinski’s rule of 5 is among 

the most widely applied standards for evaluating the drug-likeness of compounds with a 

simple extent of physicochemical properties (Lipinski et al., 2001). Lipinski’s rule of 5 

has four measurements that ought to be met with the permeability and solubility of oral 

drugs: (i) molecular weight (MW) is 500 Dalton (Da) or less; (ii) octanol-water partition 

coefficient (LogP) must be between -5 and 5 (or MLogP ≤ 4.15); (iii) the total number of 

hydrogen bond donors should not exceed 5 hydrogen, which is simply the summation of 

attached hydrogen to all oxygen and nitrogen; and lastly (iv) no more than 10 hydrogen 

bond acceptors. There are several aspects that must be taken into account when applying 

these standards. First of all, these parameters are used for searching for oral drugs, while 

there are some considerable distinctions between oral and other different drug categories, 

which means that the rule of 5 is tested for oral administration rather than tests the 

compounds drug-likeness (Vieth et al., 2004). Secondly, the rule of 5 criteria were 

developed from commercially available drugs, whereas the screening of chemical 

compound libraries is intended for finding lead compounds as a start point for drug 

design. In addition to Lipinski’s rule of 5, several other physicochemical properties have 

been proved to be of significance to the drug discovery including total polar surface area 

(TPSA) (that should be ≤ 140 Å2) and total number of rotatable bonds (ought to remain 

≤ 10) (Veber et al., 2002). For the past decade, pharmacokinetic properties prediction, 

such as blood–brain barrier permeability and water solubility prediction, have been 

measured using a variety of virtual screening approaches (Y. Wang et al., 2015). 

1.6.6. Molecular Dynamics (MD) Simulation 

Conventional molecular dynamics simulation assists SBDD to entirely describe the 

structural flexibility of the studied systems, and is also vital to evaluate the system’s 

kinetic and thermodynamic properties (De Vivo et al., 2016). MD methods benefit 

efficiently in motion and interaction prediction of macromolecules such as protein by 
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applying Newton’s equations of motion to each individual atom (Adcock & McCammon, 

2006). Throughout MD simulation, Newton’s second law of motion is incorporated in 

order to create sequential frames of the system through application of a certain force field 

to approximate the functioning forces on each atom. As a result, a phase space trajectory 

is allocated over time for velocities and positions for each element in the studied system 

(G. M. Wang et al., 2002). In molecular dynamics simulation, the molecular component 

is primarily ascertained by nucleus attitude and electron motions are averaged out. To put 

it in another way, molecular mechanics (MM) energy expression can describe the system 

according to the following formula (Equation 1.1): 

𝑉(𝑟) =  ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑏𝑜𝑛𝑑𝑠

 + ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘𝜙 [cos(𝑛𝜙 + 𝛿) + 1]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ [
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
+

𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐶𝑖𝑗

𝑟𝑖𝑗
6 ]

𝑛𝑜𝑛𝑏𝑜𝑛𝑑
 𝑝𝑎𝑖𝑟𝑠

 

(1.1) 

 

As shown in Figure 1.13, the first three summations represent bonds which are denoted 

as b (1-2 interactions), angles (1-3 interactions), and torsions (1-4 interactions) (Figure 

1.13). Torsions may also include what so-called improper torsions, as the four atoms 

surrounding the angle are not all linked by covalent bonds. The final summation including 

atoms i and J (except for 1-2 and 1-3 interactions) usually applies different parameters 

for 1-4 interactions in comparison to those applied for atoms parted by more than three 

covalent bonds. MM energy defines electrostatic forces that apply partial charges 𝑞𝑖 on 

each atom that functions according to Coulomb's law. The main aspect of protein energy 

models can be generated by the simple potential energy function as in Equation 1.1 at an 

atomic level of detail. Equation 1.1 was also developed to give deep insight into a 

significantly wide range of properties. The summation of potential energy function as 

shown in Equation 1.1 and all other components like 𝑘𝑏 𝑏0 𝑘𝜃 𝜃0 represent the force field 

(Ponder & Case, 2003). 
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Figure 1.13. Graphical representation of the force field interactions. Dark lines display covalent bonds. 

Dash line represents nonbonded interaction (Ponder & Case, 2003). 

Generally, any force field must be able to transfer rigorously from one atom to another 

related atom in a way that the computed geometry of a new one is obtained from the first 

atom. Therefore, a large molecule is basically the summation of known properties of all 

small atoms combined. Basically, different force field is grounded on comparable 

operational formulas, however, each force field has its own advantages and disadvantages 

according to the parameter set (Arinaminpathy et al., 2002). Molecular dynamics 

simulation should be preferentially operated on supercomputers or cluster of computers 

because of the excessive complexity and large quantity of computations necessary to 

create a space trajectory. Several MD software packages are available, and the majority 

are consistent with the Message Passing Interface (MPI), which is a transmission system 

that is able to communicate between computers and accelerate the performance of multi-

simulation jobs. Each MD software package applies its own force field settings that 

defines bonded and nonbonded interactions, energy utilization, force restraints and water 

type. In addition, due to the infeasibility of performing MD simulations for a countless 

number of atoms, periodic boundary conditions (PBC) are utilized by the simulation 

algorithm to create a large system, which necessitates a unit cell with a particular figure 

to act as a 3D crystal structure. Throughout the MD simulations, the properties of only a 

single unit cell are logged and then replicated to other frames (Yeh & Hummer, 2004). 

Even though various improvements have been made for molecular docking studies over 

the last decades, docking scores still experience many limitations and need to be 

enhanced. Molecular dynamics simulation proved to be vital post-production method to 

refine and evaluate docked complexes and also precisely compute binding free energy. 

In addition, MD simulations can deliver deep perceptions on induced-fit conformational 
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variations, protein-ligand interactions affinity level, and the effect of water molecules of 

the ligand interaction with the binding pocket (de Beer et al., 2010). MD simulations can 

provide many eminent measurements from the generated trajectory such as heat 

variability, pressure consistency and internal energy (Frenkel et al., 1997). The protein-

ligand binding free energy is described as one of the most significant measurements in 

the field of drug discovery, which is expressed as the association constant Ka and can be 

obtained by Equation 1.2 as follows: 

𝐾𝑎 =
[𝑃𝐿]𝑒𝑞

[𝑃]𝑒𝑞[𝐿]𝑒𝑞
 (1.2) 

Where 𝐿 represents the ligand concentration, 𝑃 refers to the protein concentration, and 

𝑃𝐿  signifies the protein-ligand complex concentration. On the other hand, the 

dissociation constant 𝐾𝑑, which is a reciprocal of 𝐾𝑎, is applied in the pharmaceutical 

studies more than 𝐾𝑎 . Moreover, the dissociation constant 𝐾𝑑  is replaced by the 

inhibitory constant 𝐾𝑖  when referred to enzyme inhibitor analyses. The relationship 

between the thermodynamic measurements obtained from the MD simulations and the 

analytical equilibrium constants can be computed through the classical free-energy 

change at constant temperature and pressure as given in Equation 1.3. 

Δ𝐺0 = −𝑘𝑇 ln(𝐾𝑎𝐶0) = 𝑘𝑇 ln (
𝐾𝑑

𝐶0
) (1.3) 

Where 𝑘 signifies the Boltzmann constant and 𝐶0 refers to the standard concentration 

constant in 1 molar (M). Upon the equilibrium status of the system, Equation 1.3 can be 

made simpler as in Equation 1.4, where 𝐾𝑒𝑞 represents the equilibrium constant of the 

reaction. 

Δ𝐺0 = −𝑘𝑇 ln(𝐾𝑒𝑞) (1.4) 

1.6.7. MM-PBSA Binding Free Energy 

Binding free energy of a complex system (ligand-protein) can be obtained and computed 

through a variety of MD-based methods including the free energy perturbation (FEP) and 



 

49 

 

thermodynamic integration (TI). On the other hand, these previous methods are 

excessively high-priced, and their appliance is limited to very few relatively related 

compounds due to the extensive conformational preparation process (Beveridge & 

DiCapua, 1989). The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) 

and linear interactions energy (LIE) are two approaches which are commonly used to 

overpass the previous drawbacks (Hansson et al., 1998; Swanson et al., 2004). MM-

PBSA approach utilizes both the continuum solvent methods and the molecular 

mechanics to approximate the binding free energy of a ligand (Kollman et al., 2000; 

Massova & Kollman, 2000). Following MD simulations performed in explicit solvent, 

multiple frames are obtained and treated in order to exclude ions and water molecules, 

and consequently the binding free energy can be calculated using Equation 1.5 as follows: 

Δ𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 −  [𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑] (1.5) 

Where 𝐺 is the average free energy of the systems and can be obtained based on the 

following formulas (Equation 1.6): 

𝐺 = 𝐸𝑀𝑀 − 𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑆 

𝐸𝑀𝑀 = 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 +  𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑑𝑤 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑝𝑜𝑙𝑎𝑟 −  𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 

(1.6) 

Where 𝐸𝑀𝑀  symbolizes the average molecular mechanic energy in the gas phase, 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛  describes the solvation free energy designed by the Poisson-Boltzmann 

electrostatic component 𝐺𝑝𝑜𝑙𝑎𝑟  and a solvent accessible surface area model 𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 

(Sitkoff et al., 1994). The entropic 𝑇𝑆 involvement can be neglected in case that the 

approximate binding energies of a group of molecules are needed. However, in case the 

molecules are considerably dissimilar, entropy contribution is necessary as the absolute 

binding energies are required. 

MM-PBSA approach has been used by several studies to calculate the binding energy, 

although, in some cases this method was not able to produce comparable energies for 

certain systems. For an instance, von Langen et al. reported five human glucocorticoid 

receptor selective inhibitors using molecular docking approach, MD simulations, and 
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MM-PBSA binding energy calculation for all complexes. The ligands pose ranking after 

docking study did not agree with the calculated MM-PBSA binding energies (Von 

Langen et al., 2005). High affinity complexes were perfectly detected using this method 

in the study, but low affinity complexes could not be identified using the same method. 

Conversely, similar method was applied by Wang and colleagues to calculate the binding 

affinity of HIV-1 reverse transcriptase inhibitors, and correctly predicted the absolute and 

relative binding free energies, and the experimental value was in agreement with the top-

ranked molecule (J. Wang et al., 2001). 

AIM AND OBJECTIVES 

The aim of the current studies is to discover isoform selective class IIa HDACs inhibitors 

that may serve as epigenetic targeting drugs for the treatment of cancer. The discovered 

compounds may serve as a starting point for lead design and may require more 

experimental optimization. Therefore, the following distinct objects were followed: 

A. Comparative homology modeling of class IIa HDAC5 and HDAC9 and the design of 

dual-acting inhibitors. 

B. Isoform selective class IIa HDACs inhibitors by structure-based drug design. 

C. Isoform selective class IIa HDAC5 and HDAC9 inhibitors by ligand-based 

pharmacophore modeling approach. 
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2. MATERIALS AND METHODS 

In order to fulfill the objectives of the current studies, different computer-aided drug 

design approaches were employed. In this chapter, those methods will be discussed and 

categorized into three main sections including comparative homology modeling of class 

IIa HDAC5 and HDAC9 and the design of dual-acting inhibitor; isoform selective class 

IIa HDACs inhibitors by structure-based drug design; and isoform selective class IIa 

HDAC5 and HDAC9 inhibitors by ligand-based pharmacophore modeling approach. 

2.1. HOMOLOGY MODELING OF CLASS IIA HDAC5 AND HDAC9, AND 

THE DESIGN OF DUAL ACTING INHIBITOR 

 

Figure 2.1. Flowchart of the homology modeling and the search for HDACs 5 and 9 dual-acting 

inhibitors. 
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2.1.1. Selection of The Template 

The whole amino acid sequences of HDAC5 and HDAC9 were obtained from the UniProt 

website as “FASTA” files (https://www.uniprot.org/) (Bateman, 2019) with UniProt 

accession number “Q9UQL6” for HDAC5 and “Q9UKV0” for HDAC9. Selection of the 

best matching template is achieved by searching for structures or amino acid sequences 

of homologous proteins with sophisticated tools such as the web-based Basic Local 

Alignment Search Tool (BLAST) which can be accessed from the following link 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al., 1990; Johnson et al., 2008). 

Herein, BLAST search was carried out with 100 E-value cutoff and 100 as the maximum 

number of hits. The best matching template retrieved from the BLAST search was the X-

ray crystallography structure of human catalytic domain of HDAC4 (PDB accession no. 

2VQM) (Bottomley et al., 2008) and exhibited the highest amino acid sequence identity 

of 75% for HDAC5 and 72% for HDAC9. 

2.1.2. Template and Target Sequences Alignment 

In homology modeling, created structures are believed to reveal similar structural 

properties when there is at least 30% amino acid sequence identity shared between the 

template and the target. Furthermore, 50% amino acid sequence identity or more is 

expected to generate a model with reliable and excellent quality (Andras Fiser, 2010). 

The sequence alignment was carried out using “Align Sequences” protocol in BIOVIA 

Discovery Studio 4.5 (DS 4.5) (Dassault Systèmes, 2016). Human HDAC4 (2VQM) was 

downloaded as the catalytic domain of HDAC4 and the protein had one chain. 

2.1.3. Homology Model Building 

There are various homology modeling tools available for creating 3D structures form a 

scratch. These tools use different approaches such as comparative homology modeling, 

segment matching, rigid-body assembly, and homology modeling by satisfaction of 

spatial restraints. Modeling by satisfaction of spatial restraints is a commonly used 

approach which uses sequence alignments and interprets the extracted information to 

https://www.uniprot.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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distance and chirality constraints that can be considered as the initial basis for the 

calculations of the distance geometry. For this purpose, MODELLER tool is widely 

utilized to generate and optimize the model depending on conjugate gradients and 

molecular dynamics (Šali & Blundell, 1993; Webb & Sali, 2016). The concept of 

homology modeling relies on the fact that the process begins with the calculation of the 

contact points and the secondary structure prediction for the aligned and unaligned points 

to search for the conformational space according to the distance clustering and geometry 

to surpass alignment miscalculations (Kolinski et al., 2001). Herein, “Homology 

Modeling” tool from BIOVIA DS 4.5 was applied to generate 20 models. Before 

proceeding with the creation of the homology models, HDAC4 (2VQM) was prepared to 

add any missing loops using the “Prepare Protein” protocol in BIOVIA DS 4.5. The 

ligand, water molecules, and salt ions were removed. After the sequence alignments 

between the template and the targets were performed from the previous section, the 

sequence of the catalytic domains of HDAC5 and HDAC9 were extracted so they match 

the sequence of HDAC4 catalytic domain, while other sequences were excluded from the 

homology modeling procedure. “Build Homology Models” was then applied with high 

levels of optimization following the default protocol of DS 4.5. Later, the new 20 

generated models were verified with MODELLER tool, and the best created models were 

chosen based on their discrete optimized potential energy (DOPE) scores. “Clean 

Geometry” toolkit in BIOVIA DS 4.5 is applied to minimize the model’s energy applying 

CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field to relax and 

overcome any steric hindrances of amino acid side chains. Lastly, “Prepare Protein” 

protocol was utilized to prepare the built models and properly protonate the protein at 

physiological pH 7.4. 

2.1.4. Homology Model Validation 

One of the most important steps after building the desired model is to evaluate and 

validate its 3D structure relying on previous acquired information from experimentally 

resolved structures or successful homology models such as chemical bonds, angle, length 

of bonds, hydrophilic and hydrophobic residues, and many others (Pevsner, 2009). 

Herein, to assess the model quality, ProSA-web, the online version of Protein Structure 
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Analysis tools (ProSA) (https://prosa.services.came.sbg.ac.at/prosa.php), was used to 

detect any potential errors within a given structure based on previous structural errors 

gathered from available experimentally resolved structures or homology models (Sippl, 

1993; Wiederstein & Sippl, 2007). In addition, the stereochemical quality of the 

homology models were further validated using ERRAT website 

(https://servicesn.mbi.ucla.edu/ERRAT/) (Colovos & Yeates, 1993) and Ramachandran 

plot analysis form PROCHECK website (https://servicesn.mbi.ucla.edu/PROCHECK/) 

(Laskowski et al., 1996). 

2.1.5. Molecular Docking with Known Inhibitors 

Further homology model validation was performed to evaluate the quality of enzyme’s 

active site by docking a series of HDACs known inhibitors using the well-known 

molecular docking software AutoDock 4.2 (G. M. Morris et al., 2009). Molecular 

docking studies are commonly used to calculate and predict the best possibly 

conformational pose of a compound and its interaction with a certain target. The created 

homology models were prepared by the “Prepare Protein” protocol in BIOVIA DS 4.5 

and protonated at pH, 7.4. Datasets of HDAC5 and HDAC9 known inhibitors with 

calculated biological activity (Ki or IC50) were retrieved from the ChEMBL website 

(https://www.ebi.ac.uk/chembl/) (Gaulton et al., 2017) and prepared using the “Prepare 

Ligands” toolkit at pH 7.4 according to BIOVIA protocol. Both HDAC5 and HDAC9 

generated models were prepared using AutoDockTools (G. M. Morris et al., 2009) and 

saved as PDBQT (Protein Data Bank, Partial Charge (Q) & Atom Type (T)) files after 

assigning Gasteiger partial charges to all atoms of the proteins. Also, grid parameter file 

GPF and docking parameter file DPF were subsequently generated for the docking study. 

The size of the grid boxes was set for each protein and centered close to the catalytic zinc 

ion in the active site (x=19.199, y= -10.083, z= -1.089), and made sure to cover the whole 

active sites as 50, 50, 50 Å dimensions with 0.375 spacing point. Lamarckian genetic 

algorithm was used to generate the docking input files and the docking energy evaluations 

were set to 25,000,000 for each ligand conformational search. Independently, for each 

compound in the known inhibitors’ series, 20 runs were performed. 

https://prosa.services.came.sbg.ac.at/prosa.php
https://servicesn.mbi.ucla.edu/ERRAT/
https://servicesn.mbi.ucla.edu/PROCHECK/
https://www.ebi.ac.uk/chembl/
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2.1.6. Dataset Preparation 

In order to start searching for dual inhibiting leads, about 100,000 small molecules were 

retrieved from ChEMBL website. ChEMBL website offers a large chemical libraries and 

drug-like datasets that are ready-to-use in different virtual screening approaches. The 

studied dataset was prepared by the “Prepare Ligands” protocol in DS 4.5 and protonated 

at pH 7.4. 

2.1.7. Molecular Docking and Structure-Based Virtual Screening 

As previously discussed, virtual screening is a computational approach that is 

increasingly used in the field of drug discovery. In the present study, AutoDock Vina 

(Trott & Olson, 2009) was utilized to decrease the large number of the dataset and rule 

out compounds with least binding affinity towards HDAC5 and HDAC9. AutoDock Vina 

was proved to offer a quick and precise docking result in which an empirical and 

knowledge-based scoring functions are both combined in one tool (Trott & Olson, 2009). 

The energy grid box size and the XYZ coordinates were set as follows: 20, 20, 20 Å and 

19.199, -10.083, -1.089, respectively. Out of the 100,000 compounds, 1,027 showed the 

highest binding affinity towards HDAC5, and 1,925 compounds towards HDAC9 with 

binding energy scores equal to or less than -8.5 kcal/mol. Subsequently, top 9 compounds 

were selected from each set for further molecular docking study. The 18 compounds were 

cross-docked against the catalytic sites of both HDAC5 and HDAC9 using AutoDock 4.2 

applying the same docking parameters used in the previous section. 

2.1.8. Physicochemical Properties Description 

It is substantially prominent to predict the physicochemical properties of chemical 

compounds to exclude those with undesired toxic effect. These parameters include 

absorption, distribution, metabolism, excretion, and toxicity (ADMET). In addition, the 

most commonly used Lipinski’s rule of 5 is essential to assess the compound’s drug-

likeness, which molecular weight ≤ 500 Da, LogP ≤ 5, total number of hydrogen-bond 

donors ≤ 5, and total number of hydrogen-bond acceptors ≤ 10, where one violation is 
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tolerated (Lipinski et al., 2001). These criteria were predicted using admetSAR 2.0 web 

server (http://lmmd.ecust.edu.cn/admetsar2/) (H. Yang et al., 2019) and SwissADME 

website (http://www.swissadme.ch/) (Daina et al., 2017). 

2.1.9. Pan-Assay Interference Compounds (PAINS) Filtration 

Pan-assay interference compounds (PAINS) were first described in 2010 by Baell and 

Holloway as specific substructural features that at certain cases might result in false 

positive effect in the virtual screening study (Baell & Holloway, 2010). These 

substructural groups can interact to several proteins in unspecific manner instead of 

affecting specific protein. Such compounds should be excluded by PAINS remover tools 

to avoid false positive effects. “PAINS Remover” web server was used in the present 

study (https://www.cbligand.org/PAINS/) (Baell & Holloway, 2010). 

2.1.10. Molecular Dynamics MD Simulation 

MD simulation studies were performed by the Nanoscale Molecular Dynamics software 

2.11 (NAMD) (Phillips et al., 2020) for better understanding of proteins stability. Herein, 

four systems were subjected to MD simulations: free form of HDAC5 “M0014,” 

HDAC5-Rac26 complex, free form of HDAC9 and, HDAC9-TMP269 complex. 

Furthermore, the top-ranked hits retrieved from the structure-based virtual screening were 

also subjected to MD simulations. CHARMM-GUI web service (http://www.charmm-

gui.org/) (J. Lee et al., 2016) was utilized to generate input files for MD simulations to 

be run under NAMD environment applying CHARMM36m force field. All small 

molecules used in this study were parameterized using CHARMM General Force Field 

server (CGenFF), where charges assigning and atom typing for small molecules are 

entirely automated (Vanommeslaeghe et al., 2010). For all systems, water box was 

assembled using TIP3 module and salt atoms (Na+ and Cl-) were added to neutralize the 

system at a 0.15 M concentration. At the beginning of MD simulations, systems energy 

was minimized applying the steepest descent method for 20,000 steps. Then, each system 

was equilibrated and heated to 310 K for 10 ns in NVT ensemble (constant number of 

atoms, volume, and temperature). Finally, all systems were simulated for 100 ns 

http://lmmd.ecust.edu.cn/admetsar2/
http://www.swissadme.ch/
https://www.cbligand.org/PAINS/
http://www.charmm-gui.org/
http://www.charmm-gui.org/
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production in NPT ensemble (constant number of atoms, pressure, and temperature). MD 

simulations were performed with 2 fs time step, where the coordinates were recorded 

every 5000 steps to the MD trajectory file. 

2.1.11. Binding Free Energy (MM-PBSA) Calculations 

Binding free energy demonstrates the thermodynamic feature of the interaction between 

a ligand and a protein, which precisely indicates the binding affinity of the complex upon 

equilibrium state (Kollman et al., 2000). For all studied systems, the binding free energy 

was computed applying the MM-PBSA method using CaFE tools developed by Liu and 

Hou in 2016 (H. Liu & Hou, 2016). As formerly discussed in the previous chapter, MM-

PBSA approach integrates continuum solvent models and molecular mechanics (Kollman 

et al., 2000). CaFE tool is the first method that allows binding free energy using DCD 

and PSF files that were generated by NAMD and CHARMM programs, respectively. 

Theoretically, binding energy calculation of a protein-ligand is divided into two phases: 

solvation in the aqueous phase and association in the gas phase (H. Liu & Hou, 2016). 

The energetic elements that were calculated in the MM-PBSA method include the gas-

phase energy variations among the ligand, the protein, and the ligand-protein complex. 

The free energy of the polar solvation was computed according to the PB formula APBS 

(N. A. Baker et al., 2001). Then, the nonpolar solvation free energy and the variations in 

the solvent-accessible surface area (SASA) were calculated. The following equation was 

applied to calculate the binding free energy (Equation 2.1): 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐻 − 𝑇∆𝑆 = [∆𝐸𝑔𝑎𝑠 + ∆𝐺𝑠𝑜𝑙
𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑠𝑜𝑙

𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 − 𝑇∆𝑆] (2.1) 

From each studied system, a total of 200 snapshots were extracted from the last 10 ns of 

each MD trajectory file using the Visual Molecular Dynamics (VMD) software 

(Humphrey et al., 1996). PSF file, DCD file, and all related parameter files including the 

ligand and the protein, were all collected in one directory. CaFE tool can be accessed and 

downloaded from the following link: (https://github.com/huiliucode/cafe_plugin). A 

value of 1.0 Å was set for the reciprocal of grid spacing, a value of 80.0 was set for the 

external dielectric constant, and a value of 4 Å was set for the internal dielectric constant. 

https://github.com/huiliucode/cafe_plugin
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2.2. STRUCTURE-BASED DRUG DESIGNING OF ISOFORM SELECTIVE 

CLASS IIA HDACS INHIBITORS 

 
Figure 2.2. Structure-based virtual screening workflow. 

2.2.1. Class IIa Proteins Preparation 

The 3D structures of HDAC5 (M0014) and HDAC9 (M0020) were generated by 

homology model method as discussed in the previous section. In addition, the next X-ray 

crystallography structures of human HDAC were downloaded from the PDB website 

(http://www.rcsb.org/) (Berman et al., 2002): (i) HDAC4 (2VQM) “the structure of 

human HDAC4 catalytic domain bound to a hydroxamic acid inhibitor, resolution: 1.80 

Å” (Bottomley et al., 2008); (ii) HDAC7 (3C10) “the crystal structure of catalytic domain 

of human HDAC7 in complex with Trichostatin A (TSA), resolution: 2.00 Å” (Schuetz 

et al., 2008). Native ligands (the co-X-ray crystallography resolved ligands), water 

molecules, and salt ions were next removed from each structure using BIOVIA DS 4.5 

(Dassault Systèmes, 2016). Native ligands were next re-docked again into their relevant 

enzymes to evaluate the protocol used in the molecular docking studies where their 

http://www.rcsb.org/
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RMSD values were found to be less than 2.0 Å in reference to the native poses. Using the 

“Prepare Protein” protocol in BIOVIA DS 4.5, hydrogen atoms were added to the 

proteins at physiological pH 7.4, and missing loops were added if necessary. Moreover, 

a dataset of class IIa HDAC known inhibitors were retrieved from the ChEMBL web site 

and were docked into their respective proteins to define the selection criteria of novel 

compounds using GOLD software (G. Jones et al., 1997). Further details are given the 

molecular docking subsection. 

2.2.2. Class IIa HDACs Structural and Sequence Alignment 

The 3D structures of class IIa HDACs were aligned using BIOVIA DS 4.5 program 

(Figure 2.3). Also, their respective amino acid sequences were aligned (Figure 2.4). Table 

2.1 shows class IIa HDACs conserved active amino acids in the enzyme’s catalytic site 

(Table 2.1). Figure 2.5 displays the phylogenetic tree of class IIa enzymes that was 

generated utilizing BLAST web-based tool, which is available on the National Center for 

Biotechnology Information (NCBI) website (Figure 2.3) 
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Figure 2.3. Structural alignment of class IIa HDAC enzymes. HDAC4: red, HDAC5: blue, HDAC7: 

green, HDAC9: yellow. 
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Figure 2.4. Amino acid sequence alignment of class IIa HDAC proteins. Amino acids identity is shown 

as dark green, similarity is represented as light green and no similarity is shown in white. Overall 

sequence identity among this class of HDACs is 55.6% and sequences similarity is 71.5%. [  β-sheet, 

 α-helix]. 
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Table 2.1. Conserved amino acid residues in class IIa HDACs’ catalytic domains. 

HDAC4 HDAC5 HDAC7 HDAC9 

His158 His159 His166 His159 

His159 His160 His167 His160 

Gly167 Gly168 Gly175 Gly168 

Phe168 Phe169 Phe176 Phe169 

Asp196 Asp197 Asp204 Asp197 

His198 His199 His206 His199 

Asp290 Asp291 Asp235 Asp291 

Gly330 Gly331 Gly297 Gly331 

 

 

 

Figure 2.5. Phylogenetic tree of human class IIa HDAC enzymes. The tree shows that HDAC5 and 

HDAC9 are related as they share one node with their ancestral origin HDAC4, whereas they share two 

nodes and with HDAC7. 

 

2.2.3. Dataset Preparation 

A total of 10,154,992 compounds were downloaded from several databases including 

ZINC15 database (https://zinc15.docking.org/) (Sterling & Irwin, 2015), ChEMBL 

(https://www.ebi.ac.uk/chembl/) (Gaulton et al., 2017), and the National Cancer Institute 

(NCI) (https://cactus.nci.nih.gov/index.html) (Milne et al., 1994). The ZINC15 dataset 

contains 3D tranches drug-like compounds which have a variety of molecular weight 

ranging from 200 to 500 MW, and octanol-water partition coefficient (LogP) ranging 

from -1 to 5. The advantage of this ZINC15 compounds library is that the compounds are 

ready for screening where they are previously protonated, all hydrogen atoms are 

included, and their 3D structures were optimized (Sterling & Irwin, 2015). The dataset 

was retrieved in SDF file format. The dataset was organized in tranches for easy 

management, each tranche had 100,000 compounds. 

https://zinc15.docking.org/
https://www.ebi.ac.uk/chembl/
https://cactus.nci.nih.gov/index.html
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2.2.4. Structure-Based Virtual Screening Approach 

Structure-based virtual screening is a computational method that has proved its liability 

and efficiency in searching for novel lead, lead-like, and drug-like compounds and is 

most widely applied in in-silico lab (Walters et al., 1998). In silico SBVS screening has 

boosted up the modern drug-like discovery and optimization, that saves money and time 

(Rester, 2008). In the current study, the SBVS method has been divided into three stages, 

where each stage used different molecular docking software in order to reduce the large 

number of the dataset and to filter out compounds with the least binding affinity, by taking 

advantage of each software’s capabilities. The first SBVS stage used GOLD docking 

software, the second SBVS used QuickVina 2.0, and the third SBVS used AutoDock 4.2. 

2.2.4.1. First stage of SBVS 

GOLD docking software was used for its high speed and efficiency in HTS of large 

compounds dataset (G. Jones et al., 1997). GOLD software provides four different 

scoring functions: ChemPLP, ChemScore, GoldScore, and ASP (the Astex Statistical 

Potential), where ChemPLP is an empirical fitness function which is considered as the 

most accurate scoring function for general docking studies and it is optimized for pose 

prediction (G. Jones et al., 1997). It is applied for sampling the steric harmonizing 

between the ligand and its respective target, and also examining the angle and distance 

dependency in terms of hydrogen bonding (G. Jones et al., 1995). The ChemPLP scoring 

function that is applied to rank various binding poses obeys the following formulas 

(Equation 2.2): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑃𝐿𝑃 = (𝑊𝑃𝐿𝑃 . 𝑓𝑃𝐿𝑃 + 𝑊𝑙𝑖𝑔−𝑐𝑙𝑎𝑠ℎ. 𝑓𝑙𝑖𝑔−𝑐𝑙𝑎𝑠ℎ + 𝑊𝑙𝑖𝑔−𝑡𝑜𝑟𝑠. 𝑓𝑙𝑖𝑔−𝑡𝑜𝑟𝑠

+ 𝑓𝑐ℎ𝑒𝑚−𝑐𝑜𝑣 + 𝑊𝑝𝑟𝑜𝑡. 𝑓𝑐ℎ𝑒𝑚−𝑝𝑟𝑜𝑡 + 𝑊𝑐𝑜𝑛𝑠. 𝑓𝑐𝑜𝑛𝑠) 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐶ℎ𝑒𝑚𝑃𝐿𝑃 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑃𝐿𝑃 − (𝑓𝑐ℎ𝑒𝑚−ℎ𝑏 + 𝑓𝑐ℎ𝑒𝑚−𝑐ℎ𝑜 + 𝑓𝑐ℎ𝑒𝑚−𝑚𝑒𝑡) 

(2.2) 

 

Where 𝑓𝑙𝑖𝑔−𝑐𝑙𝑎𝑠ℎis the internal score of the ligand which contains the heavy-atom clash 

potential; 𝑓𝑙𝑖𝑔−𝑡𝑜𝑟𝑠 is the torsional potential; 𝑊𝑃𝐿𝑃 is the weight of PLP contributions; 
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𝑊𝑙𝑖𝑔−𝑐𝑙𝑎𝑠ℎ is the weight of ligand clashes potential; 𝑊𝑙𝑖𝑔−𝑡𝑜𝑟𝑠  is the weight of ligand 

torsion potential; 𝑊𝑝𝑟𝑜𝑡 is the weight of ChemScore protein potential; and 𝑊𝑐𝑜𝑛𝑠 is the 

weight of constraint contributions. 

Herein, the docking experiments were performed using the ChemPLP scoring function, 

and the 10,154,992 compounds were screened against HDAC4, HDAC5, HDAC7 and 

HDAC9. HDACs proteins were uploaded to GOLD software as PDB files and all 

hydrogen atoms were added to protonate the proteins, and each protein was saved as mol2 

file. The binding site for each protein was centered close to the catalytic zinc atom and 

the box size was set to 10 Å, where the XYZ coordinates were set as follows; HDAC7 = 

7.8, 49.864, -18.724); HDACs 4, 5 and 9 = 19.199, -10.083, -1.089. The dataset (ligands) 

was uploaded as SDF file format. GOLD performed 10 genetic algorithms runs for each 

ligand. HDACs class IIa known inhibitors were retrieved from the ChEMBL website 

(https://www.ebi.ac.uk/chembl/) (Gaulton et al., 2017) and were docked against their 

respective HDAC. Preliminary investigations of the docking results showed that the 

highest fit values were as follows: HDAC4 = 88, HDAC5 = 70, HDAC7 = 95, and 

HDAC9 = 80. The criteria of selection after the GOLD docking study was made 

according to the previous fit values. Thus, the large dataset was reduced to a total of 

89,632 molecules (HDAC4 = 26,709; HDAsC5 = 24,173; HDAC7 = 18,702, and HDAC9 

= 20,048). 

2.2.4.2. Second stage of SBVS 

In the second stage of the virtual screening, QuickVina 2.0 was used due to its comparable 

fast screening. QuickVina 2.0 is an AutoDock Vina-based tool that was designed for 

faster and more accurate results, where it automatically determines the grid maps and 

ranks the outputs for simple interpretation. (Alhossary et al., 2015). QuickVina 2.0 can 

be downloaded from the following link: (https://qvina.github.io/). The scoring function 

of QuickVina 2.0 relies on the same scoring function of classical AutoDock Vina where 

the method combines between the knowledge-based and empirical approach and obeys 

the following formula (Equation 2.3): 

https://www.ebi.ac.uk/chembl/
https://qvina.github.io/
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∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐺𝑔𝑎𝑢𝑠𝑠 + ∆𝐺𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + ∆𝐺ℎ𝑏𝑜𝑛𝑑 + ∆𝐺ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 + ∆𝐺𝑡𝑜𝑟𝑠 (2.3) 

Due to the highly conserved amino acid sequence and the great resemblance among class 

IIa HDAC enzymes (Bottomley et al., 2008; Schuetz et al., 2008), the 89,632 ligands that 

displayed highest affinity towards their corresponding targets at the first SBVS stage, 

were additionally docked into each protein of the class (e.g., cross-docking). All SDF 

files were first converted to PDB files using the following command by OpenBabel 

program (O’Boyle et al., 2011): 

$ openbabel.obabel *.sdf -opdb -m 
 

Then, all PDB files were converted to PDBQT files to be readable by QuickVina 2.0 

using the following script file: 

#!/bin/bash 
# 
# use the 'prepare_ligand4.py' python script to create pdbqt files 
VSTROOT=`pwd` 
 
cd $VSTROOT/VirtualScreening/Ligands 
for f in `ls *pdb`; do 
    echo $f 
    ~/MGLTools-1.5.6/bin/python2.5 ../../prepare_ligand4.py -l $f -o "$f"qt -d 
../etc/ligand_dict.py -F -B amide 
done 
 
# The ``examine_ligand_dict.py`` scripts reads the ``ligand_dict.py`` 
# and writes a summary describing the set of ligands to stdout. 
 
cd $VSTROOT/VirtualScreening/etc 
cp ../../examine_ligand_dict.py . 
~/MGLTools-1.5.6/bin/python2.5 examine_ligand_dict.py > summary.txt  

 

All individual members of class IIa HDACs were prepared and correctly protonated and 

saved as PDBQT using AutoDockTools (G. M. Morris et al., 2009). The configuration 

files for each protein were prepared and the exhaustiveness was set to 8, while the energy 

grid box size and the coordinates were specified as shown in Table 2.2. 
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Table 2.2. Coordinate parameters and grid box size used for QuickVina 2.0. 

 

 HDAC4 HDAC5 HDAC7 HDAC9 

Centre     

X 19.199 19.199 7.8 19.199 

Y -10.083 -10.083 49.864 -10.083 

Z 1.089 1.089 -18.724 1.089 

Dimension (Å)    

X 22.5 22.5 20 22.5 

Y 22.5 22.5 20 22.5 

Z 22.5 22.5 20 22.5 

Lastly, to screen this large number of compounds (89,632) against each individual 

member of class IIa HDACs, a specific script code was used for this purpose, that assisted 

in running QuickVina 2.0 in one step for each protein. The script source code was given 

as follows: 

vinapath=/{QuickVina 2.0 Path} 
 
workingdir=/{WORKING DIRECTORY} 
 
cd $workingdir 
mkdir docking_results 
 
outputdirectory=$workingdir/docking_results  
 
for f in $workingdir/Ligands/*.pdbqt 
 do 
 b=`basename $f .pdbqt`  
  echo Processing ligand $b  
 ${vinapath} --config vina_conf.txt --cpu 3 --ligand $f --out ${outputdirectory}/${b}_out.pdbqt --
log ${outputdirectory}/${b}_log.txt 
  done  

For each ligand, the output was given as a text file, which then all outputs were combined 

and converted into a single Excel file for simple analysis using the following bash file: 
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#!/bin/bash 
for f in *.txt; do 
    b=`basename $f .txt` 
    echo ${b} >> Vina_result_${b}.txt 
    grep "0.000" ${b}.txt | awk '{print $2}' >> Vina_result_${b}.txt 
    paste -s Vina_result_${b}.txt >> Vina_result_ALL.xls 
done  

Upon results analyses, the ligands were filtered according to their binding affinity, and, 

in order to end up with the highest binding affinity for the third stage of SBVS, all 

compounds with a binding energy (∆G) of -10 kcal/mol or less were selected for the third 

SBVS stage, thus a total of 6,325 compounds fulfilled this condition. 

2.2.4.3. Third stage of SBVS 

The final virtual screening was conducted using AutoDock 4.2 (G. M. Morris et al., 2009) 

in order to identify the highest binding affinity among the tested dataset and assess the 

selectivity among them towards each class IIa isoform. Therefore, based on the binding 

affinity, the top 500 compounds retrieved from previous stage were cross-docked against 

each individual member of class IIa HDACs. At first, grid map files and GPF file were 

prepared for one of the 500 compounds using AutoDockTools4 and AutoGrid4 with the 

docking parameters given in Table 2.3. 

Table 2.3. Coordinate parameters and grid box size used for AutoDock 4.2. 

 

 HDAC4 HDAC5 HDAC7 HDAC9 

Centre     

X 19.199 19.199 7.8 19.199 

Y -10.083 -10.083 49.864 -10.083 

Z 1.089 1.089 -18.724 1.089 

Dimension (Å)    

X 55 55 50 55 

Y 55 55 50 55 

Z 55 55 50 55 

Then, with the help of the next source codes, grid map files, GPF and DPF for all the 

compounds were sorted and separated into folders according to the ligands names in few 

simple steps. The first bash file created a separate folder for each of the 500 compounds 
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and copied all necessary docking parameter files into the newly created folder, including 

the grid map files, ligand PDBQT file, protein PDBQT file, GPF, and DPF files. 

#!/bin/bash 
# 
# Create the ``Dockings`` directory:: 
 
VSTROOT=`pwd` 
 
mkdir -p $VSTROOT/VirtualScreening/Dockings 
cd $VSTROOT/VirtualScreening/Dockings 
 
# Create a subdirectory named ``<ligand>_protein`` and populate it 
# with the docking input files: a) the ``pdbq`` from the ``Ligands`` 
# directory will be copied directly; b) the maps will be lined to 
# the ``Receptor`` directory; and, c) the ``dpf`` file will be created 
# using ``prepare_dpf.py`` 
 
for f in `ls ../Ligands/*.pdbqt`; do 
    name=`basename $f .pdbqt` 
    echo $name 
    mkdir "$name"_{RECEPTOR NAME} 
    cd "$name"_{RECEPTOR NAME} 
    cp ../"$f" . 
    ln -s ../../Receptor/{RECEPTOR NAME}.pdbqt . 
    ln -s ../../Receptor/{RECEPTOR NAME}*map* . 
    ~/MGLTools-1.5.6/bin/python2.5 /{DIRECTORY PATH}/prepare_dpf4.py -l `basename $f` -r 
{RECEPTOR NAME}.pdbqt \ 
    -p ga_num_evals=25000000 \ 
    -p ga_pop_size=150 \ 
    -p ga_run=20 \ 
    -p rmstol=2.0 
    cd .. 
done  

The second bash file started the docking process of the 500 compounds one-by-one and 

generated the output as DLG file. 
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#!/bin/bash 
# 
# Create a file with a list of the dockings to run:: 
 
VSTROOT=`pwd` 
 
mkdir -p $VSTROOT/Results/dlg 
 
cd $VSTROOT/VirtualScreening/Docking 
 
for d in `ls` ; do 
    echo $d 
    cd $d 
    autodock4 -p "$d".dpf -l $d.dlg 
    cp "$d".dlg $VSTROOT/Results/dlg/ 
    cd ../ 
done  

In the present study, the search for the ligand conformation in AutoDock 4.2 was 

calculated by the Lamarckian genetic algorithm, and twenty independent runs were 

allowed for each ligand using 25,000,000 energy evaluation. 

Herein, the selection criteria of the isoform-selective compounds were directed by 

Bieliauskas and Pflum (Bieliauskas & Pflum, 2008). The authors demonstrated a 

thorough insight into the HDAC inhibitors selectivity. For example, compound 24 in their 

study displayed 15-fold specificity towards HDAC4 over HDAC6, and thus they 

considered compound 24 as HDAC4 selective inhibitor (Bieliauskas & Pflum, 2008). 

Their work guided the selection process in our study, which was performed by calculating 

the ratio of the inhibitory constant (Ki) of one compound obtained from one individual 

member of class IIa HDACs, to the Ki of the same compound obtained from the other 

isoforms. For example, the selectivity index of inhibitor “A” for HDAC4 over HDAC5 

can be calculated as follows (Equation 2.4): 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 "A" 𝑓𝑜𝑟 𝐻𝐷𝐴𝐶4 =
𝐾𝑖 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝐻𝐷𝐴𝐶𝑠 𝑖𝑠𝑜𝑓𝑜𝑟𝑚

𝐾𝑖 𝑜𝑓 𝐻𝐷𝐴𝐶4
 

(2.4) 

 

Based on the calculated binding energy and the predicted Ki value that was obtained from 

the AutoDock 4.2, a total of 15 compounds showed a wide range of selectivity for their 

respective proteins (HDAC4: 5, HDAC5: 3, HDAC7: 6, HDAC9: 1). 
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2.2.5. ADMET Profile Description 

ADMET descriptors including absorption, distribution, metabolism, elimination, and 

toxicity properties are significant in the computational drug discovery and design. There 

are several computational tools that combine in vivo and in vitro prediction of ADMET 

profile. In addition, ADMET profile has been successfully predicted in silico over the last 

decade (Cheng et al., 2013). In the current study, all 15 compounds were saved and 

uploaded as SMILES files, where the ADMET properties and drug-likeness were 

predicted using admetSAR 2.0 web server (http://lmmd.ecust.edu.cn/admetsar2) (H. 

Yang et al., 2019) and SwissADME website (http://www.swissadme.ch/) (Daina et al., 

2017). These properties include: Lipinski’s rule of 5 that calculates the molecular weight 

(MW), octanol-water partition coefficients (LogP), total number of hydrogen bond 

acceptors, and hydrogen bond donors (Lipinski et al., 2001); topological polar surface 

area (TPSA); Caco-2 cell permeability; and the water solubility. 

2.2.6. Pan-Assay Interference Compounds (PAINS) Filter 

In addition, pan-assay interference compounds (PAINS) filter was applied for all the 15 

compounds using the PAINS Remover website (https://www.cbligand.org/PAINS/) 

(Baell & Holloway, 2010). PAINS are identified as special structural properties that can 

lead to false positive effects at certain cases during the virtual screening and can 

nonspecifically interact to random targets rather than a particular target (Baell & 

Holloway, 2010). Consequently, it is important to eliminate compounds with PAINS 

features to avoid false positive outcomes. 

2.2.7. Molecular Dynamics (MD) Simulation 

Molecular dynamics (MD) simulation has proved its importance in examining the 

structural stability of the proteins and in extracting important details about the major 

conformational modifications in the protein-ligand binding. MD simulation is a 

computational simulation approach that allows the investigation of the physical 

movement and orientation of all atoms in the system, and thus, explores the dynamics 

http://lmmd.ecust.edu.cn/admetsar2
http://www.swissadme.ch/
https://www.cbligand.org/PAINS/


 

71 

 

and structures in detail. Detailed information about the concept of MD simulation is given 

under the “2.1.10” section. In the present study, seven isoform-selective complexes were 

subjected to MD simulation using NAMD package (Phillips et al., 2020), including 

HDAC4-CHEMBL2177655, HDAC4-CHEMBL3126309, HDAC5-

ZINC000033260361, HDAC5-CHEMBL2426361, HDAC7-CHEMBL1968496, 

HDAC7-ZINC000009640741, and HDAC9-CHEMBL1761559. The web server of 

CHARMM-GUI (http://www.charmm-gui.org/) (J. Lee et al., 2016) was used to generate 

all the necessary input files for the MD simulation study. The web server of the 

CHARMM General Force Field (CGenFF) server (https://cgenff.umaryland.edu/) was 

utilized for the parameterization of all the seven ligands, in which the charges assignment 

and atoms typing were carried out (Vanommeslaeghe et al., 2010). The seven systems 

were water solvated applying the transferable intermolecular potential with 3 points 

model (TIP3) and NaCl slat ions were added to neutralize the systems at 0.15 M 

concentrations. The first step of the MD simulation consisted of energy minimization for 

20,000 steps by means of steepest descent method. The second step included restrained 

equilibration run for 10 ns at 310 K in constant number of atoms, volume, and 

temperature ensemble (NVT). Finally, all seven systems were subjected to unrestrained 

100 ns run in constant number of atoms, pressure, and temperature ensemble (NPT) with 

2 fs of collection period, while the system’s coordinates were recorded into the trajectory 

files every 5,000 steps. The MD simulation trajectory files were analyzed using VMD 

software (Humphrey et al., 1996) and the analyses included the root mean square 

deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), 

potential energy, and number of hydrogen bonds. 

2.2.8. Binding Free Energy Calculations 

The Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) (Massova & 

Kollman, 2000) is widely used approach for the prediction of the binding free energy, 

which provides more accurate calculations than the majority of molecular docking 

scoring functions and requires less computational processing than classic alchemical free 

energy approaches (E. Wang et al., 2019). Herein, this method was used to calculate the 

http://www.charmm-gui.org/
https://cgenff.umaryland.edu/
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binding free energy for all the seven systems after MD simulations. The binding free 

energy of any given complex (protein-ligand) can be expressed as given in Equation 1.5. 

Where 𝐺𝑐𝑜𝑚 describes the total free energy of the complex. 𝐺𝑝𝑟𝑜 and 𝐺𝑙𝑖𝑔 refers to their 

free energies in their unbound conditions. In general, the free energy can be expressed as 

shown in Equation 1.6. 𝐸𝑀𝑀  denotes the average potential energy of the molecular 

mechanics in a vacuum. 𝐺𝑠𝑜𝑙 refers to the free energy of solvation. Therefore, the average 

potential energy of the molecular mechanics in vacuum can be calculated following the 

same formula (Equation 1.6). The solvation free energy is a combination of electrostatic 

𝐺𝑝𝑜𝑙𝑎𝑟 and nonpolar 𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 energies and can be expressed as in Equation 1.6. 𝐺𝑝𝑜𝑙𝑎𝑟 

can be obtained from the Poisson-Boltzmann (PB) equation, whereas 𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 can be 

obtained from the solvent-accessible surface area (SASA) as follows (Equation 2.5): 

𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛾𝑆𝐴𝑆𝐴 + 𝑏 (2.5) 

Where 𝛾 denotes the coefficient of solvent surface tension with 0.0072 kcal/mol/Å, and 

𝑏 represents its fitting parameter that is 0 kcal/mol. 

In this study, CaFE tools (H. Liu & Hou, 2016) was used to calculate the binding free 

energy for all studied complexes. The last 10 ns was extracted from all trajectory files 

after performing the MD simulations, in which each DCD file contains 200 snapshots 

generated by VMD software (Humphrey et al., 1996). All necessary files including DCD, 

PSF and toppar files were prepared to be used by CaFE tools. The configuration file was 

created and the reciprocal size of the grid spacing was defined as 1.0 Å, while the internal 

and external dielectric constants were defined as 4.0 Å and 80.0 Å, respectively. 

2.3. LIGAND-BASED PHARMACOPHORE MODELING FOR DESIGNING OF 

ISOFORM SELECTIVE HDAC5 AND HDAC9 INHIBITORS 

Chemically, only certain portion of the drug is included in the interactions with proper 

target and is responsible for the biological activity. This portion is called 

“pharmacophore” (S. Y. Yang, 2010). Pharmacophore defines the chemical features of a 

drug that are vital for its biological effect (Wermuth et al., 1998). 
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Figure 2.6. Pharmacophore modeling and virtual screening workflow. 

2.3.1. Training Set Compounds Selection 

In order to create pharmacophore models, a total of 21 HDAC5 and 21 HDAC9 known 

inhibitors were selected for the training sets, which contain a variety of experimental half 

maximal inhibitory concentration (IC50) varying between 1 and 11,700 nM and with a 

diverse structural component, were retrieved from the ChEMBL website 

(https://www.ebi.ac.uk/chembl/) (Gaulton et al., 2017) and from several literatures (Alan 

Kozikowski, Jay H. Kalin, Kyle V. Butler, Joel Bergman, 2016; Angibaud et al., 2010; 

Auzzas et al., 2010; Bergman et al., 2012; Boskovic et al., 2016; Botta et al., 2011; Cai 

et al., 2010; Y. Chen et al., 2016; De Vreese & D’hooghe, 2017; Giannini, Marzi, Pezzi, 

et al., 2009; Giannini, Marzi, Marzo, et al., 2009; Hutt et al., 2010; Kalin & Bergman, 

2013; Kao et al., 2003; H. Y. Lee et al., 2017; Marek et al., 2013; Olson et al., 2013; Paris 

et al., 2008; Pescatore et al., 2008; Raeppel et al., 2009; Sekizawa et al., 2014; Stephen 

Joseph Shuttleworth, 2014; F. F. Wagner et al., 2013; T. Wang et al., 2013; Yao et al., 

2015; Ziwei YUN, 2012). These known inhibitors included: T009, Trichostatin, Cudc-

101, LMK235, R306465, Dacinostat, Vorinostat, Tubastatin A, Chimera 4, Marbostat, 

ST2987, Entinostat, ST3049, Tubacin, Largazole, Azumamide E, Mocetinostat, HPB, 

https://www.ebi.ac.uk/chembl/
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redFK228, ST3710, Nexturastat A, BDBM119696, IYS-15, IYS-1, TMP269, IYS-14, 

BRD4354, BDBM218159, Fimepinostat, BDBM119709, Scriptaid, BDBM191641, 

BDBM124205, ST2741, and BDBM191640 (Figures 2.7 and 2.8). In addition, these 

known inhibitors involve a various structural components and are well studied against 

class IIa HDAC enzymes; thus, they were used to design the training data sets in order to 

create the pharmacophore models. 

 

Figure 2.7. 2D structures of HDAC5 known inhibitors collected for the training set along with their IC50 

values in nM. 

 

 
 

  

LMK235 IC50 = 4.22 nM T009 IC50 = 2.5 nM Trichostatin IC50 = 6 nM Cudc-101 IC50 = 11 nM 

    

 
 

 

 

R306465 IC50 = 7 nM Dacinostat IC50 = 5.58 nM Vorinostat IC50 = 1 nM Tubastatin A IC50 = 2,300 nM 

    

   
 

Chimera 4 IC50 = 3,891 nM Marbostat IC50 = 1,570 nM ST2987 IC50 = 1,160 nM Entinostat IC50 = 1,400 nM 

    

    
ST3049 IC50 = 3,670 nM Tubacin IC50 = 3,350 nM Largazole IC50 = 10,000 nM Azumamide E IC50 = 10,000 nM 

    

  
  

Mocetinostat IC50 = 10,000 nM HPB IC50 = 9,500 nM redFK228 IC50 = 10,000 nM ST3710 IC50 = 10,800 nM 

    

 

Nexturastat A IC50 = 11,700 nM 
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Figure 2.8. 2D structures of HDAC9 known inhibitors collected for the training set along with their IC50 

values in nM. 

2.3.2. Pharmacophore Hypothesis Generation 

To generate the pharmacophore hypotheses in the current study, the Catalyst package in 

BIOVIA DS 4.5 (Dassault Systèmes, 2016) was utilized by following the “Common 

Feature Pharmacophore Generation” protocol. The Catalyst package relies on the HipHop 

method, which recognizes the common structural features based on the alignment of a 

group of active molecules rather than their biological activity (Barnum et al., 1996). The 

 
 

 

 

BRD4354 IC50 = 1,880 nM T009 IC50 = 1.1 nM Trichostatin IC50 = 20 nM BDBM119696 IC50 = 59 nM 

    

 
 

 

 

R306465 IC50 = 28 nM Dacinostat IC50 = 8.24 nM Vorinostat IC50 = 20 nM Tubastatin A IC50 = 621 nM 

    

 
 

 
 

TMP 269 IC50 = 19.4 nM IYS-15 IC50 = 57 nM IYS-1 IC50 = nM IYS-14 IC50 = 62 nM 

    

 
 

 
 

Fimepinostat IC50 = 554 nM Scriptaid IC50 = 700 nM BDBM124205 IC50 = 759 nM ST2741 IC50 = 640 nM 

    

  

 

 

ST2987 IC50 = 2,470 nM BDBM119709 IC50 = 5,000 nM BDBM218159 IC50 = 8,160 nM BDBM191640 IC50 = 10,000 nM 

    

 

BDBM191641 IC50 = 10,000 nM 
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algorithm of the HipHop module creates a qualitative hypothesis that allows the 

differentiation of active from inactive compounds and the pharmacophore hypotheses are 

ranked according to the fitting of the training set compounds (Barnum et al., 1996). 

Matching a compound with the pharmacophore configuration is only achievable if the 

compound holds structural properties that can be aligned in a specific tolerance from the 

hypothesized positions (Clement & Mehl, 2000). LMK235 and BRD4354 are two class 

IIa HDAC inhibitors that preferentially target HDAC5 and HDAC9 rather than the rest 

of HDACs, respectively, with some selectivity. Therefore, LMK235 was defined as a 

reference compound in the training set which was used for the HDAC5-pharmacophore 

hypothesis generation, while BRD4354 was defined as a reference compound in the 

training set which was used for the HDAC9-pharmacophore hypothesis generation. The 

“Principal” parameter was set to 2 for LMK235 and BRD4354, whereas the “Principal” 

value was set to 1 for the rest of the compounds in the training sets. In addition, the 

“MaxOmitFeat” value was set to 0 for the reference compounds and 2 for the remaining 

molecules (Luo et al., 2016). The pharmacophore conformational generation was 

performed in “BEST” module at energy threshold of 20 kcal/mol. The maximum number 

of conformations was set to 225 for each compound. To guarantee the generation of the 

pharmacophore features with a close proximity, the minimum interfeature distance was 

set to 1. In addition, the minimum feature point was set to 1, with at least 1 minimum 

feature and maximum 10 features. All other parameters were left at default values. 

2.3.3. Pharmacophore Hypotheses Validation 

Pharmacophore model/hypothesis validation is an essential step in which it confirms the 

quality of the generated model by its ability of recognizing active from inactive 

compounds towards specific target. The quality of the pharmacophore model depends on 

its reliability to distinguish active compounds (different from those in the training set) 

from a set contains both inactive and active compounds (namely decoy set) (Vuorinen et 

al., 2014). In order to validate the generated pharmacophore models, another two 

different datasets of known inhibitors respectively to HDAC5 and HDAC9, each set 

contains 21 compounds, were collected from ChEMBL database 

(https://www.ebi.ac.uk/chembl/) (Gaulton et al., 2017) and from several literatures 

https://www.ebi.ac.uk/chembl/
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including Cudc-101, Romidepsin, Tubacin, Largazole, PBHA, BRD-2577, ST5732, 

BRD73594, BRD9757, HPT-6-carboxilic acid, NCH-31, IYS-10, BDBM124206, 

BDBM124207, BDBM119703, rac-15, HPB, BDBM119704, and BDBM124203 (Bürli 

et al., 2013; Cai et al., 2010; Y. Chen et al., 2016; De Vreese & D’hooghe, 2017; Di 

Pompo et al., 2015; Fass et al., 2011; Giannini, Marzi, Marzo, et al., 2009; Giannini, 

Marzi, Pezzi, et al., 2009; Kalin & Bergman, 2013; Kemp et al., 2011; H. Y. Lee et al., 

2018; Li et al., 2013; Muthyala et al., 2015; Olson et al., 2013; Sekizawa et al., 2014; 

Stephen Joseph Shuttleworth, 2014; F. F. Wagner et al., 2013, 2016; Z. Yang et al., 2016; 

Yao et al., 2015; Ziwei YUN, 2012) (Figures 2.9 and 2.10). These known inhibitors have 

an experimental IC50 values ranging from 0.05 to 35 µM and were used as active 

compounds in the test datasets. To obtain inactive compounds from the test set in the 

current work, DecoyFinder software (Cereto-Massagué et al., 2012) was used. Each set 

of the HDACs 5 and 9 known inhibitors were uploaded to the DecoyFinder software, and 

for each compound in the set, 10 inactive compounds were generated. So totally, the 

decoy set of HDAC5 contained 231 compounds (21 active + 210 inactive), as well as 

another 231 compounds in the decoy set of HDAC9. Consequently, both of the decoy 

sets were used to evaluate the quality of the generated pharmacophore hypotheses via 

testing each pharmacophore model against the decoy set and use the output information 

to calculate the goodness of hit (GH) through applying the following formulas (Kurogi 

& Guner, 2001) (Equation 2.6): 

𝑌% =
𝐻𝑎

𝐻𝑡
× 100% 

𝐴% =
𝐻𝑎

𝐴
× 100% 

𝐸 =
𝐻𝑎 × 𝐷

𝐻𝑡 × 𝐴
 

𝐺𝐻 =
𝐻𝑎(3𝐴 + 𝐻𝑡)

4𝐻𝑡 × 𝐴
× (1 −

𝐻𝑡 − 𝐻𝑎

𝐴 − 𝐷
) 

(2.6) 

Where “𝑌%” denotes the ratio of active compounds identified by the pharmacophore 

model from the decoy set; “𝐻𝑎” represent the total number of the active compounds 

shown in the hit list; “𝐻𝑡” defines the total number of the hits within the decoy set; “𝐴%” 

denotes the ratio of active compounds within the hits list; “𝐴” expresses the sum of the 
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active compounds in the decoy set; “𝐸” is the enrichment factor, “𝐷” is the sum of the 

compounds presents in the decoy set; and “𝐺𝐻” is the goodness of hit that defines the 

reliability of the generated pharmacophore models, and according to Kurogi & Guner 

study, “𝐺𝐻” is expected to obtain a score ranging between 0.6 and 1.0 for a reliable 

pharmacophore model (Guner et al., 2004; Kurogi & Guner, 2001). 

 

Figure 2.9. 2D structures of HDAC5 known inhibitors collected for the test set used in pharmacophore 

hypothesis validation. 

 

  
 

 

BDBM119696 IC50 = 60 nM ST2887 IC50 = 140 nM Panobinostat IC50 = 92 nM BDBM124200 IC50 = 123 nM 

    

  
 

 

BDBM119695 IC50 = 172 nM rac-26 IC50 = 50 nM TMP 269 IC50 = 80 nM ST2986 IC50 = 7,200 nM 

    

  

 

 

BDBM119709 IC50 = 8,644 nM ST2741 IC50 = 4,900 nM BDBM191641 IC50 = 10,000 nM ST3050 IC50 = 7,360 nM 

    

 
 

  

Ricolinostat IC50 = 5,000 nM MC2625 IC50 = 9,370 nM Benzohydroxamate IC50=33,330 nM PBHA IC50 = 25,000 nM 

    

  
  

BRD-2577 IC50 = 27,900 nM ST5732 IC50 = 28,000 nM BRD73594 IC50 = 33,000 nM BRD9757 IC50 = 18,320 nM 

    

 

HPT-6-carboxilic acid IC50 = 35,000 nM 
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Figure 2.10. 2D structures of HDAC9 known inhibitors collected for the test set used in 

pharmacophore hypothesis validation. 

2.3.4. 3D Database Search for New Hits 

After validating the quality of the pharmacophore models and selecting the models based 

on their goodness of hit, 3D database search was conducted for identifying new lead 

molecules as HDAC5 and HDAC9 inhibitors. Thus, “Search 3D Database” protocol in 

BIOVIA DS 4.5 software was used to search the database against HDAC5-

pharmacophore Hypo1 and HDAC9-pharmacophore Hypo2. HDAC5-pharmacophore 

   
 

NCH-31 IC50 = 82 nM  IYS-10 IC50 = 78 nM Panobinostat IC50 = 888 nM BDBM124200 IC50 = 90 nM 

    

  
  

BDBM119695 IC50 = 277 nM rac-26 IC50 = 370 nM Cudc-101 IC50 = 67 nM ST5732 IC50 = 150 nM 

    

  
  

BDBM124206 IC50 = 145 nM BDBM124207 IC50 = 423 nM BDBM119703 IC50 = 163 nM BDBM119704 IC50 = 478 nM 

    

  
  

Largazole IC50 = 1,800 nM ST2887 IC50 = 3,300 nM HPB IC50 = 5,300 nM BDBM124203 IC50 = 759 nM 

    

  

  

rac-15 IC50 = 1,800 nM Ricolinostat IC50 = 10,000 nM Tubacin IC50 = 4,310 nM MC2625 IC50 = 10,600 nM 

    

 

Romidepsin IC50 = 10,000 nM 
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Hypo1 and HDAC9-pharmacophore Hypo2 were selected according to their goodness of 

hit from the previous step. The 3D database contained of ~200,000 compounds from the 

ZINC15 website (http://zinc15.docking.org/) (Sterling & Irwin, 2015). 

2.3.5. Molecular Docking Study 

In order to evaluate the hit compounds obtained from the 3D database search and examine 

their interactions and binding poses within their respective targets, molecular docking 

method was conducted using QuickVina 2.0 (Alhossary et al., 2015). QuickVina 2.0 is 

an enhanced molecular docking tool, which was developed from classic AutoDock Vina 

program (Trott & Olson, 2009). According to the 3D database search results, HDAC5-

pharmacophore Hypo1 retrieved 7,966 hit compounds and HDAC9-pharmacophore 

Hypo2 retrieved 21,422 hit compounds, where these compounds showed fit values of 

3.00 or more. Proteins and all small molecules were prepared and saved as PDBQT files 

using AutoDockTools (G. M. Morris et al., 2009). AutoDockTools assisted in assigning 

Gasteiger charges and adding polar hydrogen atoms to both the proteins and the 

compounds. The size of the energy grid boxes for HDAC5 and HDAC9 was modified to 

include all active residues in the active site and was centered around the Zn2+ ion. XYZ 

coordinates and the energy grid boxes were set as follows: 19.199, -10.083, -1.089 and 

22.5, 22.5, 22.5 Å, respectively. 

2.3.6. ADMET Description and Drug-Likeness 

Important ADMET properties such as Caco-2 cell membrane permeability, water 

solubility, and LogP for all lead compounds were predicted using the admetSAR 2.0 

website (http://lmmd.ecust.edu.cn/admetsar2) (H. Yang et al., 2019) in order to examine 

their physicochemical properties. In addition, the Lipinski’s rule of five was also 

predicted for the hit compounds using the SwissADME web service 

(http://www.swissadme.ch/) (Daina et al., 2017) to evaluate their drug-likeness. All input 

files were uploaded to these web servers as SMILES files. 

http://zinc15.docking.org/
http://lmmd.ecust.edu.cn/admetsar2
http://www.swissadme.ch/
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2.3.7. Pan-Assay Interference Compounds (PAINS) Filter 

The advances in high-throughput screening in computer-aided drug design have 

accelerated the drug discovery process and the identification of new compounds as active 

leads, however, many of these leads are eliminated due to their false positive impacts. 

These leads may contain certain sub-structures that were demonstrated by Baell and 

Holloway as pan assay interference compounds (PAINS) (Baell & Holloway, 2010). 

These substructure features have the ability to interact and bind to random targets with 

unspecific manner which results in false positives. To guarantee that the studied hit 

compounds are free of PAINS, the PAINS Remover website 

(https://www.cbligand.org/PAINS/) (Baell & Holloway, 2010) was used in the present 

study. 

2.3.8. Molecular Dynamics Simulation 

MD simulations were conducted for all complexes employing NAMD package (Phillips 

et al., 2020) to evaluate and study structural stability of both the protein and the ligand’s 

binding mode. The subjected complexes included: HDAC5-LMK235, HDAC5-

ZINC000257282664, HDAC5-ZINC000008918470, HDAC9-BRD4354, HDAC9-

ZINC000016012342, and HDAC9-ZINC000020942817. The CHARMM-GUI web-

based tools (http://www.charmm-gui.org/) (J. Lee et al., 2016) were used to generate all 

NAMD input files for all complexes. The CHARMM36m force field was assigned to all 

systems in the present study (J. Huang et al., 2016). All compounds were parameterized 

according to the CHARMM General Force Filed (CGenFF), and all toppar files were 

generated using the CGenFF web-based tool (https://cgenff.umaryland.edu/) 

(Vanommeslaeghe et al., 2010). Water box for all studied systems were generated using 

the transferable intermolecular potential 3 (TIP3) modules and several salt ions (NaCl) 

were added to neutralize the systems. The first step of the MD simulation included energy 

minimization applying the steepest descent method for 20,000 steps. Then, the systems 

were equilibrated for 10 ns at a temperature of 310 K in NVT ensemble. Finally, 

unrestrained MD simulations were run in NPT ensemble for 100 ns production phase at 

a temperature of 310 K. VMD software (Humphrey et al., 1996) was used to analyze all 

https://www.cbligand.org/PAINS/
http://www.charmm-gui.org/
https://cgenff.umaryland.edu/
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of the generated trajectory files by examining the RMSD, RMSF, Rg, potential energy, 

and the total number of the intermolecular hydrogen bonds throughout the MD 

simulation. 

2.3.9. Binding Free Energy Calculations 

The Poisson-Boltzmann Surface Area (MM-PBSA) method (Massova & Kollman, 2000) 

was used to compute the binding free energy of the compounds after the MD simulations 

via CaFE tools (H. Liu & Hou, 2016). The free binding energy ∆𝐺𝑏𝑖𝑛𝑑 is composed of 

three main components: free energy of the gas phase ∆𝐺𝑀𝑀; free energy of the solvation 

∆𝐺𝑠𝑜𝑙; and the change in the entropy of the system 𝑇∆𝑆 (Kollman et al., 2000) (Equation 

2.7). 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑣𝑑𝑤 + ∆𝐸𝑒𝑙𝑒𝑐 + ∆𝐺𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟𝑐 − 𝑇∆𝑆 (2.7) 

For each system, the energy elements were calculated using 200 snapshots extracted from 

the last 10 ns of MD trajectory files. The internal dielectric constant was set to 4.0, the 

external dielectric constant was 80 and the reciprocal of grid spacing was set to 1 Å. All 

other parameters were used as default. 
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3. RESULTS 

3.1. HOMOLOGY MODELING OF CLASS IIA HDAC5 AND HDAC9, AND 

THE DESIGN OF DUAL ACTING INHIBITOR 

3.1.1. Sequence Alignment of The Template with The Targets 

Entire amino acid sequences of both HDAC5 and HDAC9, including the catalytic 

domains, consist of 1,122 and 1,011 amino acid residues, respectively. The whole amino 

acid sequences of both HDAC5 and HDAC9 were individually aligned to amino acid 

sequence of HDAC4 catalytic domain. Consequently, 403 and 383 amino acid residues 

were obtained from HDAC5 and HDAC9, respectively, which represent the catalytic 

domains of the enzymes. Sequence alignment resulted in 76.2% sequence identity and 

89.6% sequence similarity between human HDACs 5 and 4, whereas 73.4% sequence 

identity and 87.2% sequence similarity between human HDACs 9 and 4 (Figure 3.1). 

 

Figure 3.1. Sequences alignment of human (a) HDACs 4 and 5; and (b) HDACs 4 and 9.  Identical 

identity  Strong  Weak  Non-matching  β-sheet  α-helix. 
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3.1.2. Generated Homology Models 

The generated homology models of HDAC5 and HDAC9 were performed based on the 

X-ray crystallography structure of the catalytic domain of human HDAC4 (PDB 

accession no. 2VQM_A). In the present study, the amino acid sequence of the catalytic 

domains of HDACs 5 and 9 were only subjected to homology modeling, and other regions 

were excluded from the FASTA files, because those regions have no matches within the 

3D structure of HDAC4 and won’t be correctly modeled. Twenty models were generated 

for each of the HDACs (HDAC5 and HDAC9) (Figure 3.2). Loop regions were diverged 

in a very minor way in comparison to the rest of the structure, which might be caused by 

their higher internal energy. All built models were verified using MODELLER tools (Šali 

& Blundell, 1993; Webb & Sali, 2016) in order to select the best generated structure. 

Consequently, model M0014 of HDAC5 showed DOPE and Normalized DOPE scores 

of -47397.77344 and -1.206321, respectively. While model M0020 of HDAC9 showed 

DOPE and Normalized DOPE scores of -43881.875 and -1.210314, respectively (Table 

3.1). Models M0015 and M0020 were chosen based on their lowest Normalized DOPE 

scores. Both built models were structurally superimposed to the HDAC4 structure, and 

the RMSD values were 0.53 Å and 0.34 Å for M0014 and M0020, respectively (Figure 

3.3). These exquisitely aligned structures with their low RMSD values were anticipated 

due to the high amino acid sequence identity among HDACs 4, 5, and 9. 
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Figure 3.2. The 20 generated homology models of (a) HDAC5:M0014; and (b) HDAC9:M0020 based on 

the X-ray crystallography structure of human HDAC4 (PDB ID: 2VQM_A). 

Table 3.1. DOPE and Normalized DOPE scores for generated HDACs 5 and 9 models. 

HDAC5 HDAC9 

Model DOPE Score 
Normalized 

DOPE Score 
Model DOPE Score 

Normalized 

DOPE Score 

M.0001 -46719.71875 -1.087162 M.0001 -43604.05078 -1.158941 

M.0002 -46956.49219 -1.128772 M.0002 -43881.27734 -1.210204 

M.0003 -46882.48438 -1.115766 M.0003 -43484.63281 -1.136859 

M.0004 -46950.22266 -1.12767 M.0004 -43643.51563 -1.166239 

M.0005 -46895.67188 -1.118083 M.0005 -43696.78125 -1.176088 

M.0006 -46655.94531 -1.075955 M.0006 -43661.30859 -1.169529 

M.0007 -47089.32031 -1.152114 M.0007 -43733.95703 -1.182962 

M.0008 -47064.72266 -1.147792 M.0008 -43669.16406 -1.170981 

M.0009 -46788.92578 -1.099324 M.0009 -43576.26953 -1.153804 

M.0010 -47094.14453 -1.152962 M.0010 -43625.00391 -1.162816 

M.0011 -47116.92188 -1.156965 M.0011 -43771.51172 -1.189907 

M.0012 -46887.25391 -1.116604 M.0012 -43671.1875 -1.171355 

M.0013 -47299.375 -1.189028 M.0013 -43610.08984 -1.160058 

M.0014 -47397.77344 -1.206321 M.0014 -43405.6875 -1.122261 

M.0015 -46102.95313 -0.978774 M.0015 -43610.94141 -1.160215 

M.0016 -47212.98438 -1.173846 M.0016 -43863.78125 -1.206968 

M.0017 -46935.68359 -1.125115 M.0017 -43462.08984 -1.132691 

M.0018 -47064.32422 -1.147722 M.0018 -43740.91016 -1.184248 

M.0019 -46656.07031 -1.075977 M.0019 -43744.10547 -1.184839 

M.0020 -47153.78516 -1.163443 M.0020 -43881.875 -1.210314 
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Figure 3.3. HDAC4 structural superimpose with (a) HDAC5:M0014 with RMSD value of 0.53 Å; and 

(b) HDAC9:M0020 with RMSD of 0.34 Å RMSD. 

HDAC4  HDAC5:M0014 and HDAC9:M0020. 

3.1.3. Homology Model Validation 

ProSA-web tools depends on the scores of all X-ray crystal structures and NMR 

structures provided by the PDB database to evaluate and examine the quality of the 

generated homology models (Wiederstein & Sippl, 2007). Models M0014 and M0020 

were found to have Z-scores of -8.12 and -8.04, respectively, which indicate that the 

conformations of these structures fit within the extent of native conformations of all 

NMR/X-ray resolved structures (Figure 3.4 (a) and (b)). The energy scheme describes 

the quality of local model and demonstrated inclusive negative values for the created 

models with errors (Figure 3.4 (c) and (d)). Furthermore, additional models’ validation 

was performed by PROCHECK tool (Laskowski et al., 1996). The generated 

Ramachandran plot defines the psi (Ψ) and Phi (Φ) distribution to demonstrate the 

energetically allowed areas of the protein structure (Figure 3.4 (e) and (f)). Model M0014 

had 90.4% amino acids in the best preferred regions; 7.9% in the further allowed regions; 

1.5% amino acids within the generally allowed regions; and 0.3% in disfavored regions. 

Model M0020 had 90.7% amino acids in the best preferred regions; 7.4% in the further 

allowed regions; 1.2% amino acids within the generally allowed regions; and 0.6% in 
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disfavored regions. Ramachandran plots for both M0014 and M0020 models were found 

to be satisfied. Furthermore, the built models stereochemical overall qualities were 

additionally evaluated by EERAT web server (https://servicesn.mbi.ucla.edu/ERRAT/) 

(Colovos & Yeates, 1993). ERRAT predicted the overall quality factor (OQF) for non-

bonded atomic interactions in both M0014 and M0020 models, where 50 OQF or more 

for a structure is considered as a good quality (Colovos & Yeates, 1993). Herein, the 

homology models were found to be of high quality according to ERRAT results, where 

M0014 model showed 87.34 OQF and M0020 had an OQF of 86.4 (Figure 3.5). 

 

 

 

https://servicesn.mbi.ucla.edu/ERRAT/
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Figure 3.4. Validation of the homology models. Black dots describe the generated models among native 

conformations of all PDB database, where (a) M0014 has a Z-score of -8.12; and (b) M0020 has a Z-

score of -8.04. ProSA’s energy plots of (c) M0014 model; and (d) M0020 model. Ramachandran plots 

displays allowed and favored regions for (e) M0014 model; and (f) M0020 model. 
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Figure 3.5. ERRAT plots for the generated homology models (a) HDAC5:M0014 (b) HDAC9:M0020. 

Green bars describe the perfectly folded regions in the protein; Yellow bars refer to the 95% confidence 

misfolded regions; Red bars are 99% confidence of misfolded regions. 

3.1.4. Molecular Docking with Known Inhibitors 

The quality of the built homology models was further evaluated by their capability to 

interact with their respective known inhibitors and produce a reasonable binding pose 

within the active sites. The experimental catalytic activities (IC50 or Ki) of those selected 

HDACis of HDACs 5 and 9 were compared to the predicted Ki values calculated by 

AutoDock 4.2 (Tables 3.2 and 3.3). Clustered column graphs are given in the ANNEX A 

to compare the experimental catalytic activities (Ki or IC50) of HDACs 5 and 9 known 

inhibitors with their corresponding in silico calculated Ki values. Despite the fact that 

those experimental IC50 and Ki were not produced in silico, the in silico calculations of 

inhibitory constant Ki of the docked inhibitors proved rationally comparable results. 

Among all studied HDAC5 known inhibitors, Rac26 displayed the topmost affinity 

towards the protein with the lowest binding energy, -10.5 kcal/mol (Figure 3.6 a). 

Whereas TMP269 showed the topmost binding affinity towards HDAC9 compared to all 

other HDAC9 known inhibitors, with a binding energy of -10.66 kcal/mol (Figure 3.6 b). 

Compounds TMP269 and Rac26 are two class IIa HDAC inhibitors that were first 

identified in 2013 by Bürli (Bürli et al., 2013). The 2D chemical structure of all selected 

HDACis is shown in Figure 3.7, while their 3D presentations and interactions with their 

respective proteins are shown in Figures 3.8 and 3.9. 
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Table 3.2 A comparative study between the experimental catalytic activities (Ki or IC50) (Exp.) of the 

HDAC5 known inhibitors and their corresponding in silico calculated Ki values. 

Compound 
Exp. Ki 

(µM) 

Exp. 

IC50 

(µM) 

Predicted 

Ki (µM) 

Calculated 

Binding Energy 

ΔG (kcal/mol) 

Ref. 

Rac26 − 0.050 0.020 -10.5 Bürli et al., 2013 

TMP269 0.086 − 0.028 -10.29 Bürli et al., 2013 

BDBM119696 − 0.060 0.024 -10.39 Pedro et al., 2011 

Pandacostat 0.180 − 0.116 -9.46 Bradner et al., 2010 

Romidepsin 0.550 − 0.915 -8.27 Bradner et al., 2010 

Scriptaid 1.000 − 1.750 -7.86 Bradner et al., 2010 

Fimepinostat − 0.674 0.128 -9.4 Chen et al., 2016 

Dacinostat 0.420 − 0.817 -8.31 Carrillo et al., 2015 

Givinostat 0.600 − 0.264 -8.97 Carrillo et al., 2015 

Belinostat 0.175 − 0.445 -8.66 Carrillo et al., 2015 

BDBM124199 − 0.548 0.949 -8.22 Shuttleworth et al., 2014 

Marbostat 0.701 − 0.960 -8.21 Sellmer et al., 2018 

Tubastatin − 2.300 1.390 -7.99 Wagner et al., 2013 

Trichostatin − 1.400 2.400 -7.65 Muthyala et al., 2015 

 

Table 3.3 A comparative study between the experimental catalytic activities (Ki or IC50) (Exp.) of the 

HDAC5 known inhibitors and their corresponding in silico calculated Ki values. 

Compound 
Exp. Ki 

(µM) 

Exp. 

IC50 

(µM) 

Predicted 

Ki (µM) 

Calculated 

Binding Energy 

ΔG (kcal/mol) 

Ref. 

TMP269 − 0.019 0.015 -10.66 H. Y. Lee et al., 2017 

IYS-1 − 0.042 0.015 -10.64 Sekizawa et al., 2014 

NCH-31 − 0.082 0.017 -10.58 Sekizawa et al., 2014 

BDBM119696 − 0.059 0.029 -10.27 Pedro et al., 2011 

Givinostat 0.390 − 0.169 -9.24 Bradner et al., 2010 

Pandacostat 1.400 − 0.375 -8.77 Bradner et al., 2010 

Romidepsin 1.100 − 1.080 -8.14 Bradner et al., 2010 

CUDC-101 − 0.067 0.393 -8.74 Cai et al., 2010 

Belinostat 0.250 − 0.469 -8.63 Carrillo et al., 2015 

Trichostatin 0.800 − 2.820 -7.57 Carrillo et al., 2015 

Fimepinostat − 0.554 0.490 -8.61 Chen et al., 2016 

Panobinostat 0.888 − 0.680 -8.41 Yang et al., 2016 

Scriptaid − 0.700 1.510 -7.94 Hutt et al., 2010 

Vorinostat 2.000 − 2.260 -7.7 Estiu et al., 2008 

Nexturastat − 6.720 3.150 -7.51 Bergman et al., 2012 
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Figure 3.6. 3D presentations of the binding pose of (a) HDAC5-Rac26; and (b) HDAC9-TMP269. 
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Figure 3.7. The 2D Structures of the selected HDACs 5 and 9 known inhibitors 
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Figure 3.8. (“a” to “m”) The 3D schemes of the binding pose of the selected HDAC5 known inhibitors 

and their interactions to the active site of M0014 model. 
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Figure 3.9. (“a” to “o”) The 3D schemes of the binding pose of the selected HDAC9 known inhibitors 

and their interactions to the active site of M0020 model. 

3.1.5. Molecular Docking and Structure-Based Virtual Screening 

Interestingly, based on the molecular docking study, two out of the 18 compounds 

showed comparatively close binding affinity towards both HDAC5 and HDAC9, 

compound CHEMBL2114980 and compound CHEMBL217223. This could mean that 

these two compounds can potentially display a dual action effect towards both proteins, 

inhibiting their catalytic actions at the same time. Predicted binding energy of the studied 

18 compounds with their estimated inhibitory constant Ki is given in Table 3.4. 

CHEMBL2114980 was found to have binding energy scores of -11.63 and -11.66 

kcal/mol for HDAC5 and HDAC9, respectively. While compound CHEMBL217223 had 

binding energy scores of -11.44 and -11.48 kcal/mol for HDAC5 and HDAC9, 

(m) 

 

(n) 

 
    

 
 

(o) 



 

99 

 

respectively. Compound CHEMBL2114980 was found to have the lowest inhibitory 

constant with a value of 2.99 nM against HDAC5 and 2.85 nM against HDAC9, 

respectively, with a percentage difference of only 4%. On the other hand, Compound 

CHEMBL217223 had the second low inhibitory constant with a value of 4.12 nM against 

HDAC5 and 3.83 nM against HDAC9, respectively, with a percentage difference of 7%. 

Compound CHEMBL2114980 bound to both HDAC5 and HDAC9 in a very similar 

binding mode and interacted with the catalytic Zn2+ atom and with other key amino acid 

residues in the active sites (Figure 3.10; Figure 3.11). The chemical interactions included 

several types of bonds; hydrogen bonds, salt-bridge interaction, π-alkyl or alkyl 

interactions, van der Waals, and charged interactions. Furthermore, compound 

CHEMBL217223 was also found to have a similar binding pose within the active sites of 

both HDAC5 and HDAC9 (Figures 3.10; 3.11). In addition to the covalent bond between 

compound CHEMBL217223 and the catalytic Zn2+ ion, several other essential 

interactions formed including hydrogen bond, van der Waals, π-π stacked, π-cation and 

π-π T-shaped interaction. 

Table 3.4. In silico calculations of the binding energy and the inhibitory constant Ki of the 18 molecules. 

Compound ChEMBL ID 

HDAC5 HDAC9 

ΔG 

(kcal/mol) 
Ki (nM) 

ΔG 

(kcal/mol) 
Ki (nM) 

1 CHEMBL2114980 -11.63 2.99 -11.66 2.85 

2 CHEMBL217223 -11.44 4.12 -11.48 3.83 

3 CHEMBL391373 -11.26 5.58 -10.5 20.21 

4 CHEMBL3290141 -11.05 7.99 -10.45 21.7 

5 CHEMBL280713 -10.94 9.57 -11.37 4.62 

6 CHEMBL437407 -10.43 22.69 -11.07 7.69 

7 CHEMBL3952453 -10.42 23.16 -10.47 21.21 

8 CHEMBL1183361 -9.75 71.38 -10.42 23.12 

9 CHEMBL286733 -9.99 47.33 -10.39 24.1 

10 CHEMBL3186912 -9.74 72.17 -10.19 33.78 

11 CHEMBL2170731 -10.49 20.55 -9.77 69.39 

12 CHEMBL1940821 -10.27 29.61 -9.31 150.92 

13 CHEMBL3088181 -10.23 31.59 -9.92 53.21 

14 CHEMBL2170648 -10.23 31.7 -9.6 92.58 

15 CHEMBL3114783 -9.94 52.02 -9.21 178.68 

16 CHEMBL3114762 -9.8 65.66 -8.86 320.74 

17 CHEMBL1440899 -8.84 332.73 -9.24 169.63 

18 CHEMBL1897391 -8.75 384.92 -9.03 240.81 
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Figure 3.10. 3D presentations of the binding modes and 2D schemes of the chemical interactions of 

HDAC5 complexes: (a) docked pose of CHEMBL2114980 and (b) MD simulation snapshot (c) docked 

pose of CHEMBL217223 and (d) MD simulation snapshot. 
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Figure 3.11. 3D presentations of the binding modes and 2D schemes of the chemical interactions of 

HDAC9 complexes: (a) docked pose of CHEMBL2114980 and (b) MD simulation snapshot (c) docked 

pose of CHEMBL217223 and (d) MD simulation snapshot. 
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3.1.6. Physicochemical Properties Description 

Based on the admetSAR and SwissADME results, all the studied 18 compounds were 

found to obey Lipinski’s rule of 5 and were described as drug-like leads (Table 3.5). In 

drug discovery field, one violation of Lipinski’s rule of five is tolerated (Lipinski et al., 

2001). The capability of a drug to across the cell membranes of living body tissues (e.g., 

intestine) is described by the topological polar surface (TPSA) area, and is commonly 

used in the field of CADD (Pajouhesh & Lenz, 2005). The Moriguchi’s octanol water 

partition coefficients (MLogP) defines the hydrophilicity/hydrophobicity proportion of 

small molecules in an octanol/water solution which ought to be less than 4.15 (Moriguchi 

et al., 1992). Another important ADMET property is the measurement of the 

gastrointestinal permeability level of a given drug in human epithelial colorectal 

adenocarcinoma (Caco-2) (Shah et al., 2006). Caco-2 gastrointestinal permeability speed 

should be faster than 22 nm/s, and the aqueous solubility (LogS) level has to be > -5 

(Bergström & Larsson, 2018; Di & Kerns, 2016). 

Table 3.5. In silico AMDET properties prediction of the novel 18 compounds. 

# ChEMBL ID 
Lipinski 

#violations 

MW 

≤ 500 

HA 

≤ 

10 

HD 

≤ 5 

MLogP 

≤ 4.15 

TPSA 

≤ 140 

Caco-

2 

(cm/s) 

LogS 

> -5 

1 CHEMBL2114980 0 444.52 5 3 2.68 103.86 0.665 -3.60 

2 CHEMBL217223 0 475.51 6 4 3.4 132.31 0.910 -2.97 

3 CHEMBL391373 0 492.67 4 0 3.77 66.07 0.782 -3.79 

4 CHEMBL3290141 0 488.54 4 4 3.12 122.03 0.837 -3.56 

5 CHEMBL280713 0 437.45 7 1 2.84 103.02 0.792 -2.75 

6 CHEMBL437407 0 490.59 5 3 2.71 105.48 0.853 -3.45 

7 CHEMBL3952453 0 457.56 5 1 2.41 65.9 0.769 -2.86 

8 CHEMBL1183361 0 497.65 3 1 0.23 47.56 0.726 -3.73 

9 CHEMBL286733 0 486.63 5 2 3.31 75.81 0.777 -3.64 

10 CHEMBL3186912 1 473.58 4 2 4.33 55.81 0.728 -4.08 

11 CHEMBL2170731 0 431.52 5 2 3.39 71.7 0.491 -3.84 

12 CHEMBL1940821 1 440.51 6 6 2.23 104.98 0.882 -3.03 

13 CHEMBL3088181 0 473.48 7 3 1.13 135.26 0.897 -3.12 

14 CHEMBL2170648 1 494.51 6 3 4.25 99.28 0.856 -3.89 

15 CHEMBL3114783 0 497.52 5 3 2.25 99.35 0.822 -3.37 

16 CHEMBL3114762 0 483.49 5 3 2.06 99.35 0.799 -3.31 

17 CHEMBL1440899 0 491.53 5 0 3.01 59.99 0.678 -3.58 

18 CHEMBL1897391 0 416.5 5 0 3.17 76.47 0.568 -3.30 
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3.1.7. Pan-Assay Interference Compounds (PAINS) Filtration 

PAINS filtration showed that all of the top ranked 18 studied compounds have passed the 

filtration and were described as PAINS-free. 

3.1.8. Molecular Dynamics MD Simulation 

MD simulations were performed for the generated models M0014 and M0020 as well as 

their complexes with their corresponding known HDACis, DAC5-Rac26 and HDAC9-

TMP269. Moreover, the top ranked compounds, CHEMBL2114980 and 

CHEMBL217223 were also subjected to MD simulations in complexes with HDAC5 and 

HDAC9. Root mean square deviation (RMSD) was calculated for all systems to shed a 

light on the structural alterations during the MD simulations (Figure 3.12). HDAC5 and 

HDAC5-Rac26 reached their equilibrium stability around 20 ns of the MD run. HDAC5’s 

RMSD rose to 3.8 Å at 6 ns, and the protein showed sustained stability till the end with 

minor fluctuations between 2.6 Å and 3.9 Å. HDAC5-Rac26 complex’s RMSD also rose 

to 4.5 Å around 5 ns then decreased to 3.4 Å around 10 ns and continued its stability with 

small fluctuations between 4 Å and 5.3 Å. The RMSD of the HDAC9 structure steadily 

increased until 5.2 Å at 37 ns, and later decreased at 53 ns to 3.4 Å to remain stable with 

minor fluctuations from 57 ns to the end of the run (ranging between 3.4 Å and 4.6 Å). 

HDAC9-TMP269 system’s RMSD gradually increased until 34 ns to 5.2 Å, but then 

decreased at 43 ns to 4.6 Å and remained that way until the end of the run. These previous 

observations suggested that both the free modeled proteins and their HDACis complexes 

had achieved their equilibrium state and showed good structural stability. HDAC5-

CHEMBL2114980 and HDAC5-CHEMBL217223 complexes demonstrated rational 

structural stability throughout the MD simulations and, remarkably, they both displayed 

quite similar behavior from 60 ns till the end. HDAC9-CHEMBL217223 complex 

displayed a rise in the RMSD from 2 Å to 6 Å, but then decreased under 5 Å. Whereas 

the RMSD of the HDAC9-CHEMBL2114980 complex achieved its structural stability 

around the 50 ns and remained at 5.5 Å till the end of the MD run. 
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Figure 3.12. RMSD plots of (a) free HDAC5 and HDAC5 complex with the Rac26 known inhibitor, 

CHEMBL2114980, CHEMBL217223; (b) free HDAC9 and HDAC9 complex with the TMP269 known 

inhibitor, CHEMBL2114980, CHEMBL217223. 
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Root mean square fluctuation (RMSF) was calculated to investigate the flexibility of the 

amino acids in the active site and their interactions with the ligand during the MD 

simulation (Figure 3.13). Examining the RMSF plot deliver a great insight on the flexible 

parts of the protein. RMSF analysis of all studied systems showed slightly minor 

fluctuations over time. Increased fluctuated points in all systems reflect loop regions, 

which are known with their high flexibility. These loops are found to be far from the 

active sites, except for two points, Gly841 within HDAC5 and Gly791 in HDAC9, they 

are located near the entrance of the active site of the proteins. Both residues demonstrated 

moderate fluctuation manner. 

 

Figure 3.13. RMSF plots of (a) free HDAC5 and HDAC5 complex with the Rac26 known inhibitor, 

CHEMBL2114980, CHEMBL217223; (b) free HDAC9 and HDAC9 complex with the TMP269 known 

inhibitor, CHEMBL2114980, CHEMBL217223. 
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Radius of gyration (Rg) is another measurement that assesses the 3D structure 

compactness. Rg refers to the calculation of the mass-weighted root mean square distance 

of systems atoms from their center of mass (Davoudmanesh & Mosaabadi, 2018). Rg 

calculations of all systems were found to be consistent over time, which is harmonious 

with the observations from the RMSD and RMSF analysis (Figure 3.14). The Rg average 

score of the HDAC5-Rac26 and HDAC9-TMP269 systems was found to be 1.42 Å. 

While the Rg average scores of all other studied systems were found to be 1.26 Å. 

 

Figure 3.14. Radius of gyration (Rg) plots of (a) free HDAC5 and HDAC5 complex with the Rac26 

known inhibitor, CHEMBL2114980, CHEMBL217223; (b) free HDAC9 and HDAC9 complex with the 

TMP269 known inhibitor, CHEMBL2114980, CHEMBL217223. 
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Potential energy calculation is a valuable measurement to understand the system energy 

over time. The potential energy graphs proved that all the complexes were balanced and 

remained in their equilibrium state the whole time (Figure 3.15). The calculated average 

potential energy scores were as follows: free HDAC5 (-279857 kcal/mol); HDAC5-

Rac26 (-277260 kcal/mol); HDAC5-CHEMBL2114980 (-277260 kcal/mol); HDAC5-

CHEMBL217223 (-269160 kcal/mol); free HDAC9 (-210607 kcal/mol); HDAC9-

TMP269 (-201857 kcal/mol); HDAC9-CHEMBL2114980 (-201857 kcal/mol); and 

HDAC9-CHEMBL217223 (-201857 kcal/mol). 

 

Figure 3.15. Potential energy graphs of (a) free HDAC5 and HDAC5 complex with the Rac26 known 

inhibitor, CHEMBL2114980, CHEMBL217223; (b) free HDAC9 and HDAC9 complex with the 

TMP269 known inhibitor, CHEMBL2114980, CHEMBL217223. 
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Even though hydrogen bonds are relatively weak noncovalent bonds, they play an 

important role in the molecules structure stability of nearly all living systems (E. N. 

Baker, 2006). In the present study, hydrogen bonds number profiles were estimated over 

time for all studied systems (Figure 3.16). Including all complexes, at least a single H-

bond was formed and sustained throughout the MD simulation run. Relatively speaking, 

similar H-bond number profile was observed in the HDAC5/HDAC9-CHEMBL2114980 

complexes. HDAC5-CHEMBL217223 complex displayed less H-bond number profile 

compared to HDAC9-CHEMBL217223 complex. These observations suggest that 

neither the complex stability nor the ligand quality are influenced by the H-bond number 

profile throughout the MD simulation run. 

 

Figure 3.16. Plots of the number of hydrogen bonds in ligand-protein complexes: (a) HDAC5-

CHEMBL217223, (b) HDAC5-CHEMBL2114980, (c) HDAC9-CHEMBL217223, (d) HDAC9-

CHEMBL2114980. 
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3.1.9. Binding Free Energy (MM-PBSA) Calculations 

Binding free energy (MM-PBSA) calculations were carried out in order to additionally 

assess the systematics of the compounds binding to HDAC5 and HDAC9 proteins 

throughout the MD simulation (Table 3.6). Compound CHEMBL2114980 showed the 

highest binding energy value of -60.78 kcal/mol when it was calculated in complex with 

HDAC9, while it showed a binding energy value of -48.00 kcal/mol with HDAC5. On 

the other hand, compound CHEMBL217223 showed a higher binding energy value with 

HDAC5 (-48.97 kcal/mol) compared to HDAC9 (-16.20 kcal/mol). 

Table 3.6. Calculated binding free energy (MM-PBSA) of HDAC5 and HDAC9 complexes. 

Complex Binding Energy (kcal/mol) 

HDAC5-CHEMBL217223 -48.9711 ± 8.4823 

HDAC5-CHEMBL2114980 -48.0030 ± 8.8650 

HDAC9-CHEMBL217223 -16.2084 ± 11.821 

HDAC9-CHEMBL2114980 -60.7874 ± 9.3262 

3.2. STRUCTURE-BASED DRUG DESIGNING OF ISOFORM SELECTIVE 

CLASS IIA HDACS INHIBITORS 

3.2.1. Class IIa HDACs Structural and Sequence Alignment 

Analysis of the entire amino acid sequence of all individual members of class IIa HDACs 

showed that these residues are similar within the active sites of this family class (Figure 

2.2). Collectively, the overall sequence identity among this class of HDACs is 55.6% and 

sequences similarity is 71.5%. The catalytic sites among class IIa HDACs are highly 

conserved (Table 3.7). The highest conservation was seen between HDAC4 and HDAC5 

with sequence similarity and identity of 89.6% and 76.2% respectively. While the least 

conservation was observed between HDAC7 and HDAC9 with sequence similarity and 

identity of 79.9% and 67.1% respectively. Analysis of the structural alignment of class 

IIa HDACs revealed that lowest RMSD value was between HDAC5 and HDAC9 with 

0.311 Å. While the highest RMSD value was observed between HDAC5 and HDAC7 

with 0.79 Å (Table 3.8). Analysis of the phylogenetic tree of human class IIa HDACs 

showed that HDAC4 and HDAC7 descendant from the same ancestor. Also, HDAC4 
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represents the same ancestor for both HDAC5 and HDAC9 (Figure 2.3). This information 

might be helpful in the discovery of isoform selective inhibitors due to the minor variation 

among the enzymes’ active sites. 

Table 3.7. Comparative analysis of sequence similarity (SIM) and identity (IDN) among class IIa 

HDACs in percentage %. 

 
HDAC4 HDAC5 HDAC7 HDAC9 

SIM IDN SIM IDN SIM IDN SIM IDN 

HDAC4  89.6 76.2 83.6 71.8 87.2 73.4 

HDAC5 89.6 76.2  81.5 67.2 88.0 74.9 

HDAC7 83.6 71.8 81.5 67.2  79.9 67.1 

HDAC9 87.2 73.4 88.0 74.9 79.9 67.1  

 

Table 3.8. Comparative analysis of the structural superimpose of class IIa HDACs. RMSD (Å) 

calculations are shown in Blue cells. Overlapping amino acid residues are shown in GREEN. 

 HDAC4 HDAC5 HDAC7 HDAC9 

HDAC4  402 319 381 

HDAC5 0.53800  319 381 

HDAC7 0.77900 0.79000  319 

HDAC9 0.55100 0.31100 0.76700  

Hydrophobic surface illustrations of the active sites of class IIa HDAC proteins are 

contrasted in Figure 3.17. All individual members of class IIa HDACs have in common 

a relatively deep catalytic cavity, which is lined with hydrophilic amino acid residues 

close to the catalytic Zn2+ ion, and hydrophobic amino acid residues at the entrance of 

the biding pocket. Additionally, they share relatively more H-bond donor residues than 

H-bond acceptor residues covering in the catalytic pocket (Figure 3.18). 
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Figure 3.17. Hydrophobic surface illustrations of the active sites of class IIa HDAC proteins. The 

hydrophobicity degree varies from complete hydrophilicity (BLUE) to entirely hydrophobic (BROWN). 
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Figure 3.18. Hydrogen bonds surface illustrations of the active sites of class IIa HDAC proteins. H-bond 

acceptor residues are represented in GREEN, while H-bond donor residues are in PINK. 

3.2.2. Virtual Screening Results 

A total of fifteen compounds displayed potential selectivity towards their corresponding 

targets according to their calculated binding energy and estimated inhibitory constant (Ki) 

(Table 3.9). Five compounds were selective for HDAC4 over the rest of class IIa HDACs; 

Three compounds were found to be selective for HDAC5; Six compounds selective for 

HDAC7; and one selective compound for HDAC9. The compounds selectivity indices 
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are given in Table 3.10. To obtain the selectivity of a certain compound for specific 

HDAC member of the class IIa, the Ki of the same compound for the four members of 

the HDAC is sorted from the lowest to the largest, and the second-lowest Ki is divided 

by the first lowest one. For example, compound CHEMBL2177655 has shown a variety 

of Ki values among class IIa HDACs, HDAC4 = 0.00805 nM, HDAC5 = 35.73 nM, 

HDAC7 = 0.864 nM, and HDAC9 = 19.88 nM. In that case, Ki of HDAC7 was divided 

by the Ki of HDAC4, 0.864 ÷ 0.00805 = 107.32, which indicates that compound 

CHEMBL2177655 is preferentially selective for HDAC4 by 107~fold over HDAC7. 

Table 3.10 shows a detailed data about each compound Ki value and its selectivity for 

each member of the class IIa HDACs. 

Table 3.9. Calculated binding energy by AutoDock 4.2 of the hit compounds against each member of 

class IIa HDACs. HDAC4 selective compounds are in green color, HDAC5 selective compounds are in 

blue color, HDAC7 selective compounds are in orange color, and HDAC9 selective compound is in 

yellow color. 

# Compound ID 

HDAC4 HDAC5 HDAC7 HDAC9 

ΔG 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔG 

(kcal/mol) 

1 CHEMBL2177655 -15.14 -10.16 -12.36 -10.51 

2 CHEMBL3126309 -15.04 -12.74 -12.64 -11.94 

3 CHEMBL236510 -13.18 -11.93 -8.52 -11.7 

4 ZINC000095945790 -11.44 -10.49 -10.06 -10.31 

5 ZINC000001058982 -9.81 -8.98 -8.82 -8.93 

6 ZINC000033260361 -10.61 -11.81 -10.37 -9.83 

7 CHEMBL2426361 -10.01 -11.27 -9.63 -10.16 

8 CHEMBL529211 -8.6 -9.6 -7.85 -8.68 

9 CHEMBL1968496 -11.25 -9.59 -14.25 -9.91 

10 ZINC000009640741 -11.97 -11.07 -14.67 -11.17 

11 NSC 23217 -8.69 -7.42 -11.16 -8.22 

12 ZINC000019704978 -11.37 -10.76 -13.35 -10.91 

13 ZINC000514563218 -9.52 -9.75 -11.8 -9.81 

14 ZINC000674197814 -9.08 -9.61 -11.49 -9.78 

15 CHEMBL1761559 -7.16 -7.49 -5.93 -8.09 
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The top two ranked compounds that showed potential selectivity for HDAC4 over other 

HDACs are CHEMBL2177655 and CHEMBL3126309 (Figure 3.19). Compound 

CHEMBL2177655 was found to have the highest binding affinity among all studied 

compounds, with a binding energy of -15.14 kcal/mol and an inhibitory constant of 8.0 

pM (0.0080 nM). Compound CHEMBL2177655 revealed a potential selectivity for 

HDAC4 ranging from ~ 107 to 4400-fold compared to HDACs 5, 7 and 9. The second 

top-ranked compound, CHEMBL3126309 showed the second-highest affinity and 

selectivity for HDAC4, with a binding energy of -15.04 kcal/mol and an inhibitory 

constant of 9.4 pM (0.0094 nM). Compound CHEMBL3126309 displayed a promising 

selectivity for HDAC4 ranging from ~ 48 to 189-fold compared to HDACs 5, 7 and 9. 

 

Figure 3.19. Top two-ranked selective compounds for HDAC4. 

CHEMBL2177655 and CHEMBL3126309 compounds spanned the HDAC4 active site 

in very similar ways. They both interacted with the key amino acid residues in the 

catalytic site by several types of chemical interactions including hydrogen bonds, van der 

Waals interactions, attractive charge, π-π stacked, π-π T-shaped, π-alkyl, alkyl, π-cation. 

Both compounds interacted with the catalytic Zn2+ metal atom through their carboxyl 

groups by covalent bonds (Figure 3.20 and Figure 3.21). 
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Figure 3.20. 2D and 3D illustrations of CHEMBL2177655 bound to HDAC4 (a) after molecular docking 

study; (b) after MD simulation. 
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Figure 3.21. 2D and 3D illustrations of CHEMBL3126309 bound to HDAC4 (a) after molecular docking 

study; (b) after MD simulation. 
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Thorough molecular docking study identified three moderate HDAC5 isoform selective 

compounds, and the top two-ranked compounds are ZINC000033260361 and 

CHEMBL2426361 (Figure 3.22). Compound ZINC000033260361 bonded to HDAC5 

with a binding energy of -10.61 kcal/mol and an inhibitory constant (Ki) of 16.59 nM. In 

comparison to all class IIa HDACs, the ZINC000033260361 compound revealed a 

moderate selectivity for HDAC5 ranging between ~ 8 to 28-fold. On the other hand, 

compound CHEMBL2426361 was the second HDAC5 isoform selective compound 

which showed a binding energy of -10.01 kcal/mol and an inhibitory constant (Ki) of 

45.92 nM. Compound CHEMBL2426361 exhibited a moderate isoform selectivity for 

HDAC5 ranging from 7 to 16-fold over the rest of class IIa HDACs family. 

 

Figure 3.22. The top two-ranked selective compounds for HDAC5. 

Both compounds, ZINC000033260361 and CHEMBL2426361, extend over the catalytic 

channel of HDAC5 relatively in the same binding mode (Figure 3.23 and Figure 3.24). 

Both compounds interacted with the active amino acid residues within the binding pocket 

through different chemical interactions including salt bridge interaction, van der Waals 

interactions, hydrogen bonds, π-cation, π-sulfur interaction, alkyl, π-alkyl, amide-π 

stacked interactions. In addition, ZINC000033260361 compound had two distinctive 

interactions through its fluorobenzene group, a covalent bond with the catalytic Zn2+ ion, 

and a halogen interaction with Asp291 residue of HDAC5. 
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Figure 3.23. 2D and 3D schemes of ZINC000033260361 bound to HDAC5 (a) after molecular docking 

study; (b) after MD simulation. 
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Figure 3.24. 2D and 3D illustrations of CHEMBL2426361 bound to HDAC5 (a) after molecular docking 

study; (b) after MD simulation. 

 

The structure-based virtual screening identified six promising HDAC7 enzyme selective 

drug-like compounds that showed a diversity in the binding affinity level. According to 

the binding affinity, the top two compounds are ZINC000009640741 and 

CHEMBL1968496 (Figure 3.25). The first top-ranked molecule, ZINC000009640741, 
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demonstrated the highest binding affinity towards HDAC7 with the lowest binding 

energy (-14.67 kcal/mol) and has an inhibitory constant of 0.0175 nM (17.5 pM). The 

second compound, CHEMBL1968496, showed a binding energy with a score of -14.25 

kcal/mol and an inhibitory constant Ki of 0.036 nM (36 pM). Compound 

ZINC000009640741 favorably bonded to HDAC7 with a selectivity index ranging 

between ~ 95 to 438-fold compared to the rest of the class IIa HDACs. Whereas 

compound CHEMBL1968496 preferentially expressed higher selectivity towards 

HDAC7 compared to HDACs 4, 5, and 9 (about 156 to 2616-fold). 

 

Figure 3.25. The top two-ranked HDAC7 selective compounds. 

Both compounds, ZINC000009640741 and CHEMBL1968496, spanned the deep 

catalytic tunnel of the active site of HDAC7, where they interacted with most of the key 

amino acid residues in the active site. ZINC000009640741 compound was found to be 

interacted with Zn2+ ion through its hydroxyl group by a covalent bond, while compound 

CHEMBL1968496 was covalently bonded to the Zn2+ ion through its carboxyl group 

(Figure 3.26 and Figure 3.27). The common prevalent interactions of these two 

compounds included hydrogen bonds, van der Waals interactions, π-π stacked, π-π T-

shaped, π-alkyl, alkyl, and amide-π stacked interactions. π-donor hydrogen bond was 

seen specifically in ZINC000009640741 compound with Gly339, and a π-anion 

interaction was formed between the benzene ring of CHEMBL1968496 and the Asp298 

residue. 
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Figure 3.26. 2D and 3D presentations of ZINC000009640741 bound to HDAC7 (a) after molecular 

docking study; (b) after MD simulation. 
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Figure 3.27. 2D and 3D illustrations of CHEMBL1968496 bound to HDAC7 (a) after molecular docking 

study; (b) after MD simulation. 
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Lastly, VS application identified compound CHEMBL1761559, which displayed a 

binding energy of -8.09 kcal/mol and an inhibitory constant (Ki) of 1160 nM against 

HDAC9 (Figure 3.28). CHEMBL1761559 covered the binding pocket of HDAC9 and 

interacted with several active residues within the catalytic pocket such as two hydrogen 

bonds with His199 and Phe169, and a π-π T-shaped interaction with Phe19. A π-cation 

interaction was seen between the Zn2+ ion and the benzene ring of the compound. 

Additionally, other significant interactions were observed with several amino acid 

residues in the active site including hydrogen bonds, van der Waals interactions, π-alkyl, 

and alkyl interactions (Figure 3.29). CHEMBL1761559 compound exhibited modest 

selectivity for HDAC9 in comparison to the remaining class IIa members with a 

selectivity index ranging from ~ 3 to 38-fold. 

 

Figure 3.28. The 2D structure of compound CHEMBL1761559. 
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Figure 3.29. 2D and 3D illustrations of CHEMBL1761559 bound to HDAC9 (a) after molecular docking 

study; (b) after MD simulation. 
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3.2.3. ADMET Profile and PAINS Filtration 

The predicted ADMET profile of the 15 top-ranked compounds from the virtual 

screening is given in Table 3.11 along with their drug-likeness properties. These 

properties were predicted using the admetSAR and SwissADME web servers. According 

to Lipinski’s rule of 5, oral drugs must obey at least three of four properties: the molecular 

wight should not exceed 500 Dalton; the total number of hydrogen bond acceptors 

(including oxygen and nitrogen) must not exceed 10; the total number of hydrogen bond 

donors (including -OH and -NH) should not exceed 5; and the octanol-water partition 

coefficient (LogP) must not be more than 5 (or 4.15 as in Moriguchi model MLogP) 

(Lipinski et al., 2001; Moriguchi et al., 1992). In addition, other important ADMET 

properties including water/aqueous solubility (LogS) should be > -5; the topological polar 

surface area (TPSA) must be less or equal to 140 Å2; and human colorectal 

adenocarcinoma cells (Caco-2) Caco-2 permeability (cm/s) must be faster than 22 nm/s. 

All the 15 compounds obeyed the Lipinski’s rule of five except for two compounds 

ZINC000033260361 and NSC 23217 where they had a MLogP more than 4.15. Even 

though, it is tolerated to have one violation of the rule of five for oral drugs according to 

Lipinski’s rule (Lipinski et al., 2001). Although compounds ZINC000514563218 and 

ZINC000674197814 exhibited a slightly increase in the TPSA with a value of 145.2 Å2, 

rational intestinal permeability can still be seen in drugs with a TPSA ranging between 

140 and 150 Å2 (Lipinski, 2003). The prediction of the Caco-2 permeability and the water 

solubility for all the 15 compounds were found to be within the normal range. 

Furthermore, the 15 top-ranked compounds have been proved to be PAINS-free 

compound. 
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Table 3.11. Physicochemical properties of the 15 hits, including ADMET profiles and Lipinski’s rule of 

five parameters. 

 Compound 
Lipinski 

violations 
MW HA HD MLogP TPSA HIA Caco-2 WS 

1 CHEMBL2177655 0 412.43 5 2 3.61 91.67 0.9943 0.857 -3.008 

2 CHEMBL3126309 0 488.55 5 2 2.47 112.16 0.8998 0.7953 -3.63 

3 CHEMBL236510 0 485.62 4 2 3.27 76.64 0.9259 0.7631 -3.08 

4 ZINC000095945790 0 489.48 5 2 2.73 117.16 0.9196 0.821 -3.271 

5 ZINC000001058982 0 492.45 7 1 4.05 86.22 0.9268 0.6646 -3.616 

6 ZINC000033260361 1 498.59 5 0 5.4 66.63 0.9845 0.7621 -3.379 

7 CHEMBL2426361 0 488.66 4 0 3.39 47.1 0.993 0.798 -3.107 

8 CHEMBL529211 0 452.59 2 3 3.35 54.53 0.9846 0.6446 -2.884 

9 ZINC000009640741 0 475.56 4 1 2.48 109.16 0.9701 0.7725 -3.5 

10 CHEMBL1968496 0 415.44 6 3 0.56 99.77 0.8145 0.9147 -2.998 

11 NSC 23217 1 404.53 0 2 5.37 56.15 0.964 0.5672 -4.616 

12 ZINC000019704978 0 448.52 4 2 3.52 86.8 0.9904 0.8016 -2.739 

13 ZINC000514563218 0 484.47 8 1 2.6 145.2 0.9771 0.8338 -3.376 

14 ZINC000674197814 0 470.44 8 1 1.84 145.2 0.9771 0.8404 -3.277 

15 CHEMBL1761559 0 464.52 6 1 2.6 93.88 0.9956 0.8111 -2.754 

MW: Molecular weight, Da. 

HA: Total number of H-bond acceptors, O and N. 

HD: Total number of H-bond donors, OH and NH. 

TPSA: Topological polar surface area, Å2. 

HIA: Human intestinal absorption. 

WS: Water solubility, LogS 

3.2.4. Molecular Dynamics MD Simulation 

• RMSD analysis: The root mean square deviation (RMSD) of the HDAC4 apo-

protein (inhibitor-free), HDAC4-hydroxamic acid inhibitor (known inhibitor), HDAC4-

CHEMBL2177655, and HDAC4-CHEMBL3126309 profiles have been evaluated 

throughout the 100 ns MD simulations (Figure 3.30 (a)). HDAC4 apo-protein showed an 

initial increase till 20 ns around 4 Å, then remained stable between 3 and 3.5 Å till the 

end of the MD simulation. HDAC4-hydroxamic acid complex exhibited a higher 

fluctuation compared to the apo-protein, where the RMSD fluctuated between 2 and 5 Å 

till the 64 ns and thereafter displayed stable trend around 5 Å. The RMSD of the HDAC4-

CHEMBL2177655 complex at first rose to 4.7 Å around 17 ns then gradually fell down 

to 4 Å around 55 ns and thereafter remained stable around 4.1 Å until the end of the MD 

simulation. Similarly, the RMSD of the HDAC4-CHEMBL3126309 ascended to 4.8 Å 

till 13 ns and then fell down to 3.7 Å near 62 ns and remained fluctuating between 3.5 

and 4.2 Å until the end of the 100 ns run. 

RMSD profiles were calculated during the 100 ns MD simulations for the HDAC5 apo-

protein (ligand-free), HDAC5-Rac62 (known inhibitor), HDAC5-ZINC000033260361, 
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and HDAC5-CHEMBL2426361 (Figure 3.30 (b)). HDAC5 apo-protein RMSD was 

observed to slowly rose up to 3.4 Å around 12 ns and afterward it showed steady stable 

nature with an average RMSD of 3.2 Å to 100 ns. The average RMSD of HDAC5-

CHEMBL3110016 (Rac-26 known inhibitor) was found to be 4.5 Å between the 22 ns 

and until the end of the MD run. The RMSD of HDAC5-ZINC000033260361 and 

HDAC5-CHEMBL2426361 complexes were well converged and exhibited relatively 

comparable stability after the 32 ns with an average of 4.6 Å and 4.4 Å, respectively. 

The RMSD of the HDAC7 apo-protein, HDAC7-Trichostatin A, HDAC7-

ZINC000009640741, and HDAC7-CHEMBL1968496 were analyzed after the MD run 

and presented in Figure 3.30 (c). Remarkably, all HDAC7 complexes retained their 

steady-stable equilibrium below 3.5 Å throughout the MD simulation. The RMSD of the 

free HDAC7 protein initially increased to 3.2 Å around 25 ns and later kept slowly 

decreasing through time to reach 2.1 Å around 100 ns. Both HDAC7-

ZINC000009640741 and HDAC7-CHEMBL1968496 systems were shown to display 

similar minor fluctuation and stability state after the 47 ns with an average RMSD of 3.3 

Å and 3.1 Å, respectively. 

Lastly, the RMSD analysis was performed for the free HDAC9 protein, HDAC9-

TMP269 (known inhibitor), and HDAC9-CHEMBL1761559 during the 100 ns MD run 

(Figure 3.30 (d)). The free HDAC9 RMSD was seen to rose up to 5.2 Å around 37 ns and 

then fluctuated between 3.4 Å and 4.6 Å during the 53 and 57 ns and thereafter remained 

in equilibrium state until the end of the MD run. HDAC9-TMP269 RMSD profile was 

observed to gradually elevated up to 5.2 Å around 34 ns and then decreased to 4.6 Å over 

43 ns and remained in its equilibrium state until the end. The RMSD of HDAC9-

CHEMBL1761559 preliminary increased to 5.5 Å until 43 ns and then stabilized until 

the end of the 100 ns with an average RMSD of 5.2 Å. 
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Figure 3.30. The root mean squared deviation (RMSD) plots of (a) HDAC4 systems; (b) HDAC5 

systems; (c) HDAC7 systems; and (d) HDAC9 systems. 

• RMSF analysis: In order to fully assess the dynamics of the protein’s backbone, 

the root mean square fluctuation (RMSF) profile was analyzed for all amino acids 

throughout the MD simulation. RMSF helps in describing local variations during the MD 

run along the protein sequence. During MD simulations, higher RMSF profiles are 

presented by higher flexible regions within the protein such as loops. High stable regions 

of the proteins are indicated by the low RMSF values and highly flexible atoms are 

located within loops regions. RMSF analysis of HDAC4 apo-protein, HDAC4-

hydroxamic acid, CHEMBL2177655, and HDAC4-CHEMBL3126309 are shown in 

Figure 3.31 (a). The RMSF of the HDAC5 apo-protein (ligand-free), HDAC5-Rac62 

(known inhibitor), HDAC5-ZINC000033260361, and HDAC5-CHEMBL2426361 are 

illustrated in Figure 3.31 (b). The RMSF of the HDAC7 apo-protein (free protein), 

HDAC7-Trichostatin A, HDAC7-ZINC000009640741, and HDAC7-CHEMBL1968496 
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are shown in Figure 3.31 (c). The RMSF profile of the free HDAC9 protein, HDAC9-

TMP269 (known inhibitor), and HDAC9-CHEMBL1761559 during the 100 ns MD runs 

are presented in Figure 3.31 (d). The highest peaks in the RMSF plots represent the loop 

regions that are known for their high flexibility. These regions include the following 

amino acid residues: HDAC4 (Leu17-Gly36, Thr81, Asn82, Gln87-Leu94, and Phe102-

Ile117); HDAC5 (Lue19-Gly36, Thr81-Pro83, Lys88-Leu94, and Lys101-Val118); 

HDAC7 (Leu48-Ala64 and Thr110-Ser131); HDAC9 (Lue19-Gly36, Thr81, Asn82, 

Lys88-Leu94, and Lys101-Ile118). 

 

Figure 3.31. The root mean squared fluctuation (RMSF) plots of (a) HDAC4 systems; (b) HDAC5 

systems; (c) HDAC7 systems; and (d) HDAC9 systems. 
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• Radius of gyration (Rg) analysis: Analysis of the compactness level of a protein 

is useful to fully understand the protein folding level. This analysis is denoted by the 

radius of gyration (Rg). Higher degree of Rg describes higher flexibility of the protein, 

while lower level of Rg implies less flexibility. Furthermore, steady level of Rg indicates 

firmly folded protein, whereas changes in Rg values refer to alteration in protein folding. 

The Rg of HDAC4 systems seemed to be stable throughout the MD run with average 

values of 1.37 Å for both the apo-protein and HDAC4-hydroxamic acid complex, 1.27 Å 

for HDAC4-CHEMBL2177655, and 1.38 Å for HDAC4-CHEMBL3126309 (Figure 

3.32 (a)). The Rg profile of all HDAC5 systems were also remained stable during the 100 

ns MD simulations with average Rg of 1.28 Å for the apo-protein, 1.42 Å for the HDAC5-

Rac26, HDAC5-ZINC000033260361, and HDAC5-CHEMBL2426361 (Figure 3.32 

(b)). All systems of HDAC7 were found to be stable throughout the MD simulations over 

the 100 ns run time with an average Rg value of 1.37 Å for the apo-protein, HDAC7-

Trichostatin A, and HDAC7-ZINC000009640741, whereas the Rg of HDAC7-

CHEMBL1968496 complex was found to be 1.43 Å (Figure 3.32 (c)). Lastly, the average 

Rg value of the apo-protein of HDAC9 was found to be 1.26 Å, while the average Rg 

value for HDAC9-TMP269 and HDAC9-CHEMBL1761559 was 1.42 Å (Figure 3.32 

(d)). All HDAC9 systems remained stable over time. 
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Figure 3.32. The radius of gyration (Rg) plots of (a) HDAC4 systems; (b) HDAC5 systems; (c) HDAC7 

systems; and (d) HDAC9 systems. 

• Potential energy profile: The potential energy measurement is beneficial in 

validating the energy consistency and stability during the MD simulations. Herein, the 

total energy is plotted as potential energy versus run time, and all studied systems proved 

to be energetically stable throughout the MD run (Figure 3.33). 
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Figure 3.33. The potential energy plots of (a) HDAC4 systems; (b) HDAC5 systems; (c) HDAC7 

systems; and (d) HDAC9 systems. 

• Number of hydrogen bonds: In all living systems, the molecular interactions are 

highly influenced by the presence of hydrogen bonds. Hydrogen bonds are crucial in 

regulating the changes in the secondary structures that in turn influence the protein-ligand 

interactions. During MD simulation, proteins can be found in different conformations 

mimicking real biological environments. Each of these conformations may provide a 

different protein-ligand interaction. Thus, the number of hydrogen bonds formed 

throughout the MD simulation was calculated for the selected isoform selective 

compounds (Figure 3.34). In HDAC4-CHEMBL2177655 complex, the maximum 
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number of H-bonds formed was found to be 5 during the MD simulation. In the first 19 

ns, many conformations showed 3 H-bonds, and less showed 4 H-bonds. The majority of 

the conformations showed two hydrogen bonds (Figure 3.34 (a)). On the other hand, 

HDAC4-CHEMBL3126309 showed at most 3 H-bonds during the simulation (Figure 

3.34 (a)). Most of the conformations showed 1 H-bonds and about 60% showed 2 H-

bonds. HDAC5-ZINC000033260361 complex showed at most 4 H-bonds in few 

conformations and more two H-bonds after the first 6 ns of the simulation. It also had at 

least 1 H-bond in most of the conformations (Figure 3.34 (b)). The greatest number of 

conformations in HDAC5-CHEMBL2426361 complex showed 1 H-bonds, and one 

conformation with 3 H-bonds (Figure 3.34 (b)). The largest number of H-bonds seen in 

HDAC7-ZINC000009640741 complex was 3 in one conformation and the average 

number of H-bonds formed was found to be 2 (Figure 3.34 (c)). HDAC7-

CHEMBL1968496 complex showed one conformation with 4 H-bonds, and many with 

3 H-bonds in the first 53 ns. In addition, most of the conformations formed 2 H-bonds 

during the first 57 ns of the simulation, and thereafter, the complex retained in average 1 

H-bond till the end of the simulation (Figure 3.34 (c)). Lastly, HDAC9-

CHEMBL1761559 complex formed up to 3 H-bonds in several conformations during the 

simulation and consisted of at least 1 H-bond over time (Figure 3.34 (d)). 
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Figure 3.34. Number of hydrogen bonds profile of (a) HDAC4 complexes; (b) HDAC5 complexes; (c) 

HDAC7 complexes; and (d) HDAC9 complex. 

3.2.5. Binding Free Energy (MM-PBSA) Calculations 

CaFE tools were used in the present study to calculate average free binding energy of the 

studied isoform selective compounds (Table 3.12). The tools calculate the free binding 

energy average using the MM-PBSA method in addition to the standard deviation/error 

for each protein-ligand complex. The binding energy represents the interaction between 

the protein and the ligand (e.g., the released energy throughout the formation of the 

bonds). Higher binding affinity between the ligand and protein complex is identified by 

lesser binding energy. The total binding energy is a summation of electrostatic, van der 

Waals, SASA and polar solvation energy. 
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Table 3.12. Calculated binding free energy (MM-PBSA) of the selected isoform HDACs selective 

complexes. 

Complex Binding Energy (kcal/mol) 

HDAC4-CHEMBL2177655 -31.3569 ± 20.17 

HDAC4-CHEMBL3126309 -21.4164 ± 6.996 

HDAC5-ZINC000033260361 -21.0986 ± 5.264 

HDAC5-CHEMBL2426361 -55.2850 ± 8.694 

HDAC7-ZINC000009640741 -17.4562 ± 13.00 

HDAC7-CHEMBL1968496 -56.7090 ± 6.336 

HDAC9-CHEMBL1761559 -27.2031 ± 3.478 

3.3. LIGAND-BASED PHARMACOPHORE MODELING FOR DESIGNING OF 

ISOFORM SELECTIVE HDAC5 AND HDAC9 INHIBITORS 

3.3.1. Generated Pharmacophore Hypotheses 

The 10 generated pharmacophore models based on HDAD5 known inhibitors comprise 

the same five features: 1 hydrophobic (aromatic/aliphatic); 1 hydrogen bond donor; and 

3 hydrogen bond acceptor groups (Figure 3.35). Among the generated hypotheses, Hypo1 

showed the top rank value (Table 3.13) and proved the highest GH score (0.86) and 

enrichment factor (10.26) (Table 3.14). The five pharmacophore features of Hypo1 were 

found to be well mapped onto the following HDAC5 known inhibitors that were included 

in the training set: LMK235, Chimera 4, HPB, R306465, Cudc-101, Dacinostat, 

Vorinostat, T009, Trichostatin A, Marbostat, Tubastatin A, ST3049, Tubacin, ST3710. 

The 3D database search against the Hypo1 retrieved a total of 7,996 compounds, that 

showed fit value of 3 or more and met the geometric constrictions of Hypo1 and well 

mapped onto the hypothesis with their unique scaffolds. 



 

137 

 

 

Figure 3.35. 14 of selected HDAC5 known inhibitors from the training set mapped onto the generated 

pharmacophore hypothesis Hypo1. 
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Table 3.13. Common features of the 10 generated pharmacophore hypotheses for the HDAC5 known 

inhibitors. 

Hypotheses Features Rank Max. Fit 

1 HDAAA 256.83 5 

2 HDAAA 246.53 5 

3 HDAAA 246.00 5 

4 HDAAA 245.70 5 

5 HDAAA 244.02 5 

6 HDAAA 243.54 5 

7 HDAAA 242.87 5 

8 HDAAA 242.79 5 

9 HDAAA 241.73 5 

10 HDAAA 241.09 5 

H: hydrophobic (aromatic/aliphatic); D: hydrogen bond donor; A: hydrogen bond acceptor. 

Table 3.14. Guner-Henry scoring method results for validating the 10 generated pharmacophore 

hypotheses based on the HDAC5 known inhibitors. 

Hypotheses D A Ht Ha A% Y% E GH 

1 231 21 15 14 66.66 93.33 10.26 0.862 

2 231 21 16 13 61.90 81.25 8.93 0.753 

3 231 21 18 14 66.66 77.77 8.55 0.735 

4 231 21 18 14 66.66 77.77 8.55 0.735 

5 231 21 15 13 61.90 86.66 9.53 0.797 

6 231 21 21 14 66.66 66.66 7.33 0.644 

7 231 21 15 13 61.90 86.66 9.53 0.797 

8 231 21 18 14 66.66 77.77 8.55 0.735 

9 231 21 17 14 66.66 82.35 9.05 0.773 

10 231 21 19 13 61.90 68.42 7.52 0.648 

D: the sum of the compounds presents in the decoy set. 

A: the sum the of the active compounds in the decoy set. 

Ht: the total number of the hits within the decoy set. 

Ha: the total number of the active compounds shown in the hit list. 

A%: the ratio of the active compounds within the hits list. 

Y%: the ratio of the active compounds identified by the pharmacophore model from the decoy set. 

E: the enrichment factor. 

GH: the goodness of hit. 

The other 10 generated pharmacophore hypotheses based on HDAD9 known inhibitors 

consist of several features: ring aromatic, hydrophobic (aromatic/aliphatic), hydrogen 

bond donor; and hydrogen bond acceptor groups. Although Hypo2 is statistically ranked 

as the second (Table 3.15), it exhibited the highest GH score (0.87) and enrichment factor 

(10.13) (Table 3.16). The four generated pharmacophore features of Hypo2 include: 1 
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ring aromatic; 1 hydrophobic (aromatic/aliphatic); and 2 hydrogen bond acceptor groups. 

The following four HDAC9 known inhibitors form the training set were found to be well 

mapped onto Hypo2: BRD4354, BDBM191640, BDBM191641, and TMP269 (Figure 

3.36). A total of 21,422 compounds were retrieved from the 3D database search and 

showed 3 or more fit value and fitted the geometric constrictions of Hypo2 and well 

represented onto the hypothesis with their characteristic scaffolds. 

Table 3.15. Common features of the 10 generated pharmacophore hypotheses for the HDAC9 known 

inhibitors. 

Hypotheses Features Rank Max. Fit 

1 RHAA 176.23 4 

2 RHAA 173.68 4 

3 RHAA 169.77 4 

4 RHAA 169.26 4 

5 RHAA 167.30 4 

6 HHDA 166.70 4 

7 RHAA 164.71 4 

8 RHAA 163.55 4 

9 HHAA 162.50 4 

10 RHAA 162.43 4 

R: aromatic ring; H: hydrophobic (aromatic/aliphatic); D: hydrogen bond donor; A: hydrogen bond 

acceptor. 

Table 3.16. Guner-Henry scoring method results for validating the 10 generated pharmacophore 

hypotheses based on the HDAC9 known inhibitors. 

Hypotheses D A Ht Ha A% Y% E GH 

1 231 21 18 15 71.42 83.33 9.166 0.792 

2 231 21 16 15 71.42 93.75 10.31 0.877 

3 231 21 18 16 76.19 88.88 9.777 0.848 

4 231 21 19 15 71.42 78.94 8.684 0.755 

5 231 21 19 15 71.42 78.94 8.684 0.755 

6 231 21 35 18 85.71 51.42 5.657 0.551 

7 231 21 37 19 90.47 51.35 5.648 0.558 

8 231 21 20 15 71.42 75.00 8.250 0.723 

9 231 21 32 17 80.95 53.12 5.843 0.557 

10 231 21 16 14 66.66 87.50 9.625 0.815 

D: the sum of the compounds presents in the decoy set. A: the sum the of active compounds in the decoy 

set. Ht: the total number of the hits within the decoy set. Ha: the total number of the active compounds 

shown in the hit list. A%: the ratio of the active compounds within the hits list. Y%: the ratio of the active 

compounds identified by the pharmacophore model from the decoy set. E: the enrichment factor. GH: the 

goodness of hit. 
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Figure 3.36. Four of selected HDAC9 known inhibitors from the training set mapped onto the generated 

pharmacophore hypothesis Hypo2. 

3.3.2. Molecular Docking Study 

The molecular docking analysis revealed a total of 3 top-ranked isoform selective 

compounds for each of HDACs 5 and 9 (Table 3.17). All six compounds were well 

mapped onto their respective pharmacophore hypothesis and their fit values are shown in 

Figure 3.37.  
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Table 3.17. Top ranked compounds with their calculated binding energy using QuickVina 2.0. Selective 

isoform compounds for HDAC5 are highlighted in green, and selective isoform compounds for HDAC9 

are highlighted in yellow. 

# Compound ID 

HDAC4 HDAC5 HDAC7 HDAC9 

ΔG 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔG 

(kcal/mol) 

1 ZINC000257282664 -7.4 -8.9 -7.8 -7.7 

2 ZINC000008918470 -7.6 -8.9 -7.6 -7.6 

3 ZINC000035354144 -7.1 -8.1 -6.5 -7 

4 ZINC000016012342 -9.2 -8.7 -8.8 -10.3 

5 ZINC000020942817 -8.1 -8.1 -7.3 -9.3 

6 ZINC000001264757 -6.8 -7 -6.7 -8 

 

 

Figure 3.37. The top six selective inhibitors and their mapping onto their respective pharmacophore 

hypothesis. (a) HDAC5 selective inhibitors mapped onto Hypo1. (b) HDAC9 selective inhibitors mapped 

onto Hypo2. 
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The top two HDAC5 selective compounds, ZINC000257282664 and 

ZINC000008918470 (Figure 3.38) exhibited the higher binding affinity toward HDAC5 

and lowest binding energy with a score of -8.9 kcal/mol and a predicted inhibitory 

constant (Ki) of 294 nM for both compounds (Table 3.17). Both compounds proved to 

have lower binding energies toward HDAC5 compared to the reference known inhibitor 

used in this study, the LMK235, which showed a binding energy of -6.8 kcal/mol. 

 

 

Figure 3.38. The two top-ranked HDAC5 selective inhibitors. 

Even though these two compounds are not structurally similar to most HDACs known 

inhibitors with their distinctive zinc binding groups, they both well spanned in the active 

site of HDAC5. ZINC000257282664 compound was found to be bonded to the active site 

via several key interactions including five hydrogen bonds with Arg155, His159, Phe169, 

Gly331 and Gly332; a π-sulfur interaction with Cys170; a π-π stacked interaction with 

Phe169; two π-alkyl interactions with Pro156 and Pro157 in addition to many van der 

Waals interactions (Figure 3.39). Similarly, binding mode analysis of 

ZINC000008918470 compound revealed several important chemical interactions with 

HDAC5 including seven hydrogen bonds with Arg37, Arg155, Pro157, His159, His160, 

Asp291 and Gly331; a π-π stacked interaction with Phe228; two π-alkyl interactions with 

Phe169; an alkyl interaction with Pro156 and other several van der Waals interactions 

(Figure 3.40). The catalytic zinc atom was observed to be bonded to both compounds via 

van der Waals interaction. 
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Figure 3.39. 3D and 2D presentations of the ZINC000257282664 compound interaction with HDAC5 (a) 

after molecular docking; and (b) after MD simulation. 
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Figure 3.40. 3D and 2D presentations of the ZINC000008918470 compound interaction with HDAC5 (a) 

after molecular docking; and (b) after MD simulation. 

The molecular docking study showed ZINC000016012342 and ZINC000020942817 

compounds (Figure 3.41) with the highest binding affinities toward HDAC9 and with the 

lowest binding energies of -10.3 kcal/mol and -9.3 kcal/mol, respectively (Table 3.17). 

The predicted inhibitory constants (Ki) of ZINC000016012342 and ZINC000020942817 
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compounds were found to be of 27.64 nM and 149 nM, respectively. Interestingly, both 

top-ranked compounds displayed lower binding energies in comparison to the reference 

known inhibitor (BRD4354), which displayed a binding energy of -7.3 kcal/mol. 

 

Figure 3.41. The two top-ranked HDAC9 selective inhibitors. 

ZINC000016012342 binding mode was found to be well fitted into the catalytic pocket 

of HDAC9 with the following significant interactions: one hydrogen bond with Arg155, 

π-π stacked interaction with Phe169 and one π-π T-shaped interaction with Phe169 as 

well, and many other van der Waals interactions. The catalytic zinc metal atom was not 

seen involved in any chemical interactions with the ZINC000016012342 compound 

(Figure 3.42). ZINC000020942817 compound was perfectly spanned into the HDAC9 

active site and showed several prominent interactions with the key amino acid residues 

including hydrogen bonds with Arg37 and Asp291; π-cation interaction with Arg39; π-

alkyl interaction with Pro157, Phe169 and His199; π-π T-shaped interaction with His199; 

π-π stacked interaction with Phe228; van der Waals interaction with the catalytic zinc 

atom as well as many other amino acid residues (Figure 3.43). 
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Figure 3.42. 3D and 2D presentations of the ZINC000016012342 compound interaction with HDAC9 (a) 

after molecular docking; and (b) after MD simulation. 
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Figure 3.43. 3D and 2D presentations of the ZINC000020942817 compound interaction with HDAC9 (a) 

after molecular docking; and (b) after MD simulation. 

 

In 2008, Bieliauskas and Pflum demonstrated the selectivity index of many different 

HDACs known inhibitors in their study by comparing the inhibition constant of a 

particular HDAC protein to other HDAC members (Bieliauskas & Pflum, 2008). Thus, 
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the selection process of the HDAC-selective inhibitors in the present study was inspired 

by Bieliauskas and Pflum work. This was achieved by comparing the value of the 

inhibition constant of a particular inhibitor for a selected HDAC to other inhibition 

constants of the same inhibitor for other HDAC members. The following formula was 

applied to obtain the selectivity indices (Equation 3.1), where “x” refers to a selected 

compound: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 "x" 𝑓𝑜𝑟 𝐻𝐷𝐴𝐶5 𝑜𝑟 9 =
𝐾𝑖 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝐻𝐷𝐴𝐶𝑠 𝑖𝑠𝑜𝑓𝑜𝑟𝑚

𝐾𝑖  𝑜𝑓 𝐻𝐷𝐴𝐶5 𝑜𝑟 9
 (3.1) 

The selectivity indices of HDAC5 and HDAC9 are given in Table 3.18. 

ZINC000257282664 compound showed a potential selectivity toward HDAC5 ranging 

between 7 and 13-fold compared to other members of class IIa HDACs. 

ZINC000008918470 compound displayed a ~9-fold isoform selectivity for HDAC5 over 

all members of class IIa. ZINC000016012342 compound revealed promising selectivity 

for HDAC9 ranging between ~7 and 15-fold over the other class IIa HDAC members. 

Lastly, ZINC000020942817 compound displayed a ~8 to 30-fold isoform selectivity for 

HDAC9 compared to the rest of the class IIa HDACs. 

Table 3.18. Selectivity indices of class IIa HDACs. Inhibition constant of one HDAC is compared to the 

closest inhibition constant of other HDACs for the same inhibitor. 

 HDAC4 HDAC5 HDAC7 HDAC9 Selectivity Index Selectivity 

Compounds 

𝐾𝑖
4 

(nM) 

𝐾𝑖
5 

(nM) 

𝐾𝑖
7 

(nM) 

𝐾𝑖
9 

(nM) 

𝐾𝑖
4

𝐾𝑖
5൘  

𝐾𝑖
7

𝐾𝑖
5൘  

𝐾𝑖
9

𝐾𝑖
5൘   

ZINC000257282664 3713 294 1888 2236 13 7 8 HDAC5/HDAC7 

ZINC000008918470 2648 294 2648 2648 9 9 9 HDAC5/All 

ZINC000035354144 6164 1137 16989 7299 5 15 6 HDAC5/HDAC4 
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ZINC000016012342 177 412 348 27.64 7 15 13 HDAC9/HDAC4 

ZINC000020942817 1137 1137 4396 149 8 8 30 HDAC9/HDAC4 

ZINC000001264757 10233 7299 12117 1347 8 5 10 HDAC9/HDAC5 

3.3.3. Drug-Likeness Prediction and PAINS Filtration 

Table 3.19 shows the physicochemical and drug-likeness properties of the isoform 

selective compounds. All the six selected compounds were found to be within the 

acceptable reference of oral drugs and thus can be classified as drug-like compounds. 
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These compounds obeyed the famous Lipinski’s rule of five, which states that oral drugs 

must have a molecular wight (MW) of 500 Da or less, the octanol-water partition 

coefficient (LogP) should not be more than 5, the total number of hydrogen bond donors 

should not be more than 5, and the total number of hydrogen acceptors must not be more 

than 10. Violating two or more of the previous criteria mostly result in poor permeable 

drugs (Lipinski et al., 2001). According to the collected properties of 90% of 1,700 oral 

drugs, Di and Kerns proposed the following criteria for identifying drug-like compounds: 

the water/aqueous solubility (LogS) should be larger than -5.7, the permeability rate in 

Caco-2 cell line must be faster than 22 nm/s, and lastly, the total number of the primary 

metabolites must not exceed 7 (Di & Kerns, 2016). The topological polar surface area 

(TPSA) should not be more than 140 Å2. Moreover, the selected six compounds were 

found to be PAINS free compounds. 

Table 3.19. The drug-likeness and the physicochemical properties of the 6 isoform selective compounds. 

 Compound 
Lipinski 

violations 
MW HA HD MLogP TPSA HIA Caco-2 AQ 

1 ZINC000257282664 0 434.4 5 3 1.49 123.84 0.953 0.837 -3.059 

2 ZINC000008918470 0 433.5 6 3 0.93 125.04 0.860 0.849 -3.146 

3 ZINC000035354144 0 408.4 7 3 -1.35 124.55 0.945 0.535 -3.555 

4 ZINC000016012342 0 429.5 4 2 3.03 78.51 0.972 0.779 -3.911 

5 ZINC000020942817 0 437.6 5 0 2.22 71.91 0.989 0.571 -3.013 

6 ZINC000001264757 0 412.4 5 1 1.44 105.46 0.969 0.647 -3.717 

MW: Molecular weight, Da. 

HA: Total number of H-bond acceptors, O and N. 

HD: Total number of H-bond donors, OH and NH. 

TPSA: Topological polar surface area, Å2. 

HIA: Human intestinal absorption. 

AQ.: Water solubility, LogS. 

3.3.4. Analysis of The MD Simulations 

The structural stability of the docked complexes of HDAC5 with ZINC000257282664 

and ZINC000008918470, HDAC9 with ZINC000016012342 and ZINC000020942817 

were analyzed by evaluating their RMSD, RMSF, Rg, potential energy, and by assessing 

the number of the hydrogen bonds throughout the MD simulations. 

• RMSD analysis: The root mean squared deviation plots of the free HDAC5 protein 

and its complex systems with the known inhibitor (LMK235), ZINC000257282664, and 

ZINC000008918470 are shown in Figure 3.44 (a). All the studied systems exhibited 
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steady equilibrium state throughout the MD simulations. The RMSD of the apo-protein 

of HDAC5 (without inhibitor) slightly increased to 3.4 Å around the first 12 ns of the 

MD run then remained in equilibrium state until the end with an average RMSD of 3.2 

Å. The RMSD of HDAC5 complexed with the known inhibitor rose from 0 Å to ~4.8 Å 

until 39 ns and then the RMSD decreased to an average of 4.1 Å and remained stable to 

the end. The backbone of the HDAC5-ZINC000257282664 complex showed an 

increased RMSD profile compared to the apo-protein where the system stabilized with 

an average RMSD of 4.7 Å after the first 44 ns of the simulation. Interestingly, the 

backbone RMSD of the HDAC5-ZINC000008918470 complex displayed similar trend 

with the apo-protein after the first 22 ns and remained stable until the end of the run. 

HDAC5-ZINC000008918470 complex showed lower RMSD profile over time of the 

MD run compared to HDAC5-ZINC000257282664 complex. 

The RMSD profiles of the free HDAC9 protein and its complex systems with the 

BRD4354, ZINC000016012342 and ZINC000020942817 are shown in Figure 3.44 (b). 

The backbone RMSD of the HDAC9 apo-protein initially increased to 5.2 Å around 37 

ns and the system seemed to be stabilized till the end of the run with an average RMSD 

of 4.1 Å. The RMSD examination of ZINC000016012342 and ZINC000020942817 

revealed that both systems showed comparable fluctuation after the first 50 ns and 

restrained their equilibrium state until the end of the MD simulation. HDAC9-

ZINC000020942817 complex system gained its stability at earlier stages (around 16 ns) 

compared to HDAC-ZINC000016012342 and had an average backbone RMSD of 3.9 Å. 

HDAC-ZINC000016012342 complex system showed a slightly higher fluctuation until 

the 68 ns, but thereafter showed better equilibrium state till the end of the 100 ns run. 
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Figure 3.44. Presentation of the root mean squared deviation (RMSD) for (a) HDAC5 complex systems; 

and (b) HDAC9 complex systems. 

 

• RMSF analysis: The root mean squared fluctuation (RMSF) analysis was 

conducted for the HDAC5 and HDAC9 complex systems and the results are presented in 

Figure 3.45 (a) and (b), respectively. RMSF analysis helps in examining the local 

movements of amino acid residues and their behavior through the MD simulation. Higher 

backbone RMSF fluctuations were seen in loop regions that are known for their high 
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flexibility. Overall, HDAC5-ZINC000008918470 complex system exhibited lower 

RMSF profile compared to the HDAC5-ZINC000257282664 complex system 

throughout the simulation and this observation agreed with the RMSD profiles of the 

same complex systems. The RMSF investigation showed that HDAC9-

ZINC000020942817 displayed relatively lower amino acid residues fluctuations at major 

stable regions of the protein compared to the HDAC9-ZINC000016012342 system. This 

assessment was in agreement with the RMSD profiles of same complex systems. 

 

 

Figure 3.45. Illustration of the root mean squared fluctuation (RMSF) for (a) HDAC5 complex systems; 

and (b) HDAC9 complex systems. 

• Rg analysis: The protein compactness level can be examined via the radius of 

gyration (Rg) profile which is useful in investigating the protein folding nature 

throughout the simulation. The Rg of HDAC5 and its complex systems are plotted in 

Figure 3.46 (a). All studied systems were remained stable over time. Compared to 

HDAC5-ZINC000257282664 system which has as average RMSF of 1.42 Å during the 

simulation, HDAC5-ZINC000008918470 system displayed lower Rg profile with a 1.27 

Å, suggesting relatively less flexibility levels of the protein. The Rg profiles of HDAC9 

systems implying that all complexes were steadily stable during the whole MD run 

(Figure 3.46 (b)). HDAC9-ZINC000020942817 system exhibited a relatively higher 

degree of flexibility with an average Rg of 1.39 Å compared to HDAC9-

ZINC000016012342 system that showed an average Rg of 1.26 Å during the simulation. 
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Figure 3.46. Representation of the radius of gyration (Rg) for (a) HDAC5 complex systems; and (b) 

HDAC9 complex systems. 

• Potential energy analysis: Another useful measurement for examining the system 

stability over time is the potential energy profile. All studied systems were found to be 

stable and physically valid during MD simulations. HDAC5-ZINC000257282664 and 

HDAC5-ZINC000008918470 systems showed lower energy profiles compared to the 

apo-protein of HDAC5 and were found to be relatively similar to the energy of HDAC5-

LMK235 complex system (Figure 3.47 (a)). This observation was also noted in the 

HDAC9 complexes with the ZINC000020942817 and ZINC000016012342 compounds, 

which displayed lower energy profiles than the apo-protein of HDAC9 (Figure 3.47 (b)). 

 

Figure 3.47. Potential Energy profiles for (a) HDAC5 complex systems; and (b) HDAC9 complex 

systems. 
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• Number of intermolecular hydrogen bonds: The binding affinity degree in 

protein-ligand complex is influenced by the number of hydrogen bonds and the more 

hydrogen bonds number the greater binding affinity level. HDAC5-ZINC000257282664 

complex formed maximum of 4 H-bonds during the simulation (Figure 3.48 (a)). The H-

bond number gradually increased during the MD run especially after the first 50 ns. The 

maximum number of H-bonds formed in the HDAC5-ZINC000008918470 complex was 

found to be 5 (Figure 3.48 (b)). The majority of the complex conformations were found 

to form 2 H-bonds. HDAC9-ZINC000020942817 complex formed at most 2 H-bonds in 

very few conformations while the average of the H-bonds was found to be 1 bond during 

the MD simulation (Figure 3.48 (c)). Most of the conformations in HDAC9-

ZINC000016012342 complex formed 1 H-bond throughout the simulation, and notably, 

the second half of the run showed an increased H-bond number with a maximum of 2 

bonds (Figure 3.48 (d)). 

 

Figure 3.48. Number of hydrogen bonds profile of (a) HDAC5-ZINC000257282664 complex; (b) 

HDAC5-ZINC000008918470 complex; (c) HDAC9-ZINC000016012342 complex; and (d) HDAC9-

ZINC000020942817 complex. 
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• MM-PBSA calculations: The average ΔG (binding free energy) of the four 

isoform selective compounds was computed for the last 10 ns applying the MM-PBSA 

approach. The MM-PBSA calculations showed an average ΔG of -19.67 ± 5.66 kcal/mol 

for the ZINC000257282664; -19.55 ± 5.08 kcal/mol for the ZINC000008918470; -18.85 

± 3.77 kcal/mol for the ZINC000016012342; and -16.11 ± 4.82 kcal/mol for the 

ZINC000020942817. Interestingly, the binding free energy calculations were found to be 

in good agreement with the QuickVina 2.0 ranking (Table 3.17). 
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4. DISCUSSION 

4.1. HOMOLOGY MODELING OF CLASS IIA HDAC5 AND HDAC9, AND 

THE DESIGN OF DUAL-ACTING INHIBITORS 

It is of a great importance and crucial to validate and assess the reliability and the quality 

of either the X-ray/NMR resolved protein structures or the generated homology models. 

ProSA tool and its ProSA-web server are among most commonly used tools to validate 

the quality of the 3D modeled structures for possible errors (Wiederstein & Sippl, 2007). 

Herein, ProSA-web was utilized in order to check the quality of both created homology 

models, M0014 and M0020. ProSA-web calculations of the quality scores of M0014 and 

M0020 were shown in a graph that illustrates the scores of all available X-ray resolved 

or NMR identified protein structures that are stored on the Protein Data Bank website 

(PDB) (Berman et al., 2002). This way, ProSA-web compares and correlates the quality 

score of a particular 3D model with those scores that were calculated for all 

experimentally resolved proteins available on the PDB website. The calculated Z-score 

by ProSA tool identifies the model’s overall quality and estimates the total energy 

variation of the model to be correlated with the energy distribution originated from 

random structural conformations (Sippl, 1993, 1995). If a Z-score relies outside the 

characteristic range of native structures, models are believed to have structural errors 

within. According to ProSA-web calculations, M0014 and M0020 had Z-scores of -8.12 

and -8.04, respectively, which are related to the native structural conformations. 

PROCHECK tool and its web-based tool are also widely used to evaluate the overall 

quality of a structure or model (Laskowski et al., 1996). PROCHECK tool offers 

Ramachandran plot which is one of the most famous and reliable approaches to examine 

the overall quality of protein structure. It provides a useful method to assess the angle 

and torsion distribution in the protein structure. In addition, it delivers a summary of 

undesirable regions that display which rotations of the protein are not favored due to 

steric hindrance factors and steric collisions between atoms. Ninety percent or more of 

protein amino acid residues in the allowed regions is an indication of a good model 

(Laskowski et al., 1996). M0014 and M0020 homology models were found to have 90.4% 
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and 90.7%, respectively, of their polypeptide residues in the most favored regions, 

suggesting the good quality of the generated homology modeling 3D structures. 

Furthermore, ERRAT program was used to verify the quality of the model by 

corresponding its structure to experimentally determined proteins. The program 

calculates the total number of nonbonded interactions among atoms, such as CC, CO, 

CN, OO, NO, and NN, within a 3.5 Å cutoff distance (Colovos & Yeates, 1993). ERRAT 

provides an overall quality factor (OQF) for the model structure that is represented as the 

percentage of the model in which the computed error level is less than 95% rejection 

threshold. Favored sidechains environment would show an average of 50% confidence 

or more. Generally, reliable model structure would produce 50 or more of OQF. The 

ERRAT calculations for M0014 and M0020 showed OQF of 87.34 and 86.4, 

respectively, suggesting that the majority of the amino acid residues are within an 

acceptable nonbonded environment. 

Moreover, to test the ability of our created homology models to produce a comparable 

protein-ligand interaction, molecular docking study was carried out using two sets of 

HDAC known inhibitors respectively to each model. The experimentally calculated IC50 

or Ki values agreed to the in silico predicted Ki values that were obtained from AutoDock 

4.2. All of those HDAC known inhibitors showed reasonable binding modes and 

interactions with the corresponding protein. Thus, this observation concluded that our 

generated models are reliable and could be employed for designing HDAC isoform-

selective inhibitors. 

To date, there are no available crystal structures for HDAC5 nor HDAC9. Thus, modeling 

these two enzymes will serve a good purpose to discover novel inhibitors for HDACs 5 

and 9 (Elmezayen & Yelekçi, 2020). Therefore, created homology models were used to 

identify the best complex conformations of the protein-ligand binding modes. The present 

study aimed to explore promising inhibitors for these important enzymes via employing 

a variety of computational approaches including the structure-based drug design. 

Structure-based drug design has been widely utilized for searching for novel potential 

inhibitors against different HDAC enzymes (Krishna et al., 2015). 
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In order to accomplish this goal, a total library of ~100,000 molecules were retrieved 

from ChEMBL website in order to search for dual inhibiting leads against HDAC5 and 

HDAC9. AutoDock Vina and AutoDock 2.4 were employed to dock the small molecules 

into their corresponding enzymes, HDAC5 and HDAC9. All compounds were filtered 

according to their binding energy and affinity toward the enzymes. Four compounds were 

found to show lower binding energy and higher affinity compared to the selected HDACs 

known inhibitors. Two of these compounds exhibited closely similar binding affinity 

toward HDAC5 and HDAC9 and showed potential dual-acting drug property. The 

physicochemical properties and the drug-likeness profile were tested for these two 

compounds. The two compounds obeyed the famous Lipinski’s rule of five that postulates 

for any oral drugs the molecular weight (MW) should be ≤ 500 Da; the octanol-water 

partition coefficient (LogP) should be ≤ 5, the total number of hydrogen bond donors 

must be ≤ 5, and the total number of hydrogen acceptors must be ≤ 10 (Lipinski, 2003). 

Additionally, the compounds were found to be PAINS-free molecules. Furthermore, the 

compounds were found to be following the well-known Jorgensen’s rule of 3 which 

strictly states that oral drugs should exhibit an aqueous solubility (LogS) ≥ -5.7; the total 

number of primary metabolites must be ≤ 7; and the Caco-2 cell line permeability must 

be ≥ 22 nm/s (Di & Kerns, 2016). 

Thorough structural examination of these two compounds exhibited prominent details 

about their structural properties and their ability to bind tightly to HDACs 5 and 9. 

Although they differ from other known inhibitors that have hydroxamic acid groups 

acting as a zinc-binding group, the catalytic Zn+2 atom within the active site of both 

HDACs was found to interact with the selected compounds. The two compounds proved 

to have important chemical interactions with the key residues of the binding pockets of 

the enzymes. 

HDAC5 and HDAC9 along with their selected compounds were subjected to molecular 

dynamics simulations for a reasonable duration to overcome the rigid protein nature that 

accompanies the molecular docking approach, and to investigate the structural stability 

of the studied protein-ligand complex. The selected dual-acting compounds remained in 

the binding pockets of the proteins during the MD simulations and all systems displayed 

high stability as well. Analysis of the trajectories after the MD simulations provided a 
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great insight on the structural stability of the complex systems and were found to be 

consistent with all different measurements including the RMSD, RMSF, Rg, and the 

potential energy. In general, MM/PBSA calculations do not associate with the absolute 

values of the experiments; however, it is still able to produce a reasonable calculation for 

the compounds binding affinity (Chakraborty & Das, 2017; Koukoulitsa et al., 2016; Ngo 

& Li, 2012). Negatively contribution to the total free binding energy comes from 

electrostatic and van der Waal interactions along with the energy of nonpolar solvation. 

On the other hand, the positive contribution only comes from the energy of polar 

solvation (Verma et al., 2016). Based on the interactions plot and the data obtained from 

MM-PBSA, it is obvious that hydrophobic interactions are prominent in all complex 

systems. 

According to the in silico examination, the two selected dual-acting compounds 

discovered in the present study showed high binding affinity toward HDACs 5 and 9. 

Therefore, we strongly recommend that these drug-like inhibitors could be treated as lead 

compounds and tested in vitro for advance optimization to design HDAC5 and HDAC9 

dual-acting inhibitor. 

4.2. STRUCTURE-BASED DRUG DESIGNING OF ISOFORM SELECTIVE 

CLASS IIA HDACS INHIBITORS 

Perceptive variations within the active sites and the catalytic channels of HDAC protein 

members can be beneficial in obtaining isoform-selectivity (Bieliauskas & Pflum, 2008). 

In attempt to take advantage of that fact, here in the current study, we employed a 

comprehensive structure-based drug design testing more than 10 million drug-like 

compounds against class IIa HDAC enzymes. 

CHEMBL2177655 and CHEMBL3126309 compounds displayed greater affinity and 

higher selectivity for HDAC4 over the rest of class IIa HDAC members. Both compounds 

spanned perfectly in the binding pocket of HDAC4 and formed several important 

interactions with the key residues in the active site including His158, His159, Gly167, 

Phe168, Asp196, His198, Asp290, Gly330, and many other residues. Deep in the 

catalytic channel, the catalytic Zn2+ metal atom was found to be bonded to the carboxylate 
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groups of CHEMBL2177655 compound via a covalent bond and an attractive charge 

interaction; and a covalent bond to the carboxylate group of CHEMBL3126309 

compound. This collectively may result in blocking the catalytic site and thus lead to the 

inhibition of the enzymatic activity. 

In HDAC5, ZINC000033260361 and CHEMBL2426361 compounds fitted very well into 

the binding pocket of the enzyme with great binding affinity compared to the remaining 

of class IIa HDACs. These two compounds were found to have a variety of chemical 

interactions with the active amino acid residues lining the binding pocket of the enzyme 

involving His159, His160, Gly168, Phe169, Asp197, His199, Asp291, Gly331 and other 

several residues. The catalytic Zn2+ metal atom was found to be covalently bonded to the 

fluorobenzene group of the ZINC000033260361 compound; and interacted with 

CHEMBL2426361 via a van der Waals interaction. These two compounds showed a 

potential isoform-selectivity for HDAC5 over other class IIa enzymes. 

Interestingly, out of the 15 identified compounds, ZINC000009640741 and 

CHEMBL1968496 compounds exhibited the highest affinity toward HDAC7 compared 

all other class IIa HDACs, and thus showed promising isoform-selectivity for HDAC7. 

ZINC000009640741 compound is composed of 4 benzene rings connected with a 

sulfonyl group and spanned into the catalytic tunnel of HDAC7 forming prominent 

hydrophobic interactions with the key residues inside the binding pocket. 

ZINC000009640741 compound was found to be covalently bonded to the catalytic zinc 

atom. Similarly, CHEMBL1968496 compound contained four benzene rings. It was 

found to be extended in the binding site of HDAC7 with a great affinity and formed 

significant chemical interactions with the active amino acid residues in the active site 

including His166, His167, Gly175, Phe176, Asp204, His206, Asp235, and many other 

amino acid residues. The carboxylate group of CHEMBL1968496 was found to be 

covalently bonded to the catalytic zinc atom deep inside the binding pocket of HDAC7. 

Although compound CHEMBL1761559 relatively showed the least binding affinity for 

HDAC9 in comparison to all other 15 tested compounds, the compound displayed modest 

isoform-selectivity for HDAC9 compared to all other class IIa HDACs. With about 3 to 

38-fold selectivity, CHEMBL1761559 compound revealed a higher binding affinity 

toward HDAC9 compared to the rest of the enzymes. Key amino acid residues lining the 
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catalytic channel were found to be bonded via important interactions. These residues 

included His160, Gly168, Phe169, His199, Gly331, and different other residues. 

CHEMBL1761559 compound was found to be bound to the catalytic zinc atom via π-

cation interaction. All the selected compounds seemed to interact with the key amino 

acids lying within the active site; thus this would interfere with the charge-relay system 

of HDACs (Somoza et al., 2004), and consequently would interrupt this system which 

may block the enzymatic activity. The diversity in the structures of the previous tested 

compounds, considering their pharmacophoric features, along with the subtle variations 

in the amino acid residues within the active sites of each HDAC member, might have 

facilitated in their isoform-selectivity. 

The 15 top-ranked compounds were tested for their drug-likeness. Their ADMET 

properties were found to be within the normal range and followed “the rule of three” 

described by Jorgensen (Di & Kerns, 2016). Although ZINC000514563218 and 

ZINC000674197814 compounds were found to display a slightly raise in their TPSA 

values, Lipinski stated that it would still exhibit rational intestinal permeability as oral 

drugs (Lipinski, 2003). One violation of the Lipinski’s rule of five is still tolerated as 

Lipinski stated in 2001 as observed in two of the selected compounds, 

ZINC000033260361 and NSC 23217. 

Moreover, molecular dynamics simulations were carried out to examine the binding 

affinity of the top-ranked compounds and the protein-ligand structural stability. 

Throughout the MD simulations, all the examined inhibitors were found to be stable and 

stayed interacted to their respective proteins at physiological condition. MD simulation 

approach has been effectively performed to assess the stability of different HDACs 

inhibitors. Several inhibitors were tested for their selectivity against all HDACs classes 

by performing short MD simulation for 5 ns (Thangapandian et al., 2012). In another 

study, novel HDAC inhibitors were investigated along with Vorinostat and tested against 

class II HDACs, in which their structural stability was subjected to short 5 ns MD run 

(Tambunan et al., 2013). In the present study, all the seven selected compounds-HDAC 

complex systems, the apo-proteins, and the known-inhibitor-HDACs complexes were 

subjected to a long 100 ns MD simulation. Analysis of the MD trajectories were found to 
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be satisfied and all other parameters were consistent throughout the molecular dynamics 

simulation including the RMSD, RMSF, Rg, and potential energy.  

Several approaches that imply further sophisticated energy functions such as MM-PBSA, 

MM-GBSA, and QM/MM have been widely used in an attempt to enhance the 

computational calculations of ligands binding (Gleeson & Gleeson, 2009). Despite the 

fact that quantum mechanical methods like QM/MM are known for their accurate 

predictions, they require exhaustive computational calculations for virtual screening of 

large datasets. On the contrary, MM-PBSA or MM-GBSA methods were found to be less 

computationally intensive and result in improvement outputs when applied in free energy 

predictions (Lyne et al., 2006; Thompson et al., 2008). Even though the free binding 

energy calculation using MM-PBSA method is not entirely related to the experiments, 

this method would still deliver a rational binding affinity for protein-ligand complex 

(Chakraborty & Das, 2017; Koukoulitsa et al., 2016; Ngo & Li, 2012). Herein, based on 

the MM-PBSA calculations, CHEMBL2177655 compound displayed more negative 

energy than CHEMBL3126309 compound when bonded to HDAC4, and thus more 

binding affinity. The two selective compounds of HDAC5 were re-ranked according to 

the free binding energy predictions, where CHEMBL2426361 revealed more negative 

energy than ZINC000033260361. The same observation was seen with the two HDAC7 

inhibitors, CHEMBL1968496 showed more negative energy than ZINC000009640741, 

which was ranked first after the molecular docking study. The MM-PBSA calculations 

revealed more negative binding energies compared to the molecular docking study 

suggesting again that the selected compounds could possibly be promising hits in the 

discovery of class IIa HDACs selective inhibitors. 

Up to date, small amount of HDACs isoform-selective inhibitors were identified even 

though growing attempts in this discipline (Thaler & Mercurio, 2014; S. Zhang et al., 

2015). Most of the identified HDACs inhibitors are either categorized as broad spectrum 

or class selective inhibitors. All the reported compounds in the current study exhibited 

high to moderate isoform-selectivity toward class IIa HDACs. Based on the above 

findings, the selected compounds could be used as scaffolds and may undergo additional 

optimization in attempt to design actual class IIa isoform selective HDAC inhibitors. 
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Hence, it is highly recommended that these compounds proceed for in vitro and in vivo 

examinations to evaluate their inhibition effects. 

4.3. LIGAND-BASED PHARMACOPHORE MODELING FOR SELECTIVE 

HDAC5 AND HDAC9 INHIBITORS 

One of the important methods in modern computer-aided drug design is the 

pharmacophore modeling, which has become a vital tool for the in silico drug discovery. 

The HipHop method has been widely used in pharmacophore modeling and effectively 

applied in exploring novel inhibitors against several biological systems (Che et al., 2018; 

Haidar & Hartmann, 2017; Shahlaei & Doosti, 2016). The 10 created pharmacophore 

models for HDAC5 contained the same common features; however, all models were 

found to be varied in their 3D spatial locations. The same observation was seen between 

the 10 generated pharmacophore hypotheses of HDAC9, in addition to the variations in 

the common features among the hypotheses. Guner and Henry scoring system was 

applied in the current study to evaluate all the created hypotheses. Consequently, Hypo1 

of HDAC5 displayed the most statistically significance hypothesis where it yielded 93% 

of the active compounds and showed the highest GH score and enrichment factor with 

the following values 0.86 and 10.26, respectively. Hypo2 of HDAC9 was found to be the 

most statistically significance hypothesis as it yielded 93% of the active compounds and 

displayed 0.87 and 10.13 scores for the GH and the enrichment factor, respectively. Both 

hypotheses seemed statistically reliable models. 

Hypo1 of HDAC5 and Hypo2 of HDAC9 were screened against a total of ~200,000 drug-

like diverse structure compounds from ZINC15 database. The 3D database search 

retrieved ~7,000 compounds for Hypo1 and ~21,000 for Hypo2, all with fit value of 3 

and above, which was calculated and ranked by the Catalyst tool in BIOVIA DS 4.5. The 

yielded compounds were further examined by the molecular docking approach in an 

attempt to predict their best binding modes. Hypo1 and Hypo2 were found to be in 

agreement with the classical pharmacophore features of HDAC inhibitors (Mottamal et 

al., 2015). The cap/linker/chelator characteristic of classic HDAC inhibitors was well 

exemplified by Hypo1 and Hypo2. Hydrophobic feature was found to be mapped onto 

the cap group; hydrogen bond acceptor mapped onto the linker of Hypo1, while aromatic 
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ring onto the linker of Hypo2; hydrogen bond donor and acceptor feature mapped onto 

the chelator group. These findings agreed with the common pharmacophoric features of 

HDAC inhibitors (Beckers et al., 2007). 

Additionally, the 6 top-ranked compounds obtained in this study were described as drug-

like compounds as they passed the Lipinski’s role of 5 and were found to be within the 

normal range of the ADMET properties, using the admetSAR and SwissADME web-

based servers. Aqueous solubility of a drug compound, which is one of the ADMET 

descriptors, has a great impact on the transportation and the absorption of a drug 

compound in the biological systems. Quantitative structure–property relationships 

(QSPR) is effectively utilized to associate organic- and drug compounds to their 

corresponding water solubility (X. Q. Chen et al., 2002). Another ADMET property is 

the Caco-2 permeability, that describes the gastrointestinal permeability ration by 

predicting the degree of a drug compound transportation across the Caco-2 cell line (Peng 

et al., 2014). Caco-2 permeability level has been predicted in a variety of drug compounds 

and drug-like molecules in silico and in vitro (Fossati et al., 2008; Pham-The et al., 2013, 

2018; Press, 2011). The physicochemical properties of the 6 top-ranked compounds in 

the current study were agreed to the previous mentioned ADMET parameters. 

Molecular dynamics simulations were carried out to evaluate the binding mode stability 

of the apo-protein forms of HDAC5 and HDAC9 and their complex with the 

corresponding known inhibitors and the top-ranked compounds. Throughout the 100 ns 

MD run, and in addition to the existence of water molecules, all studied systems showed 

good stability and the small molecules persisted their interaction with the active site of 

their corresponding targets. HDAC5-ZINC000008918470 complex was found to display 

overall lower RMSD trend than HDAC5-ZINC000257282664 complex. Whereas 

HDAC9 complex with ZINC000016012342 and ZINC000020942817 compounds 

showed relatively similar RMSD profile. Free binding energy predictions employing 

MM-PBSA method has been successfully used to improve the in silico predictions of 

ligand-protein affinity (Gleeson & Gleeson, 2009). MM-PBSA method requires less 

exhaustive in silico calculations compared to QM/MM approaches (Lyne et al., 2006; 

Thompson et al., 2008). In MM-PBSA calculations, nonpolar solvation energy, van der 

Waals, and electrostatic interactions negatively contribute to the total energy of the 
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system, while positive contribution arises from polar solvation energy (Verma et al., 

2016). According to the MM-PBSA calculations, the proposed compounds in the present 

study showed more negative energy compared to the QuickVina binding energy 

calculations, suggesting the high affinity of the ligands to their respective targets. More 

binding affinity in ligand-protein complex is demonstrated by more negative value of the 

binding free energy, and vice versa. The rank of the selected compounds based on the 

calculated binding free energy by MM-PBSA method agreed to the molecular docking 

study. 

To the best of our knowledge, although several efforts were made to discover novel 

HDACs inhibitors against several HDACs targets by pharmacophore modeling (Choubey 

et al., 2016; N. Gupta et al., 2014; Kandakatla & Ramakrishnan, 2014), our study is the 

first to apply this approach to identify novel and isoform-selective HDACs 5 and 9 

inhibitors. In the current study, training and test sets composed of only HDACs inhibitors 

that are in clinical trials or with potential inhibition activity for HDACs 5 and 9. Due to 

the cytotoxicity accompanied by the use of several of the HDACs inhibitors that are 

already in clinical trials and uses, scientists around the world are paying more attention 

toward exploring isoform-selective inhibitors. Herein, proposed inhibitors could be used 

for further optimization as they showed potential isoform-selectivity towards HDAC5 

and HDAC9. Hence, further details about the structural features essential for identifying 

HDACs 5 and 9 selective inhibitors may be offered by the present study, providing 

opportunities for additional computational (in silico) and in vitro experiments in order to 

enhance the selectivity and potency of the proposed inhibitors. 
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5. CONCLUSIONS 

All efforts that were made to identify potential class IIa HDACs isoform selective 

inhibitors for cancer treatment are described in this study. The zinc-dependent class IIa 

HDAC enzymes, which are mainly located in the nucleus and the cytoplasm, are found 

to be associated with differ types of cancers as they are over expressed, even though they 

show weaker enzymatic activity compared to class I HDACs. Class IIa HDACs 4, 5, 7, 

and 9 are found in protein-protein complexes with other transcriptional factor proteins. 

Class IIa HDACs along with other non-histone proteins control the microtubules and 

stimulate cancer tissues invasion. The aim of the current study was to apply different in 

silico approaches in an attempt to identify promising selective inhibitors for each 

individual enzyme of class IIa HDACs. In order to complete this aim, a variety of 

molecular modeling methods and computational approaches were carried out including 

structural and amino acid sequence alignments, homology modeling, virtual screening, 

molecular dynamics simulation, physicochemical description, and free binding energy 

calculations. 

High amino acid sequence similarity and conserved active sites between class IIa HDACs 

were examined, which contributed to the difficulties in obtaining isoform-selectivity in 

the process. HDAC4, HDAC5, and HDAC9 revealed the highest sequence similarity as 

well as the structural resemblance, increased the challenge in designing specific inhibitors 

for each of the three isoforms. Being a close ancestor, the active site of HDACs 5 and 9 

are found to be very similar to that of HDAC4, whereas HDAC7 slightly differs as being 

a far relative. 

Up to date, and since the beginning of this study, there are no resolved structures for 

human HDACs 5 nor 9, or for any other organisms. For the completion of the present 

study, crystal structure of human HDAC4 was retrieved (PDB ID: 2VQM) and used as a 

template to create the 3D structures of both HDAC5 and HDAC9 due to their high amino 

acid sequence identity and similarity, particularly between their catalytic domains. The 

finest created 3D models were checked and validated for their structural conformations. 

Additionally, the built models were examined by docking sets of corresponding HDACs 

known inhibitors into their respective catalytic sites. To design novel dual-acting 
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inhibitors, a library composed of ~100,000 small molecules retrieved from ChEMBL 

website was docked against the two created models using AutoDock 4.2. According to 

the highest binding affinity, the two top-ranked compounds showed similar binding 

affinity for both HDAC5 and HDAC9, suggesting dual-acting effect. Later, MD 

simulations were conducted to examine the structural dynamics of the created homology 

models M0014 and M0020 and their complexes with their corresponding known 

inhibitors and top-ranked compounds. Analysis of trajectories after the MD simulations 

proved structural stability of all studied systems and the ligands remained bonded to their 

active sites throughout the simulations. Free binding energy calculations using MM-

PBSA method revealed high binding affinity between the dual-acting inhibitors and their 

respective targets. The reported homology model structures could be useful for further 

future work and in understanding the dynamics of isoforms structures. 

To overcome challenges in drug discovery, structure-based drug design was applied in 

the present study by in silico screening of ~10,000,000 drug-like compounds retrieved 

from ZINC15, ChEMBL, and NCI databases against class IIa HDAC enzymes. 

Combined HTS and molecular docking approaches were performed to guarantee the 

highest binding affinity and specificity of the studied compounds. A total of 15 

compounds obtained from the virtual screening (5 compounds for HDAC4; 3 compounds 

for HDAC5; 6 compounds for HDAC7; and 1 compound for HDAC9) have displayed 

specificity for their corresponding isoform by applying similar selectivity criteria 

employed by other reported studies on selective inhibitors for HDACs. In addition, 

reported compounds have revealed drug-like properties and their physicochemical 

properties (ADMET) were found to be in an acceptable range. Moreover, molecular 

dynamics simulation was carried out to evaluate the structural dynamics and the stability 

of apo-proteins of the isoforms, the selective inhibitor-protein complexes, and their 

known inhibitor-protein complexes. While systems are solvated in the presence of water 

molecules, all the studied compounds persisted bound to their respective isoform 

throughout the 100 ns MD simulation. Comparative examinations of the trajectories after 

the MD simulations (including RMSD, RMSD, Rg, and potential energy parameters) in 

addition to the H-bond number suggested the stability of the complexes over time. The 

free binding energy predictions using MM-PBSA approach showed high affinity of the 

selected compounds toward their corresponding HDAC isoforms. 
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Moreover, to identify further selective inhibitors for HDAC5 and HDAC9 with more 

diverse scaffolds, ligand-based pharmacophore modeling was employed to generate 

common features using HipHop method and were statistically examined using the scoring 

system of Guner-Henry. The first hypothesis (Hypo1) generated for HDAC5 consisted of 

1 hydrophobic (aromatic/aliphatic), 1 hydrogen bond donor, and 3 hydrogen bond 

acceptor features, returned 93% of the active compounds, and revealed of 0.86 for the 

GH score and 10.26 for the enrichment factor. In addition, the second hypothesis (Hypo2) 

generated for HDAC9 composed of 1 ring aromatic, 1 hydrophobic (aromatic/aliphatic), 

and 2 hydrogen bond acceptor features, returned 93% of the active compounds, and 

showed 0.87 score for the GH and 10.13 score for the enrichment factor. A total of 

~200,000 small molecules were obtained from ZINC15 database and screened against 

Hypo1 and Hypo2 separately, for the search for potential isoform-selective inhibitors for 

HDACs 5 and 9. The 6 top-ranked compounds with the highest binding affinity were 

tested for their ADMET properties. They displayed good ADMET properties and were 

found to be drug-like inhibitors. Molecular docking approach was used to assess the 

binding affinity of the selected compounds across all class IIa HDACs to examine their 

isoform-selectivity. ZINC000257282664 and ZINC000008918470 compounds exhibited 

promising isoform-selectivity for HDAC5, whereas ZINC000016012342 and 

ZINC000020942817 compounds showed potential specificity for HDAC9. The structural 

stability of these inhibitors along with apo-protein forms were subjected to 100 ns MD 

simulations employing NAMD software. The analyses of RMSD, RMSF, radius of 

gyration, potential energy, hydrogen bonds number, and the MM-PBSA calculations after 

the MD simulations suggested that all studied inhibitors showed stable trend and 

remained interacted with the active site of their targets throughout the MD simulation. 

These findings suggest that the reported inhibitors could be used for further optimization 

and undergo in vitro examination for designing HDAC5 and HDAC9 isoform specific 

inhibitors. 

Future study may include additional HTS and in silico virtual screening with more small 

molecules datasets in order to obtain further diverse scaffolds for potentially specific 

inhibitors against each member of class IIa HDAC enzyme. Additionally, extended 

molecular dynamics simulations might be carried out to further ascertain the structural 

dynamics and the stability of the ligand-protein complexes. Moreover, pharmacodynamic 
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and pharmacokinetic experiments would be performed in vitro to evaluate and examine 

the safety and toxicity of the candidate isoform selective inhibitors reported in the present 

study. Consequently, the biological activity of the reported compounds might be 

validated in vitro and tested against both solid and nonsolid tumor tissues. In addition, 

after obtaining the isoform selective inhibition, analysis of the molecular mechanisms by 

applying molecular biology means would be helpful to gain a detailed insight into the 

functional role of each member of HDAC enzymes in a particular cancer 

pathophysiology. 

In the present study, quick discovery of drug-like compounds that target three-

dimensional protein structures of class IIa HDAC isoforms, obtained by either 

comparative homology modeling or X-ray resolved structure, has been improved by the 

application of computer-aided drug design. 
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ANNEX A 

 

Figure 0.1. Correlation between the experimental catalytic activities (Ki or IC50) of 

HDAC5 known inhibitors with the in silico predicted Ki values for the same inhibitors. 

Experimental values are presented in blue color, while in silico calculations are given in 

orange color. 

 

 

 

Figure 0.2. A comparison chart between the experimental catalytic activities (Ki or 

IC50) of the HDAC9 known inhibitors and their corresponding in silico predicted Ki 

values. 


