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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF SYMBOLS/ABBREVIATIONS . . . . . . . . . . . . . . . . vii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Traditional Machine Learning Methods . . . . . . . . . . . 5

2.2 Transformer, Graph Convolutional and LSTM Neural Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Convolutional Neural Networks and Transfer Learning . . 8

2.4 Hybrid, Ensemble, and Multi-modal Models . . . . . . . . 12

2.5 Imbalanced Dataset Handling Methods . . . . . . . . . . . 20

2.6 Capsule Networks . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Summary of the Related Work . . . . . . . . . . . . . . . . . 24

3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Malware Datasets . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Malimg . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Microsoft Malware 2015 (BIG2015) . . . . . . . . . 28

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Capsule Networks . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Base Capsule Network Model for Malimg Dataset . 34

3.2.3 Base Capsule Network Model for BIG2015 Dataset 34

3.2.4 The Proposed Random CapsNet Forest Model for

Imbalanced Datasets . . . . . . . . . . . . . . . . . . . 35

4. EXPERIMENTS & RESULTS . . . . . . . . . . . . . . . . . . . . . 37



5. LIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6. INCLUDED PAPERS AND CONTRIBUTIONS . . . . . . . . . 45

6.1 Paper-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Paper-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Paper-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 49

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Summary and Future Work . . . . . . . . . . . . . . . . . . 54

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



RANDOM CAPSULE NETWORK (CAPSNET) FOREST MODEL FOR

IMBALANCED MALWARE TYPE CLASSIFICATION TASK

ABSTRACT

Behavior of malware varies depending the malware types, which affect the strategies

of the system protection software. Many malware classification models, empowered

by machine and/or deep learning, achieve superior accuracy for predicting malware

types. Machine learning-based models need to do heavy feature engineering work,

which affects the performance of the models greatly. On the other hand, deep

learning-based models require less effort in feature engineering when compared to

that of the machine learning-based models. However, traditional deep learning ar-

chitectures’ components, such as max and average pooling, cause architecture to be

more complex and the models to be more sensitive to data. The capsule network

architectures, on the other hand, reduce the aforementioned complexities by elimi-

nating the pooling components. Additionally, capsule network architectures based

models are less sensitive to data, unlike the classical convolutional neural network

architectures. This thesis proposes an ensemble capsule network model based on

the bootstrap aggregating technique. The proposed method is tested on two widely

used, highly imbalanced datasets (Malimg and BIG2015), for which the-state-of-the-

art results are well-known and can be used for comparison purposes. The proposed

model achieves the highest F-Score, which is 0.9820, for the BIG2015 dataset and

F-Score, which is 0.9661, for the Malimg dataset. Our model also reaches the-state-

of-the-art, using 99.7% lower the number of trainable parameters than the best

model in the literature.

Keywords: Capsule networks, Malware, Ensemble model, Deep learning, Machine

learning.
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DENGESİZ SINIF DAĞILIMINA SAHİP KÖTÜ AMAÇLI YAZILIM

SINIFLANDIRMA GÖREVİ İÇİN RASSAL KAPSÜL AĞI (KAPSAĞ) ORMAN

MODELİ

ÖZET

Kötü amaçlı yazılımın davranışı, sistem koruma yazılımının stratejilerini etkileyen

kötü amaçlı yazılım türlerine bağlı olarak değişir. Yapay ve/veya derin öğrenme ile

güçlendirilmiş birçok kötü amaçlı yazılım sınıflandırma modeli, kötü amaçlı yazılım

türlerini tahmin etmek için üstün doğruluklar elde eder. Yapay öğrenme tabanlı

modeller performanslarını büyük ölçüde etkileyen ağır öznitelik mühendisliği çalışma-

larına ihtiyaç duyarlar. Öte yandan, derin öğrenme tabanlı modeller, yapay öğrenme

tabanlı modellere kıyasla öznitelik mühendisliğine daha az ihtiyaç duyarlar. Bununla

birlikte, geleneksel derin öğrenme mimarilerinin maksimum ve ortalama havuzlama

gibi bileşenleri, mimarinin daha karmaşık olmasına ve modellerin verilere daha du-

yarlı olmasına neden olur. Kapsül ağ mimarileri ise havuzlama bileşenlerini ortadan

kaldırarak yukarıda bahsedilen karmaşıklıkları azaltır. Ek olarak, kapsül ağ mi-

marisi tabanlı modeller, klasik evrişimli sinir ağı mimarilerinin aksine verilere daha

az duyarlıdır. Bu tez, rastgele örnekleme toplama tekniğine dayalı bir topluluk

kapsül ağı modeli önermektedir. Önerilen yöntem, en son sonuçlarının iyi bilindiği

ve karşılaştırma amacıyla kullanılabilecek, yaygın olarak kullanılan, oldukça denge-

siz iki veri kümesi (Malimg ve BIG2015) üzerinde test edilmiştir. Önerilen model,

BIG2015 veri kümesi için 0.9820 olan en yüksek F-Skoruna ve Malimg veri kümesi

için 0.9661 olan F-Skoruna ulaşmaktadır. Modelimiz aynı zamanda literatürdeki en

iyi modele göre %99, 7 daha az eğitilebilir parametre kullanarak en son teknolojiye

ulaşmaktadır.

Anahtar Sözcükler: Kapsül ağlar, Kötü amaçlı yazılım, Topluluk model, Derin

öğrenme, Yapay öğrenme.
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ment Information Systems, Kadir Has University for her technical supports and her

valuable contributions to my academic life.
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1. INTRODUCTION

Malicious software (malware) type classification is as important as malware detec-

tion problem because system protection software make their strategies based on

malware family types. Malware families have different behaviors and effects on a

computer system. Each malware family uses different resources, files, ports, and

other components of operating systems. For example, malware in an online banking

systems aim to perform fraud, steal private information of users, and use different

spreading behaviors (Etaher et al. 2015, Azab et al. 2016). In addition to this, due

to the trends in technology, new malware types occur almost daily. Thus, most of

the computers, smartphones, wireless sensor networks, and other digital systems are

vulnerable to new malware and denial of service (DoS) attacks (Benzaid et al. 2016).

In this case, many zero-day attacks are performed (Alazab et al. 2013). The raising

of the number of malware makes using the big data techniques crucial for malware

analysis (Tang et al. 2017).

Malware type classification is the most common problem in the cybersecurity do-

main, because strategies of protection systems vary with respect to malware family

type. Malware type classification problem is broadly dealt with in three different

ways: static, dynamic, and image-based (Nataraj, Yegneswaran, Porras & Zhang

2011, Abijah Roseline et al. 2019, Ni et al. 2018). This thesis focuses on the image-

based malware family classification problem. However, malware family type classifi-

cation is an imbalanced task, so this makes many models unsuccessful at predicting

the rare classes. To this end, two imbalanced datasets are used and the results are

compared to the other models in the literature.

Image-based malware classification is a broad research and application area. At the

1



same time, deep learning drives the computer vision and image processing researches

to this field. Many deep convolutional neural networks have proven their success

in image processing. CapsNet is the most important deep convolutional neural ar-

chitecture that removes pooling to avoid losing the spatial features of images. This

is the power of CapsNet comparing to classical CNNs. Therefore, the number of

applications of CapsNet is increasing in image processing. The main motivation of

this thesis is to design a simple and accurate classifier for imbalanced malware type

classification problem using bagging (Breiman 1996a, 2001) and CapsNet architec-

ture. This thesis also presents a detailed comparison of the proposed model with

the other models in the literature.

This thesis proposes a new model named Random Capsule Network Forest (RCNF)

based on bootstrap aggregation (bagging) ensemble technique and capsule network

(CapsNet) (Breiman 1996a, Sabour et al. 2017). The main motive behind the pro-

posed method is to reduce the variance of different CapsNet models (as weak learn-

ers) using bagging. In this perspective, the main contributions of this thesis can be

listed as follows:

• The thesis introduces the first application of CapsNet in the field of malware

type classification. Although image-based malware classification is a broad

research and application area, there is no research and application of CapsNet

in the literature to our knowledge.

• The thesis uses the first ensemble model of CapsNet. The key idea of creating

an ensemble of CapsNet is assuming a single CapsNet model as a weak classifier

like a decision tree model. In this way, an ensemble model of CapsNet can

be easily created using bootstrap aggregating. The main assumption that

CapsNet is a weak learner increases the performance of a single CapsNet for

two different well-known malware datasets, which are highly imbalanced.

• The proposed model uses simple architecture engineering, which means find-

ing a better neural network structure instead of complex convolutional neural

network architectures and domain-specific feature engineering techniques. In

2



addition to this, CapsNet does not require the usage of transfer learning, and

the model is easily trained from scratch. Because of that, the created network

and its ensemble version have reasonably lower number of parameters. The

proposed model obtains F-Score and accuracy, which are close to the-state-

of-the-art results, using 99.7% lower the number of trainable parameters than

the best model in the literature.

• The proposed model is compared with the latest studies that use deep neural

networks for image-based malware classification tasks. For a fair comparison,

especially, the last studies using the Malimg and the BIG2015 datasets are

chosen and compared with the proposed method.

• The proposed method is reproducible and broadly simpler than other complex

deep neural network architectures regarding the number of trainable parame-

ters.

• The thesis presents a concrete application, which is web-based and supports

multi-users and multi-requests at the same time, starting from the experimen-

tal design of the proposed model.

The thesis is organized as follows. Section 2 presents a literature survey for CapsNet

applications and previous malware analysis studies. The methodology of the thesis

is described in Section 3, whereas Section 3.2 gives details of the inspiring model

and the proposed model. In Section 4, the test results are discussed and many

comparisons with related work published within the last couple of years are listed.

Section 5 argues the limitations of the proposed model and its implementation for

the application. Section 6 presents the papers that contribute to the thesis, and

finally, Section 7 provides the concluding remarks.
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2. RELATED WORK

Machine learning is the core discipline that is placed at the heart of the malware

classification problem. Thanks to the methods in machine learning, there are ef-

ficient and novel approaches that can process datasets that are high dimensional

and contain thousands of samples. However, traditional machine learning methods

require powerful, complex, and intense feature engineering or pre-processing steps

to transform the raw data into a valuable input for the model. For this reason,

traditional machine learning models for malware classification focus on the-state-

of-the-art feature engineering or pre-processing techniques in the research domain.

On the other hand, unlike machine learning, deep learning models focus on creat-

ing different architectures that can process raw input from the dataset requiring

less pre-processing than complex feature engineering methods. The tools designed

for deep learning architectures allow the researchers to develop ensemble, hybrid,

or multi-modal models quickly. Therefore, this section of the thesis investigates

some important papers and studies, which are the latest in the malware family

classification and detection research area. Subsection 2.1 lists some conventional

machine learning approaches in malware classification. Subsection 2.2 presents a

new approach based on graph convolutional neural networks, LSTM networks, and

transformers using API calls from executable malware files to classify. Subsection

2.3 inspects the most common deep learning approaches such as convolutional neural

networks and transfer learning based models for grey-scale malware images for mal-

ware classification. The latest hybrid, ensemble, and multi-modal machine and deep

learning models are presented in Subsection 2.4. Imbalanced malware datasets are

the most common in a malware classification problem, so Subsection 2.5 exhibits the

latest papers in imbalanced data handling. To point out the lack of capsule network

application for malware classification, Subsection 2.6 presents a brief review for mod-

4



ified and specialized capsule network architectures in some research problems such

as computer vision, text classification, and time series analysis. Lastly, Subsection

2.7 summarizes the related work section with selected papers from subsections.

2.1 Traditional Machine Learning Methods

There are many different ways to represent malware files for machine learning-based

identification (Alazab & Tang 2019). One of them is to extract features from the

application programming interface (API) calls of malware. For example, Alazab

(2015) proposes a framework to get features statically and dynamically from malware

API calls. He uses similarity mining and machine learning to profile and classify

malware. He obtains a 0.966 receiver-operating-curve (ROC) score in the malware

dataset containing 66, 703 samples (Malign or Benign) with the k-nearest neighbors

algorithm. Moreover, Azab et al. (2014) focus on grouping malware in the same

variants using hashing techniques for malware binaries. They use two different Zeus

datasets. The first dataset contains 856 binaries, and the second dataset contains

22 binaries. Each binary has a SHA256 value. They achieve a 0.999 F-Score using

the k-nearest neighbors and SDHASH. Some of the essential conventional machine

learning applications for malware classification are investigated in Subsection 2.4 in

detail.

Some papers in the literature aim to find the best combinations of pre-processing

or feature extraction methods and conventional machine learning algorithms, whose

classification performance is highly dependent on hand-crafted feature extraction.

Iadarola et al. (2020) give a brief assessment between feature extraction and clas-

sification methods for image-based malware family detection. This paper compares

different feature vector extraction methods and especially traditional machine learn-

ing models. The paper uses feature extraction methods such as Gabor filter, color

layout filter, auto color correlogram filter, and global image descriptor (GIST). The

machine learning models used in the paper are the k-nearest neighbors classifier,

random forest classifier, J48 classifier, and decision table classifier. They have eval-

5



uated all combinations with a dataset containing 20, 748 samples and 10 different

families. Furthermore, they have built a random forest using GIST descriptors, and

they have obtained the highest average accuracy, which is 96, 9%. However, there

are some missing parts in the paper. For example, there is no assessment of multi-

layer perceptrons or deep learning models, and the number of models evaluated in

the paper is not enough to find the best combination of feature extraction methods

and models. On the other hand, they have pointed out the obfuscation is the most

critical issue for malware family classifiers, and they express that they are planning

to test the robustness of a malware classifier using adversarial learning approaches

in the literature.

2.2 Transformer, Graph Convolutional and LSTM Neural Networks

One of the newest representation approaches is creating graph structure from API

calls of malign and benign executable files or source codes. Moreover, this represen-

tation approach allows a new deep learning framework called graph convolutional

networks to learn node or edge embeddings. Pei et al. (2020) introduce a new

framework based on graph convolutional networks. They have combined a graph

convolutional network and recurrent neural networks in the proposed model called

AMalNet. The recurrent network part of this model learns word embeddings for

word, character, and lexical features from permissions, application components, and

suspicious API calls from Android APK files. For the graph convolutional part of

the AMalNet model, they have created a graph representation for each malware

from permissions, components, or APIs. The paper has used five different malware

datasets, and two of them are multi-class datasets. The most interesting part of the

paper is sustainability analysis, and this part presents a detailed table that shows

the proactive behavior of the AMalNet for zero-day attacks. However, they have not

specified the total number of trainable parameters of the AMalNet model, although

they present execution time analysis for each dataset. For this reason, the model is

not available to compare with other deep learning architectures in terms of the total

number of trainable parameters.
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Graph representation of malware files created from API calls can provide us to de-

velop a behavioral malware classification model. Schranko de Oliveira & Sassi (2019)

have collected a dataset that has goodware (or benign) and malware samples and

contains API call sequences belong to each sample. The dataset has 42, 797 malware

samples and 1, 079 goodware samples. The class distribution of the dataset shows

that the dataset is highly imbalanced for a binary classification problem. They

introduce a graph convolutional neural network and generate a behavioral graph

representation for their dataset. Because of skewness between goodware and mal-

ware classes in the dataset, they evaluate their proposed model on two versions

of the dataset: balanced and imbalanced versions. They also compare their pro-

posed models to a dummy model that predicts all samples as malware, in F-score,

AUC-ROC, precision, recall, and accuracy. According to their findings, their graph

convolutional neural network model that learns behavioral graph representations

has reached significant results for the binary malware classification problem.

Although graph convolutional neural networks are efficient and useful for graph-like

datasets, it is possible to represent graphs as sequential features such as API calls

and opcodes extracted from malware files. One of the papers based on this idea

is done by Niu et al. (2020). They present a new deep learning model to classify

Android malware samples using opcode features. In order to extract sequential

opcodes from Android DEX files, they have parsed function calls graphs. They have

built two different models: long short term memory-base (LSTM-based) model and

support vector machine model. For the proposed support vector machine model,

a skip-gram method is used to represent opcodes. For the proposed LSTM-based

model, time distributed embedding layer is used to learn dense representations of

opcodes. They have evaluated their proposed models with a dataset containing

1, 796 Android application files, and this dataset has three distinct labels such as

Trojan, Adware, and Normal. They report that the LSTM-based model achieves

97% accuracy, and the support vector machine model obtains 95% accuracy on their

dataset. Furthermore, they have pointed out that their LSTM-based model has a

6M trainable parameter which is the minimum among the competitor models in their
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paper. Some graph-like datasets for malware classification can be reformulated as a

sequential data classification problem in this perspective.

Transformers are one of the groundbreaking models used in deep learning (Vaswani

et al. 2017). Especially, transformers are very successful for natural language prob-

lems. On the other hand, there are many variations for transformers for different

tasks. For example, malware classification from application programming interface

calls, function calls, or opcodes can be formulated as a sequence-based classification

problem like sentiment analysis or text classification. Therefore, transformers can

be efficient models for text-based malware classification. Rahali & Akhloufi (2021)

introduce an early example study that uses bidirectional encoder representations

from transformers (BERT) for text-based malware classification. They have also

tested LSTM, XLNet, RoBERTA, and DistilBERT models in their paper. They

have evaluated these models with a dataset containing 12, 000 benign and 10, 000

malware samples. The malware samples in the dataset have been collected from

eleven unique malware families, so one part of the dataset containing malware sam-

ples can be used to classify malware families. The evaluation part of the paper

used four different metrics: accuracy, F-score, loss, and the Matthews Correlation

Coefficient (MCC) used for binary classification with an imbalanced dataset. Their

results in the experiments show that the BERT model obtains 97.61% accuracy for

the binary classification and 91.02% accuracy for the malware family classification

problem.

2.3 Convolutional Neural Networks and Transfer Learning

Another efficient way to feed machine learning algorithms to classify malware files

is image-based representation. For example, Nataraj, Karthikeyan, Jacob & Man-

junath (2011) convert malware files to greyscale images to represent malware. They

extract GIST features from malware images, and then they classify malware family

types using the euclidean k-nearest neighbors algorithm. They reach 0.98 classifica-

tion accuracy for the dataset with 9, 339 samples and 25 malware families. Similarly,
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Kancherla & Mukkamala (2013) use image-based malware representation to feed the

support vector machine to classify malware files as malign or benign. They extract

three different features, such as intensity-based, wavelet-based, and Gabor-based.

Their dataset contains 15, 000 malign and 12, 000 benign samples. They attain a

0.979 ROC score. These studies utilize traditional machine learning algorithms, such

as k-nearest neighbors and support vector machines. These algorithms require to

extract good features from images to classify malware types with high performance.

After an impacting success of a deep convolutional neural network (CNN) on the

Imagenet dataset, a new era started in computer vision (Krizhevsky et al. 2012).

CNNs could classify images using raw pixel values without complex feature engi-

neering methods. This success has also started the new age for image-based mal-

ware classification using deep neural architectures and variations such as combi-

nation, ensemble, or hybridization. The latest paper by Hemalatha et al. (2021)

benefiting from the advantages of deep learning architectures provides an efficient

DenseNet architecture-based malware detection model for binary malware images.

Their model uses weighted loss to deal with imbalanced classification problems.

They have tested the proposed model on five different malware datasets such as

BIG2015, Malimg, MaleVis, and Malicia.

There are several methods to create greyscale malware images from values rather

than byte pixel values of malware binary files in the literature. For example, Ni

et al. (2018) create greyscale image files using SimHash bits of malware. They

obtain 99.26% accuracy on the dataset containing 10, 805 samples using a CNN

classifier.

Another work by Yuan et al. (2020) create malware Markov images from malware

binary files. For this image representation, the pixel values of malware Markov

images are byte transfer probabilities different from the actual value of bytes. They

convert this byte transfer probabilities to 256×256 greyscale image for each malware

binary file. Thus, these images can be directly used in a convolutional neural network
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as input. They have proposed a five convolutional layered CNN to classify the

BIG2015 and the DREBIN datasets. They have also emphasized that these datasets

are highly imbalanced, and they are reporting recall, precision, and F1-score to

evaluate the performance of their model. Finally, they present the classification

performances of the proposed model for different proportions of training and testing

of the BIG2015 and the DREBIN datasets.

One of the exciting papers by Xiao et al. (2020) introduces a combination of a

convolutional neural network and support vector machine, which is a well-known

classifier in machine learning. Their model called MalFCS is a static malware anal-

ysis method based on greyscale image representation of malware samples. They

point out that the methods in traditional machine learning need much time, and

their success depends on feature engineering methods that have been used. There-

fore, they build a convolutional neural network to extract high-level features from

raw pixel values of greyscale malware images. Their convolutional neural network

structure contains thirteen sequential convolutional layers and one fully connected

layer at the end. They train the convolutional neural network, and it learns the

high-level features. Finally, they have transformed the grayscale malware images to

input for support vector classifier using the pre-trained convolutional neural network.

They have tested the MalFCS model on the BIG2015 and the Malimg datasets, and

they have evaluated the model using F-score, kappa metric, and accuracy because

they indicate these two datasets are highly imbalanced. They report 0.9991 F-score

and 0.9967 kappa metric for 10-fold cross-validation the Malimg dataset and 100%

accuracy for 10-fold cross-validation of the BIG2015 dataset.

Transfer learning is a crucial method to increase convolutional neural networks’

generalization capacity for datasets that have relatively small sample sizes. Gener-

ally, transfer learning uses pre-trained models in two ways: feature extraction and

fine-tuning. For the fine-tuning part, some shallow features are typical for different

tasks. For this reason, low-level weights of some models are used to initialize the

weights of new or proposed neural networks for new tasks like greyscale malware
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image classification. Therefore, transfer learning positively affects the generalization

performance of the proposed neural network because of weights initialization via a

pre-trained network rather than random initialization. Zhao et al. (2020) proposes

a convolutional neural network based on a Faster RCNN model combining transfer

learning via fine-tuning. They have used the BIG2015 dataset to evaluate their

model. However, they have removed the Simda, the rarest malware family in the

dataset, because it has 42 samples. They have trained two different models. The

first Faster RCNN model has been trained from scratch, and the second model has

been trained with pre-trained weights of the Faster RCNN model on the ImageNet

dataset. In order to show that the effect of the transfer learning approach on the

malware classification task, they have compared these two models in terms of ac-

curacy, detection rate, and false-positive rate. They report 92.8% accuracy, 95.6%

detection rate, 6.8% false positive rate, and 85 minutes training time. Moreover,

drawing a bounded box onto malware images according to their family types is

one of the valuable features of this model. This model’s ability provides valuable

information on which part of the texture is essential for which malware family.

Vu et al. (2020) use a novel approach, called HIT4Mal, extracting features from raw

files to get image representations of malware. The idea behind the paper is to feed a

convolutional neural network with a more complex image transformation that makes

the model robust to obfuscation. According to their paper, existing simple transfor-

mations have not considered color encoding and pixel rendering on the classifier’s

performance. HIT4Mal contains two phases. The first phase is to apply to PE

files four different byte encoding techniques such as byte-class, grayscale, gradient,

and entropy. In the second phase, these encoded representations are converted to

malware images using combinations of four different byte layout methods following

carriage return, wrap-around, Hcurve, and Hilbert. At the end of the HIT4Mal

system, a convolutional neural network takes the images produced by the best byte

encoding and byte layout methods as input set. They have tested the HIT4Mal

model on the dataset containing 8, 000 malware and 8, 000 benign samples. The pa-

per shows that the best model contains combinations of byte-class as byte encoding
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method, Hilbert as byte layout method, and a convolutional neural network. This

configuration of HIT4Mal achieves 93.01% accuracy, which is higher than the simple

image transformations such as byte-class, greyscale, gradient, and entropy.

In transfer learning, using different pre-trained convolutional neural networks si-

multaneously to extract features from greyscale malware images provides to learn

different representations for malware classification. This variety in representations

can increase the generalization capacity of a model. Based on this idea, Aslan &

YILMAZ (2021) leverage a deep learning model that uses two different pre-trained

convolutional neural networks as feature extractors. Their proposed model has two

branches to extract features from greyscale malware images. One of these branches

is AlexNet, and the other is ResNet152. These pre-trained networks extract two

different feature representations for a given greyscale malware image sample. After

that, the model merges these two representations and redirects to three sequential

fully connected layers whose dimensions are 4, 096, and each fully connected layer

contains a ReLU activation function and batch normalization layer. The final layer is

the softmax layer. They have evaluated the proposed model with the BIG2015, Mal-

img, and Malevis datasets. They have split these three datasets into three parts:

70% of samples for training sets, 10% of samples for validation sets, and 20% of

samples for test sets. They have used accuracy, sensitivity, specificity, and F-score

as performance metrics. Finally, the proposed model obtains 97.78% accuracy for

the Malimg dataset, 94.88% accuracy for the BIG2015, and 96.5% accuracy for the

Malevis dataset. One of the weaknesses of their system is that the system requires

30 hours for the training phase without GPU.

2.4 Hybrid, Ensemble, and Multi-modal Models

Ganaie et al. (2021) inspect ensemble deep learning models in different domains and

some ensembling strategies in the literature. Their study points out some future

studies and research directions on deep ensemble learning models. One of the most

developing research domains that the study does not cover is malware classification
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or detection, where ensemble machine or deep learning models are frequently used.

Abusitta et al. (2021) put forth a survey containing recent developments in malware

detection and classification research area. They also propose a new malware classi-

fication taxonomy based on algorithms and features. In this taxonomy, the features

branch is divided into two parts: feature extraction and feature type. Feature ex-

traction contains three different parts such as static, dynamic, and hybrid. Feature

types are listed, such as system calls, network, byte sequences, file system, printable

strings, assembly codes, the dynamic linked library function calls, and functions

control graphs. Besides, the algorithms part is divided into two parts: the signature

based approach and the artificial intelligence based approach. The paper expresses

that the hybrid method is applied to achieve higher success in malware classification

by combining static and dynamic features. The paper also addresses some critical

research gaps in the literature, such as robust solutions, collaborative solutions, and

sustainable solutions.

Last but not least, they characterize each reviewed paper concerning both algo-

rithms and features used and highlight their strengths and limitations. In this

perspective, making hybrid or ensemble models in malware classification is the most

common trick to increase the generalization capacity of artificial intelligence based

approaches. Therefore, the thesis focuses on creating a novel ensemble of CapsNet

based on bagging methods like random forest classifier with great inspiration.

There are various examples of ensemble methods for malware classification in the

literature. For instance, Liu et al. (2017) combine features from gray-scale malware

images, n-gram of opcodes, and function imports from malware source files. For this

reason, this study is also a good example of a hybrid approach of image-based and

sequence-based malware classification. They use a dataset, which has 9 different

malware types, collected from three sources, and the dataset has more than 20, 000

malware samples. They propose a decision-making system for malware classification

based on bootstrap aggregating ensemble method that uses classification methods
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such as decision tree, K-nearest neighbor, random forest, gradient boosting classifier,

naive Bayes, logistic regression, and support vector machine (with the polynomial

kernel). They make an ensemble of these classifiers using majority voting. They

report that their decision-making model has 98.9% for their test set, and the model

can successfully classify new samples with 86.7% accuracy. Although their study is

an important example of an ensemble model for malware classification, the model

heavily depends on classical feature extraction methods because they use traditional

machine learning models instead of deep learning architectures.

Pektaş & Acarman (2017) make an ensemble model for a hybrid version of static

features such as permissions, hidden payloads, and dynamic features such as appli-

cation programming interface calls, installed services, network connections extracted

from Android application package files. They obtain 92% accuracy on their test set,

but their sample size of the dataset is comparatively less than the BIG2015 and the

Malimg. Their model also requires massive feature engineering because they en-

semble models traditional machine learning models such as random forest, support

vector machine, and logistic regression.

Fang et al. (2020) have conducted one of the newest studies that show an ensemble

of different features or different models for Android malware types. They have used

the Android malware dataset called AMD, which contains 24, 553 samples and 71

unique malware families. However, they have re-sampled from the original dataset,

and the new dataset contains 3, 000 samples and 15 unique malware families. Their

model takes three different feature sets extracted from raw files. The first is the

texture feature set from RGB malware images using the GIST method. The second

is the color feature set from RGB malware images using the color moments. The

third is the text feature set from the DEX files using the simhash approach. They

have fused those three feature sets using three kernelized support vector machine

models, and they have taken the weighted average of the kernelized models. They

report a 0.96 F-score on a holdout test set which is 20% of their dataset.
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One of the latest studies for Android malware family classification with an ensemble

model by Bakour & Ünver (2021) aims to develop a novel generic image-based

malware classifier for Android malware families. In order to this, they have created

five greyscale image datasets collected from Android malware sample sources. Each

malware dataset contains 4, 850 greyscale malware images. They have extracted two

types of feature sets for each dataset. The first type is local features, including scale-

invariant feature transform, speeded-up robust features, ORB, and KAZE features.

The second type is global features, including color histogram, Hu moments, and

Haralick texture. They have trained six different machine learning models, including

random forest, k-nearest neighbor, decision trees, bagging, Adaboost, and gradient

boosting trees. In this way, they have hybridized an ensemble majority voting

classifier using local and global features as voters. The proposed model has used

stacking for global features and a bag of visual words for the local features. In

addition to this, they also have tested residual networks and Inception-V3 networks

on their datasets. Finally, they have compared the proposed model with the results

of some the-state-of-the-art models in terms of classification accuracy, execution

time, and generality. They have obtained 97.94% accuracy for their hybrid model,

and they have attained on their datasets 96.34% and 95.12% classification accuracies

using respectively ResNet and Inception-V3. They also report execution times of

their model maximum 401seconds and minimum 342 seconds.

Making an ensemble model of traditional machine learning methods can reach the

state-of-the-art results on some malware classification datasets with less feature

dimension and running time. Verma et al. (2020) declare that building efficient

models for imbalanced malware classification datasets is a great challenge. They also

point out that the high feature dimensionality increases overhead for the machine or

deep learning models. They aim to fill this gap by presenting a model for greyscale

malware image representations for malware family classification. Their approach

derives a novel combination of first-order and GLCM-based second-order statistical

features for greyscale malware image representations. There are nineteen first-order

features and eight second-order features extracted by them. These features are
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stacked in a design matrix, and each row represents one malware sample in the

dataset. They have obtained the state-of-the-art results using random forest, an

ensemble model, in terms of F-score and accuracy on the Malimg dataset. They

have reported 98.58% accuracy and 98.05% F-score for the Malimg dataset using

only 35 features, which is the lowest dimension among four studies in their paper.

Moreover, the feature extraction for this model takes 37 msec, and the training of

the random forest that uses these features takes an average time of 0.001 sec.

Vinayakumar et al. (2019) also emphasize that the machine learning algorithms

require extensive feature engineering. They construct a deep learning model to avoid

performing extensive feature engineering, and they try to fill the gap for zero-day

malware detection. In order to that, they have created train and test splits of public

and private datasets collected in different timescales. They propose a novel deep

learning architecture that uses static, dynamic, and image-based malware features.

They combine convolutional layers with LSTM layers, and that architecture called

DeepImageMalDetect has the less total number of trainable parameters among other

models mentioned in their paper. One of the datasets in their paper is the Malimg

dataset, and they obtain a 0.962 F-score on that dataset with DeepImageMalDetect.

Last but not least, they present a holistic real-time malware analysis architecture

that contains the DeepImageMalDetect model as a sub-deep neural network.

Azeez et al. (2021) present another essential example of an ensemble method that

uses stacking for malware classification. Their stacked model contains two stages

called base and final. The base stage contains a stacked ensemble of fully connected

and one-dimensional convolutional neural networks, and they analyze 15 different

machine learning classifiers for choosing the meta learner in the final stage. The re-

sults of the stacked ensemble model are obtained from a binary classification dataset

which is a collection of Windows Portable Executable (PE) files. The dataset has

19,611 malware samples. They propose the best-stacked model with an ensemble of

seven neural networks and the ExtraTrees classifier as the final stage classifier.
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Korine & Hendler (2021) develop a distinctive novel approach, which aims to be a

dataset-agnostic and platform-agnostic malware classifier. According to their study,

their proposed system is also explainable at the same time. They have tested the

proposed model on five different datasets to show the model is dataset-agnostic,

which means the model gives high accuracy on any malware dataset. They have

also shown that the model is platform-agnostic because it can classify malware files

from Android and Windows operating systems. Their system called DAEMON

contains five stages such as entropy threshold computation, family representative n-

gram extraction, pairwise-separating feature selection, feature-vector computation,

and random forest model generation. They have reached 99.72% accuracy, which is

an excellent result for the dataset BIG2015, using the traditional machine learning

model. However, this system requires dense and sequential feature-engineering steps

from stages one to five, and the total running time for generating a DAEMON

model is 16 hours. The RCNF model in the thesis has reached the-state-of-the-

art results using lightweight pre-processing methods thanks to deep learning and

CapsNet architecture.

Deep learning allows the researchers who study the malware classification problem

to create novel models that can predict malware types from multi-modal feature

sets without performing heavy feature engineering methods, unlike the ensemble

and hybrid models that use machine learning methods mentioned before. For exam-

ple, Gibert et al. (2020a) propose a multi-modal deep learning architecture for the

BIG2015 dataset. They define three types of modalities from the raw files in the

BIG2015 dataset. These are the list of Windows API function calls, the sequence

of assembly language instructions from ASM files in the BIG2015 dataset, and the

sequence of hexadecimal values from the BYTE files in the BIG2015 dataset. Their

system called HYDRA contains three sub-neural networks as API-based component,

byte-based component, and opcode-based component. A dense layer combines API-

based and byte-based components in the intermediate fusion and classifier layer.

Before the classification layer, another fully connected layer also combines the out-

put of the previous dense layer with the opcode-based component, and the classifier
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layer takes the output of the last dense layer as input. Thus, the model can pre-

dict malware types using a multi-modal structure. They report 98.71% accuracy

and 0.9695 F-score without pre-training and modality dropout. In their paper,

their highest results are 99.75% accuracy and 0.9954 F-score using pre-training and

modality dropout.

Internet of things and future networks (e.g., 5G) need new security research because

of the rapid improvements. One of the papers utilizing multi-modal deep learning

architectures done by Dib et al. (2021) emphasizes to lack of sophisticated malware

classification models for the internet of things and new generation networks. The

paper benefits from features from strings and image-based representations of exe-

cutable malware binaries to propose a novel multi-dimensional malware classifier

using deep learning architectures. The proposed model contains two components:

image-based and string-based. The image-based component has built a convolu-

tional neural network that takes 128× 128 greyscale malware image representations

as input. The string-based component is a long short term neural network that takes

string representations extracted from byte code files of malware samples as input.

A fusion layer combines these two components following two sequential dense layers

and a softmax layer called the classification layer. In order to evaluate their models,

they have used a dataset containing more than 70, 000 recently detected malware

samples from the internet of things platforms. They also offer a new label named

unknown for newly detected malware samples which are the rarest in the dataset.

Thus, the dataset seven unique malware family labels. Finally, they report 0.9978

accuracy and 0.9957 F-score for their multi-modal model.

Schranko de Oliveira & Sassi (2020) propose a novel ensemble malware classifier

called CHIMERA for only Android platform, similar to DAEMON. CHIMERA has

three sub-neural networks: CHIMERA-S, CHIMERA-R, and CHIMERA-D. Each

sub-network learns from different representations; for example, CHIMERA-S is a

fully connected neural network that uses static features from intents and permissions.

CHIMERA-R is a convolutional neural network that uses greyscale images from DEX
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files. Finally, CHIMERA-D is a transformer architecture that uses dynamic features

from system call sequences. Thus, the CHIMERA system is an ensemble model

of those three sub-networks via an intermediate fusion layer. In this perspective,

the CHIMERA system is a hybrid malware classification model that can use static,

dynamic, and image-based malware representations simultaneously. They have used

a public benchmark dataset called Omnidroid, which contains 22, 000 malware and

goodware samples. The dataset is balanced in terms of class distribution. In the

paper, the CHIMERA system has the highest performance metrics for 10-fold cross-

validation. Although its highest performance on a binary classification problem for

the Android platform, there is no performance analysis of the CHIMERA system

for family types of Android malware files.

This thesis also points that ASM and BYTE files can be more useful and distin-

guishable for malware type classification problems. Using ASM and BYTE files

simultaneously for the BIG2015 dataset in the RCNF model is one of the unique

ideas behind the thesis. In this perspective, this thesis is the earlier study that can

process ASM and BYTE files at the same time to classify malware families. Li et al.

(2021), the latest study citing our paper (Çayır et al. 2021), emphasizes the lack of

studies that simultaneously process ASM and BYTE files to classify malware types.

They have proposed a standard convolutional neural network architecture for the

BIG2015 dataset. Arguably, they have removed all samples from the Simda family,

which is the rarest and the most challenging family in the BIG2015, so they have

reported their metrics for eight classes instead of nine.

The other work indicating feature fusion like this thesis by Zhu et al. (2021) intro-

duces a new model that uses malware images created from byte codes and opcodes

at the same time for malware homology determination. For this reason, their CNN

architecture consists of dual convolutional branches in the feature extraction layer

of the network. This study uses the BIG2015 dataset. They also investigate the

effects of the size of the malware images on classification performance. According

to their findings, the ideal image size is 64× 64.
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2.5 Imbalanced Dataset Handling Methods

Another aspect is to gather data for malware classification task. Malware datasets

are imbalanced due to its nature. These are some examples to deal with imbalanced

issues such as Ebenuwa et al. (2019) pointed imbalanced classification problem in

binary classification. They inspected three different techniques, such as sampling-

based, algorithm modifications, and cost-sensitive approaches. They proposed vari-

ance ranking feature selection techniques to get better results in imbalanced datasets

for binary classification problems. Their findings indicate combinations of algo-

rithms such as ensemble and bagging preferred solution for imbalanced datasets.

Data augmentation is a brilliant idea to increase the number of samples for training

datasets containing images. Thanks to the data augmentation approach, many

learning models can learn the rarest malware families. Source code obfuscation is one

of the fundamental approaches for malware datasets. Marastoni et al. (2021) notice

that augmenting the existing greyscale malware images is not helpful to classify

the rarest families, and they propose a way to create augmented greyscale malware

images using an obfuscator application from the source code. They have tested

their proposed method on the BIG2015 and the Malimg datasets, similarly to the

thesis. Although the proposed augmentation method is quite impressive, the method

requires datasets containing source code files like BIG2015, and it is not applicable

for existing greyscale malware images like the Malimg dataset.

Another data augmentation approach for imbalanced datasets is generating new

samples using generative models or adding some noise to existing samples via statis-

tical approaches. For example, Catak et al. (2021) suggest a new data augmentation

method for three-channel malware image representations. Their system has three

stages. The system converts malware files to RGB images for the first stage using

decimal conversion, entropy conversion, and zeros. In the second stage, the sys-

tem generates new three-channel malware images adding Gaussian, Poisson, and

Laplace noises to existing three-channel malware images obtaining from the first
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stage. Finally, they train a convolutional neural network using augmented and orig-

inal three-channel malware images in the final stage of their proposed system. They

have used the dataset collected by them, and they have published the dataset for

public usage.

Some critical studies show that transfer learning and data augmentation efficiently

overcome the imbalanced dataset problem in malware classification. For instance,

Nisa et al. (2020) suggest a novel hybrid model for imbalanced malware classification.

The proposed model contains data augmentation, image resizing, feature extraction,

feature fusion, dimension reduction using principal component analysis and classi-

fication steps. In the data augmentation part, they express that the augmentation

method must avoid modifying the texture topologies in malware classes because of

using a method called segmentation-based fractal texture analysis (SFTA) in the

feature extraction step. Thus, they have used rotation, scaling, and flipping for

the data augmentation part of the proposed model. In the image resizing part,

they have resized greyscale malware images to 128 × 128 for SFTA, 227 × 227 for

AlexNet, and 229 × 229 for InceptionV3. In the feature extraction part, there are

three different methods. One of them is SFTA, and it returns an 87 dimensional

feature vector for each greyscale malware image. They have used two pre-trained

convolutional neural networks AlexNet and InceptionV3. They have extracted a

4, 096 dimensional feature vector with AlexNet and extracted a 2, 048 dimensional

feature vector with InceptionV3. They have combined these three feature vectors

in the fusion step and obtained a 6, 231 dimensional fused feature vector. After

that, the fused feature vector is reduced to 3, 000 dimensional feature space using

principal component analysis in the dimension reduction part. Finally, they have

used various machine learning classifiers such as support vector machines, k-nearest

neighbors, and decision trees. The proposed model has only been evaluated on the

Malimg dataset. They have reported 99.3% accuracy for the proposed model.
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2.6 Capsule Networks

CapsNet, as a new CNN structure, has been implemented by Sabour et al. (2017),

especially in the health domain (Jiménez-Sánchez et al. 2018), CapsNet have many

applications in the literature. For instance, Afshar et al. (2018) use CapsNet for

brain tumor classification problems like classification of breast cancer histology im-

ages of Iesmantas & Alzbutas (2018). Mobiny & Van Nguyen (2018) create a fast

CapsNet architecture for lung cancer diagnosis. Another important application area

of CapsNet is object segmentation. LaLonde & Bagci (2018) use CapsNet for ob-

ject segmentation. Traditional CNN structures, on the other hand, are used in

Generative Adversarial Networks, GANs. CapsNet is very useful to make GANs

better by removing the weakest point of these CNNs (Jaiswal et al. 2018).

Although capsule networks are new convolutional neural network architectures, they

significantly impact the computer vision area. However, there are other applications

of capsule networks other than computer vision. For example, Ye et al. (2020) intro-

duces a capsule network application called CapsLoc for indoor localization from re-

ceived signal strength indicator values coming from wireless access points. They have

collected 33, 600 data points using the wifi fingerprinting method. They have used

mutual differences of received signal strength indicator values from different access

points as data representations. They report a 0.68 meter average error comparing

other conventional methods such as support vector machine, k-nearest neighbors,

and convolutional neural networks.

Capsule networks with some modifications can outperform some models for sequen-

tial datasets for some tasks such as text classification, tag recommendation, and

speech recognition. Lei et al. (2020) introduce a tag recommendation model by

text classification. They have combined capsule networks with an attention layer, a

novel and efficient deep learning technique for sequential representations like text in

their tag recommendation model. The attention layer helps the capsule network to

distill the important information from the input documents. They have tested the
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proposed model with two different datasets called TPA and AG. The TPA dataset

contains 18, 464 academic articles and five unique tags. The AG dataset contains

127, 600 news articles ad four unique tags. They have attained a 0.824 F-score for

the TPA dataset and 0.923 F-score for the AG dataset.

Another exciting application of a modified capsule network on sequential representa-

tions is introduced by Dong et al. (2020). They propose a capsule network combined

with BiLSTM layers for a sentiment analysis task. They have used three different

datasets: the internet movie database (IMDB), movie review (MR), and Stanford

sentiment tree (SST) dataset. The IMDB dataset contains 50, 000 samples and two

unique classes, such as positive and negative, and the average sentence length is

294. The MR dataset has 5, 331 positive reviews, 5, 331 negative reviews and the

average sentence length is 20. The SST dataset contains 11, 855 sentences and five

different categories. In the SST dataset, the average sentence length is 19. They

have obtained 81.47% accuracy for the MR dataset, 91.96% accuracy for the IMDB

dataset, and 48.34% accuracy for the SST dataset. Their results show that using a

capsule network with BiLSTM layers can reach the state-of-the-art results on these

three datasets.

One of the interesting applications of the capsule network model for a sequential

dataset is designed for remote sensor signals. For example, He et al. (2020) design

a capsule network called PickCapsNet for automatic P-wave arrival picking in mi-

croseismic monitoring. They emphasize that existing semi-automatic P-wave arrival

picking models use complex feature extraction from wave-formed datasets. However,

PickCapsNet, their proposed model, is a highly scalable capsule network for P-wave

arrival picking from a single waveform without complex feature extraction methods.

They have used a dataset containing 1, 736 records of microseismic waveforms from

a copper mine located in China. All samples in the dataset are associated with

manually determined P-wave arrival picks. The paper has split the original dataset

into a training set containing 75% of the records and a test set containing 25% of

the records. They compared PickCapsNet with three methods: Akaike information
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criterion, short and long time average, and standard convolutional neural network.

In order to evaluate the performance of the proposed model, they have used a

signal-to-noise ratio. Their results show three critical findings. First, PickCapsNet

is more accurate than others. Second, PickCapsNet has high accuracies under dif-

ferent signal-to-noise ratios. Finally, PickCapsNet is more stable and reliable than

traditional mathematical models for P-wave arrival picking.

The snippet studies above show that CapsNet is a promising architecture against

the traditional CNN. In the literature, although there are many applications of

CapsNets, there is a missing and important area. This area is a computer and

information security. This gap can be seen easily in the pre-print version of a survey

about CapsNets (Patrick et al. 2019).

2.7 Summary of the Related Work

Malware classification and detection with the machine and deep learning is a broad

and very dynamic research area. However, some selected papers summarized above

show that image-based malware classification with traditional machine learning ap-

proaches is the most common technique. Thanks to the rapid developments in deep

learning, many researchers have focused on building different neural network archi-

tecture, multi-modal models, ensemble models, or hybrid versions of different static,

dynamic, and image-based malware features. In addition, researchers can apply

many deep learning models to raw datasets, so using deep learning architectures re-

duces the dependency on complex and domain knowledge-based feature engineering

methods.

Table 2.1 provides a summary of some of the selected papers from the related work

for each topic we focus on and discuss through section 2. Also, it indicates the lack

of studies on CapsNet and imbalanced dataset handling for malware family type

classification task. To this end, this thesis aims to develop a malware classifica-

tion model based on an ensemble of CapsNet architecture for imbalanced malware
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datasets to fill the research gap in malware classification. Moreover, the latest pub-

lications citing our study (Çayır et al. 2021) show that CapsNet and its bagging

ensemble version have great potential for image-based malware classification tasks

(Hamza et al. 2021, Zhang et al. 2021).

Table 2.1 Some Related works investigated by subject.

Paper
Malware

Classification

Capsule

Network

Imbalanced

Dataset

Handling

Alazab (2015) + - -

Azab et al. (2014) + - -

Nataraj, Karthikeyan, Jacob & Manjunath (2011) + - -

Kancherla & Mukkamala (2013) + - -

Krizhevsky et al. (2012) + - -

Ni et al. (2018) + - -

Sabour et al. (2017) - + -

Afshar et al. (2018) - + -

Iesmantas & Alzbutas (2018) - + -

Mobiny & Van Nguyen (2018) - + -

LaLonde & Bagci (2018) - + -

Jaiswal et al. (2018) - + -

Patrick et al. (2019) - + -

Ebenuwa et al. (2019) - - +

25



3. METHODOLOGY

There are many open research issues in malware classification. These issues can be

listed such as class imbalance, concept drift, adversarial learning, interpretability

(explainability) of the models, and public benchmarks (Gibert et al. 2020b). In this

thesis, our model called RCNF focuses on the class imbalance issue. Thus, the base

CapsNet and the proposed RCNF models have been tested on two very well-known

malware datasets called Malimg and Microsoft Malware 2015 (BIG2015). These

datasets are highly imbalanced in terms of the number of classes. This section

describes these datasets.

3.1 Malware Datasets

3.1.1 Malimg

Nataraj et al. introduced a new malware family type classification approach based

on visual analysis, converted binaries into greyscale images and they published these

images as a new malware dataset called Malimg (Nataraj, Karthikeyan, Jacob &

Manjunath 2011). This dataset has 9, 339 samples and 25 different classes. Table

3.1 presents the number of samples for each malware family. This distribution shows

that the dataset is highly imbalanced.

Figure 3.1 shows the malware images created from the byte files. All images are

single-channel and are resized to 224 × 224 for CapsNet architecture. This size is

the largest value that can be processed in our computer system.
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Table 3.1 Sample distribution for each malware family.

No. Family Name Number of Samples

1 Allaple.L 1591

2 Allaple.A 2949

3 Yuner.A 800

4 Lolyda.AA 1 213

5 Lolyda.AA 2 184

6 Lolyda.AA 3 123

7 C2Lop.P 146

8 C2Lop.gen!g 200

9 Instantaccess 431

10 Swizzot.gen!I 132

11 Swizzor.gen!E 128

12 VB.AT 408

13 Fakerean 381

14 Alueron.gen!J 198

15 Malex.gen!J 136

16 Lolyda.AT 159

17 Adialer.C 125

18 Wintrim.BX 97

19 Dialplatform.B 177

20 Dontovo.A 162

21 Obfuscator.AD 142

22 Agent.FYI 116

23 Autorun.K 106

24 Rbot!gen 158

25 Skintrim.N 80
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(a) Adialer (b) Fakerean

Figure 3.1 Malware image samples obtained from byte files using the algorithm
described in (Nataraj, Karthikeyan, Jacob & Manjunath 2011) and shown in

Figure 3.2

3.1.2 Microsoft Malware 2015 (BIG2015)

BIG2015 dataset has been released as a Kaggle competition (Ronen et al. 2018).

Table 3.2 presents the sample distribution for each malware family in BIG2015

dataset. The distribution shows that the dataset is highly imbalanced and Simda is

the toughest malware family to be predicted for the dataset. The dataset contains

10, 868 BYTE (bytes) files and 10, 868 ASM (assembly code) files and 9 different

malware family types. BIG2015, unlike the Malimg dataset, contains raw files. As

in the pre-processing approach on the Malimg dataset, we opened a file from the

BIG2015 dataset in the byte mode, and then the file is read by 256 sized chunks

till the end of the file. Finally, the buffer is converted to an array and the array is

saved as a greyscale image into the file system. All required pre-processing steps are

depicted in Fig 3.2. This method is the most common way to convert from malware

files to images (Nataraj, Karthikeyan, Jacob & Manjunath 2011, Venkatraman &

Alazab 2018).

Figure 3.3 depicts image representations created from the BYTE and ASM files of

the same malware sample in Ramnit malware family. All images are single channel.

All images are resized to 112×112 dimensions for our CapsNet architecture, because

the architecture uses both BYTE and ASM image representations at the same time.
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Figure 3.2 Flowchart of the process of a flat-file to greyscale image for the
BIG2015 dataset.

Table 3.2 Number of samples for each malware family in BIG2015 dataset.

No. Family Name Number of images

1 Ramnit 1541

2 Lollipop 2478

3 Kelihos ver3 2942

4 Vundo 475

5 Simda 42

6 Tracur 751

7 Kelihos ver1 398

8 Obfuscator.ACY 1228

9 Gatak 1013

3.2 Models

In this section, general capsule networks, base CapsNet architecture for Malimg and

base CapsNet architecture for BIG2015 are described. CapsNet architectures are

different for both Malimg and BIG2015 Dataset.
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(a) Ramnit image from BYTE

file

(b) Ramnit image from ASM

file

Figure 3.3 BIG2015 image samples from BYTE and ASM files using the
algorithm described in ((Nataraj, Karthikeyan, Jacob & Manjunath 2011)).

3.2.1 Capsule Networks

Capsule networks are special architectures of convolutional neural networks aiming

to minimize information loss because of max pooling (Sabour et al. 2017). This

method is the weakest point for preserving spatial information (Iesmantas & Alzbu-

tas 2018). A CapsNet contains capsules similar to autoencoders (Krizhevsky &

Hinton 2011, Sabour et al. 2017). Each capsule learns how to represent an instance

for a given class. Therefore, each capsule creates a fixed-length feature vector to be

input for a classifier layer without using max pooling layers in its internal structure.

In this way, this capsule structure aims to preserve texture and spatial information

with minimum loss. In addition to those, we chose CapsNet as a base estimator since

the model reaches the-state-of-the-art results in some tasks with less the number of

trainable parameters. Therefore, this case makes creating an ensemble of CapsNet

easier than other deep convolutional neural networks containing millions of trainable

parameters.

(Sabour et al. 2017) propose an efficient method to train CapsNet architectures.

This method is called a dynamic routing algorithm, which uses a new non-linear

activation function called squashing shown in (3.1). This equation emphasizes that

short vectors are shrunk to almost zero and long vectors are shrunk to 1 (Sabour

et al. 2017). In this equation, vi is the output of ith capsule and si shows the total
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input of this capsule.

vi =
‖si‖2

1 +‖si‖2
si
‖si‖

(3.1)

Visualizing the squash activation function described in (3.1) is hard because its input

is a high dimensional vector. If the activation function can be thought of as a single

variable function, as described in Marchisio et al. (2019), then the behavior of the

function and its derivative can be visualized, as in Figure 3.4.

Figure 3.4 Squashing activation function and its derivation in 2-D plane.

A basic CapsNet architecture contains two parts: the standard convolution blocks

and the capsule layer as shown in Figure 3.5. A convolution block is made from

a combination of convolution filters and ReLU activation function. At the end of

the convolution block, obtained feature maps are reshaped and projected to d −
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dimensional vector representation. This representation feeds each capsule in the

capsule layer. Each capsule learns how to represent and reconstruct a given sample

like an autoencoder (Krizhevsky & Hinton 2011) architecture. In order to learn how

to reconstruct a malware sample, the capsule network will minimize reconstruction

error in (3.2), where xc ∈ Rd×d is the real sample in the capsule c and x̂c ∈ Rd×d is

the reconstructed sample by the same capsule c. These representations are used to

calculate the class probabilities for the classification task.

`r = (xc − x̂c)2 (3.2)

Margin loss function is used for CapsNet. This function is similar to hinge loss

(Rosasco et al. 2004). The equation (3.3) defines the margin loss `m for capsule c,

`m = yc × (max(0,m− ŷc))2 + λ× (1− yc)× (max(0, ŷc − (1−m)))2 (3.3)

where m = 0.9, λ = 0.5, yc denotes actual class, and ŷc represents the current

prediction.

Lc = `m + 0.0005× `r (3.4)

L =
1

N

N∑
n=1

Lc (3.5)

The mean of Lc for each capsule gives the total loss in (3.4), where Lc is sum of

margin loss `m (as described in (3.3)) and reconstruction loss `r (as described in

(3.2)). However, reconstruction loss is multiplied by 0.0005 to avoid suppressing

the margin loss (Sabour et al. 2017). In order to minimize loss L in (3.5), one can

use the most applicable optimizer algorithm for CapsNet by Adam (Kingma & Ba
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2014, Sabour et al. 2017). We have observed that our CapsNet architecture cannot

converge to minimum loss value with optimizers other than Adam, unlike Chauhan

et al. (2018). This is obviously an open issue for our CapsNet studies in the future.

In image-based malware family type classification problem, there are no complex

patterns that are easily detected by classical convolutional neural networks. For

this reason, the predictive model must recognize the pattern of pixel distribution

of the image-based malware sample. On the other hand, CapsNet can learn pixel

density distribution of each malware family. Thus, a CapsNet model can be easily

trained from scratch for this problem, unlike CNNs. This is the most important

advantage of using CapsNet as a base classifier in our proposed model.

Figure 3.5 Basic CapsNet architecture.

The main assumption of this thesis is that CapsNet architecture will be able to suc-

cessfully classify malware family types using raw pixel values obtained from malware

binary and assembly files. In addition to the main assumption, this thesis aims to

increase CapsNet malware type classification architecture accuracy with the bagging
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ensemble method.

3.2.2 Base Capsule Network Model for Malimg Dataset

Before creating an ensemble CapsNet model, the base CapsNet estimator must be

built. This architecture depends on the dataset. Thus, base CapsNet estimator

architecture has a single convolution line, as shown in Figure 3.6. The convolutional

line contains two sequential blocks and each block contains two sequential convolu-

tions and ReLU layers. The first two convolutional layers have 3× 3 kernels and 32

filters. The second two convolutional layers have 3×3 kernels and 64 filters. Feature

maps are reshaped to 128 feature vectors. At the end of the reshape step, there is

a capsule layer containing 25 capsules; the dimension of each capsule is 8 and the

routing iteration is 3 of the capsule layer. This is the tuned CapsNet architecture

for the Malimg dataset depending on our experiments.

Figure 3.6 CapsNet architecture for Malimg dataset.

3.2.3 Base Capsule Network Model for BIG2015 Dataset

The BIG2015 dataset has two different files for each sample. One of them is a binary

file and the other is an assembly file. Thus, it is possible to design a CapsNet, which

can be fed by two different image inputs at the same time. Figure 3.7 shows a

CapsNet architecture, which has two exactly identical convolution lines. In this

architecture, the first two sequential layers contain 3× 3 kernels and 64 filters. The

second two sequential layers contain 3× 3 kernels and 128 filters.
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Figure 3.7 CapsNet architecture for BIG2015 dataset.

Features extracted from the ASM and BYTE images are concatenated and the final

feature vector is reshaped to a vector with length 128. For the next level, as an input,

this feature vector feeds to a capsule layer containing 9 capsules. In this layer, the

dimension of each capsule is 8 and the routing iteration is 3. This hyper-parameter

set is optimal for the base CapsNet estimator for the BIG2015 dataset.

3.2.4 The Proposed Random CapsNet Forest Model for Imbalanced Datasets

Random CapsNet Forest (RCNF) is an ensemble model, which is inspired by the

Random Forest algorithm (Breiman 2001). The basic idea behind RCNF is to as-

sume identical CapsNet models as weak learners create different training sets for

each model from the original training set using the bootstrap resampling technique,

as shown in Algorithm 1. The training algorithm is a variant of bootstrap aggre-

gating (also known as bagging) (Breiman 1996a) for CapsNet model and bagging

reduces the variance of the model while increasing robustness of the model (Breiman

1996b). In this study, bagging is preferred to create an ensemble of CapsNet instead

of boosting (Freund et al. 1996), because it is shown that boosting tends to overfit

(Quinlan et al. 1996). During the training phase, each epoch updates the weights

of the CapsNet. Therefore, the weight of the best model at the end of each epoch

is saved according to the validation score to increase model performance and con-

sistency against random weight initialization of the CapsNet.
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Algorithm 1 Random CapsNet Forest Training Algorithm

1: procedure train(base model, n estimators, trainset, valset, epochs)

2: for i← 1, n estimators do

3: bs trainset← resample(trainset, replacement = True)

4: for e← 1, epochs do

5: base model.fit(bs trainset)

6: val score← get accuracy(base model, valset)

7: if is best score(val score) == True then

8: save weights(base model)

Algorithm 2 Random CapsNet Forest Prediction Algorithm

1: procedure predict(n estimators, testset, numclasses). Average Ensembling

2: total preds← zeros like(testset.shape[0], numclasses)

3: for i← 1, n estimators do

4: modeli ← load model weights(i)

5: total preds+ = modeli.predict(testset)

6: preds← total preds/n estimators

7: return argmax(preds) . The final predictions of CapsNet models

The prediction method is described in Algorithm 2. Each weight of CapsNet model

is loaded and test samples are predicted by the model. Cumulative predicted proba-

bilities are added onto total preds variable and this step is known as average ensem-

bling step. At the end of the estimation loop, the index of the highest probabilities

is assigned as a predicted class.

36



4. EXPERIMENTS & RESULTS

CapsNet and RCNF ensemble models are tested on two different datasets called Mal-

img and BIG2015. The Malimg dataset has been divided into three parts: training,

validation, and test sets. The training set has 7, 004 samples, the validation set has

1, 167 samples, and the test set has 1, 167 samples. BIG2015 has also been divided

into three parts like the Malimg dataset. In the experiments of CapsNet and RCNF

ensemble model for the BIG2015 dataset, the training set has 8, 151 samples, the

validation set has 1, 359 samples and the test set has 1, 358 samples. The first exper-

iment is made to obtain performance results of single base CapsNet estimators for

each dataset. The second experiment is about the performance of the RCNF model.

Model evaluation has been done in terms of accuracy, F-Score, and the number of

parameters of deep neural nets. These performance metrics are defined as follows:

accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4.1)

F -Score =
2× TP

2× TP + FN + FP
(4.2)

where true positive (TP) and false positive (FP) are the numbers of instances cor-

rectly and wrongly classified as positive respectively. True negative (TN) and false

negative (FN) are the number of instances correctly and wrongly classified as neg-

ative respectively. Accuracy is the ratio of the number of true predictions to all

instances in the set as shown in (4.1). F-Score is shown as the set (4.2) in terms of

true positives, false negatives, and false positives. Accuracy is not a correct perfor-

mance metric for imbalanced datasets. On the other hand, papers compared in this

work use accuracy and F-Score performance metrics to measure the success of their

models. Thus, this thesis gives the experiment results in terms of accuracy and the
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F-Score. Our main goal is that an ensemble of the CapsNet can increase F-score by

virtue of decreasing FN and FP in (4.2).

Figure 4.1 shows confusion matrices for each test part of both datasets. Each confu-

sion matrix (Figure 4.1a and 4.1b) implies that a model containing single CapsNet

incorrectly predicts rare malware families in both datasets.

Figure 4.2 is the confusion matrix of RCNF containing 5 base CapsNet models. This

confusion matrix shows the prediction accuracy of the model for each malware family

type in the Malimg test set. Class 8, 10, 20, and 21 have been predicted wrongly

by the RCNF model. On the other hand, the model has been very successful at

correctly predicting other malware types in the test set. This confusion matrix also

shows that RCNF is successful at correctly predicting rare malware types in the

Malimg test set.

(a) Malimg test set (b) BIG2015 test set

Figure 4.1 Confusion matrices of single CapsNet model for each test set.

In the second experiment, RCNF is tested on the BIG2015 dataset. Figure 4.3 shows

the prediction results of RCNF containing 10 base CapsNet for BIG2015 dataset.

Class 4 is the rarest malware type in the whole dataset. Training, validation, and

test sets are stratified, so the class distribution is preserved for each partition. This

result shows that RCNF can predict the rarest malware type pretty well. Class 0, 1,
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Figure 4.2 Confusion matrix of 5-RCNF for Malimg test set.

2, and 6 are predicted perfectly by RCNF. If the performance of RCNF is compared

with the performance of a single CapsNet model, it is easily seen that RCNF is

better than a single CapsNet at predicting rare malware families for imbalanced

datasets.

Table 4.1 Comparison RCNF and other methods for Malimg test set performance.

Model Number of Parameters F-Score Accuracy

Yue (2017) 20M - 0.9863

Cui et al. (2018) - 0.9455 0.9450

Venkatraman et al. (2019) 212, 885 0.916 0.963

Vasan, Alazab, Wassan, Naeem, Safaei & Zheng (2020) 134M 0.9820 0.9827

Vasan, Alazab, Wassan, Safaei & Zheng (2020) 157M 0.9948 0.9950

CapsNet

for

Malimg

90, 592 0.9658 0.9863

RCNF

for

Malimg

5× 90, 592 0.9661 0.9872
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Figure 4.3 Confusion matrix of 10-RCNF for BIG2015 test set.

Table 4.1 shows the test performance of the proposed models and others for the

Malimg dataset. Yue (2017) uses a weighted loss function to handle the imbalanced

class distribution problem in the Malimg dataset and also uses the transfer learning

(Yosinski et al. 2014) method to classify malware family types. Due to the usage

of transfer learning, the architecture has 20M parameters and the model is so huge.

Cui et al. (2018) use classical machine learning methods such as K-Nearest Neighbor

and support vector machines. They have trained these algorithms using GIST and

GLCM features, which are feature engineering methods for images and they have

applied resampling to the dataset to solve imbalanced dataset problems. RCNF

does not use a weighted loss function or any sampling method to overcome the

imbalanced dataset problem. Our results are higher than these two methods and

the results also show that CapsNet and RCNF do not require any method for extra

feature engineering in the Malimg dataset. A single CapsNet architecture for the

Malimg dataset has 90, 592 trainable parameters and RCNF has 452, 960 trainable
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Table 4.2 Comparison RCNF and other methods for BIG2015 test set
performance.

Model Number of Parameters F-Score Accuracy

Venkatraman et al. (2019) 212, 885 0.725 -

Cao et al. (2018) - - 0.95

Gibert et al. (2018) - 0.9813 0.9894

Kreuk et al. (2018) - - 0.9921

Le et al. (2018) 268, 949 0.9605 0.9820

Chen (2018) - - 0.9925

Jung et al. (2018) 148, 489 - 0.99

Abijah Roseline et al. (2019) - - 0.9914

Zhao et al. (2019) - - 0.929

Khan et al. (2018) - - 0.8836

Safa et al. (2019) - - 0.9931

Kebede et al. (2017) - - 0.9915

Kim et al. (2018) - - 0.9266

Kim & Cho (2018) - 0.8936 0.9697

Yan et al. (2018) - - 0.9936

Naeem et al. (2019) - 0.971 0.9840

Jang et al. (2020) - - 0.9965

CapsNet

for

BIG2015

527, 232 0.9779 0.9926

RCNF

for

BIG2015

10× 527, 232 0.9820 0.9956

parameters, so our proposed methods are reasonably smaller than Yue’s method.

Venkatraman et al. (2019) propose two different models called CNN BiLSTM and

CNN BiGRU with two variants of these models, which are called cost-sensitive and
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cost-insensitive. When CNN BiGRU reaches its own highest F-Score and accuracy

on the Malimg dataset, its number of the trainable parameters is greater than RCNF

and its scores are lower than RCNF. In other words, RCNF reaches the-state-of-the-

art scores in terms of F-Score and accuracy with a lower parameter size.

IMCFN is an important deep convolutional network for the Malimg dataset (Vasan,

Alazab, Wassan, Naeem, Safaei & Zheng 2020). When the network is trained from

scratch without any data augmentation, it outperforms our RCNF implementation.

IMCFN also has 126, 727, 705 trainable parameters. When it is compared to RCNF,

IMCFN is a huge convolutional network. On the other hand, RCNF is more accu-

rate than IMCFN, but it has a lower F-Score than IMCFN. The most important

advantage of RCNF is using a lower number of parameters, and this makes RCNF

trainable in GPUs with low memory.

IMCEC is one of the most successful an ensemble model of CNN architectures for the

Malimg dataset in terms of accuracy and F-Score (Vasan, Alazab, Wassan, Safaei

& Zheng 2020). However, IMCEC is more complex than RCNF. IMCEC uses two

different CNN architectures VGG16 (Simonyan & Zisserman 2014) and ResNet-50

(He et al. 2016) to use transfer learning. Although IMCEC is more accurate than

RCNF in terms of accuracy and F-Score, IMCEC has a total of 157M parameters

because of using these CNN networks. Unlike IMCEC, RCNF has 452, 960 trainable

parameters and it is reasonably accurate as much as IMCEC.

Table 4.2 compares the test performance of the proposed models and others for the

BIG2015 dataset. Venkatraman et al. (2019) also test the CNN BiGRU model on

the BIG2015 dataset. In this case, the performance of the CNN BiGRU model is

lower than RCNF, but its number of trainable parameters are reasonably lower than

RCNF. Chen (2018) and Khan et al. (2018) use transfer learning architectures for

the dataset. Test results of our proposed methods are better than those two models,

but our results are very close to Chen (2018) in terms of accuracy. Our proposed

models are better than Gibert et al. (2018) in terms of accuracy, but the F-Score
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of RCNF is very close to this model. Our proposed models are better than models

of Cao et al. (2018), Zhao et al. (2019), Kim et al. (2018), and Kim & Cho (2018).

Jung et al. (2018) propose a reasonably smaller model than our models in terms

of the number of parameters, but our model has a higher accuracy score than this

model. Abijah Roseline et al. (2019), Safa et al. (2019), Kebede et al. (2017), and

Yan et al. (2018) propose deep learning models whose accuracy scores are close to

our proposed models. In addition to these, Jang et al. (2020) report five different

accuracy scores for the BIG2015 dataset and they do not use F-Score despite the

dataset is highly imbalanced. Their accuracy is the highest one for the dataset,

but their network has two complex phases and uses GAN based data augmentation

(they call this method malware obfuscator). On the other hand, RCNF does not use

data augmentation, data resampling, transfer learning, and weighted loss functions

for both datasets. In this perspective, RCNF is a simple version of an ensemble of

CapsNet, and this simplicity highlights RCNF among its competitors.

For those tables, the last studies using Malimg and BIG2015 datasets are chosen.

To compare them fairly, these models are drawn from image-based malware analysis

studies. These results show that while RCNF reaches the-state-of-the-art scores in

terms of F-Score and accuracy on the Malimg dataset with less trainable parameter

size, it outperforms some of its competitors on the BIG2015 with larger size of

parameters.
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5. LIMITATIONS

There are several limitations to the RCNF model. The first limitation is the number

estimators in the RCNF model. In this implementation, an RCNF model can contain

up to 10 CapsNets because of hardware limitations. The second limitation is the

training time. Training of an RCNF with 10 CapsNets for the BIG2015 dataset takes

five hours (100 epochs for each CapsNet). This training time of the RCNF with 5

CapsNets model for the Malimg dataset is decreasing (100 epochs for each CapsNet).

On the other hand, the RCNF can be easily parallelized to increase efficiency in the

training phase. Each CapsNet can be trained on multiple GPUs. We will develop a

distributed multi-GPU version of the RCNF as a future work. Last but not least,

the third limitation is about the optimization algorithm in the CapsNet training

phase. In the training phase of the CapsNet, the Adam optimizer is the only option.

If other optimization options in the deep learning literature become applicable for

the training phase of the CapsNet, then the training time will be more reduced on

the GPU devices. Thus, this is an open problem for optimization techniques for

the CapsNet architecture. On the other hand, our RCNF implementation, which

can process BYTE and ASM files simultaneously for the BIG2015 dataset, is not

feasible for a web application because the pre-processing step takes much time.

We implemented the RCNF using Tensorflow (version 1.5) (Abadi et al. 2016) and

Keras (Chollet et al. 2015), Sklearn (Pedregosa et al. 2011), Numpy (Oliphant 2006)

and Pandas (McKinney et al. 2010). All scripts were written in Python3. The

configuration of the computer used in this study was 12GB GPU (GeForce GTX

1080 Ti) and Intel Core i9-9900K processor with 64 GB main memory for testing.
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6. INCLUDED PAPERS AND CONTRIBUTIONS

In this part of the thesis, our papers contributing to the leading research on malware

classifiers using capsule networks are listed with their abstracts and contributions.

Paper in Section 6.1 is the starting point of researches on malware classification

problems which is the main topic of this thesis, and the holdout validation strategy

used in this paper has also been used in the experiments of this thesis. Paper in

Section 6.2 has provided us a detailed literature review on imbalanced data handling

methods and weaknesses of transfer learning approaches on domain-specific datasets

rather than plain text, object, or natural images. Finally, the paper in Section

6.3 is the core article about the RCNF model and published in the journal titled

Computers & Security, which is one of the most prestigious scientific journals in the

cybersecurity research area.

6.1 Paper-I

Çayır, A., Ünal, U., Yenidoğan, I., & Dağ, H. (2019). Use Case Study: Data Science

Application for Microsoft Malware Prediction Competition on Kaggle. Proceedings

Book, 98. (Çayır et al. 2019)

6.1.1 Summary

Malware prediction is the most prominent area of cybersecurity domain. Malware

prediction applications are leaned to be empowered by machine learning due to

rapidly emerging intrusion attacks. In this perspective, defense systems aim to con-

join data science and cybersecurity. There are many platforms which provide public

datasets and organize competitions for sector specific problems. For instance, Netflix
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has organized a competition with $1 Million prize to develop a new recommendation

system. Kaggle organizes many competitions for research, business and educational

purposes. Microsoft has sponsored two important malware prediction competitions

on Kaggle in 2015 and 2019. In this paper, we present our solution as a use case

which is placed at 5th among 2,426 teams on Microsoft Malware Prediction 2019

dataset.

6.1.2 Contributions

The main contributions of this paper can be listed as follows:

• This paper is the first study on malware datasets related to this thesis. The

paper has provided us to dive deeper into the literature on malware classifica-

tion.

• This paper is the first study that we use the holdout validation technique used

during the development of RCNF.

• The literature review of this paper has introduced two essential datasets,

BIG2015 and Malimg, to us.

6.2 Paper-II

Demirkıran, F., Çayır, A., Ünal, U., & Dağ, H. (2020, September). Website category

classification using fine-tuned BERT language model. In 2020 5th International

Conference on Computer Science and Engineering (UBMK) (pp. 333-336). IEEE.

(Demirkıran et al. 2020)

6.2.1 Summary

The contents on the Word Wide Web is expanding every second providing web users

a rich content. However, this situation may cause web users harm rather than good

due to its harmful or misleading information. The harmful contents can contain
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text, audio, video, or image that can be about violence, adult contents, or any other

harmful information. Especially young people may readily be affected with these

harmful information psychologically. To prevent youth from these harmful contents,

various web filtering techniques, such as keyword filtering, Uniform Resource Locator

(URL) based filtering, Intelligent analysis, and semantic analysis, are used. We

propose an algorithm that can classify websites, which may contain adult contents,

with 67.81% (BERT) accuracy among 32 unique categories. We also show that a

BERT model gives higher accuracy than both the Sequential and Functional API

models when used for text classification.

6.2.2 Contributions

The main contributions of this paper can be listed as follows:

• This paper is the initial work that investigates a highly imbalanced dataset for

a deep learning model.

• This paper uses the transfer learning approach for initializing the embedding

layer using a pre-trained model called BERT and the transfer learning approach

needs to learn similar patterns from the new dataset. Like text classification,

transfer learning is useful in image classification tasks using models trained

in similar image datasets. However, the transfer learning is not helpful for

grey-scale malware images because all architectures used in image-based clas-

sification tasks have different patterns from the malware images. Because of

this reason, the thesis relies on a model that can be easily trained from scratch

and without using transfer learning for grey-scale malware images, such as

CapsNet.
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6.3 Paper-III

Çayır, A., Ünal, U., & Dağ, H. (2021). Random CapsNet forest model for imbal-

anced malware type classification task. Computers & Security, 102, 102133. (Çayır

et al. 2021)

6.3.1 Summary

Behavior of malware varies depending the malware types, which affects the strategies

of the system protection software. Many malware classification models, empowered

by machine and/or deep learning, achieve superior accuracies for predicting mal-

ware types. Machine learning-based models need to do heavy feature engineering

work, which affects the performance of the models greatly. On the other hand, deep

learning-based models require less effort in feature engineering when compared to

that of the machine learning-based models. However, traditional deep learning ar-

chitectures’ components, such as max and average pooling, cause architecture to be

more complex and the models to be more sensitive to data. The capsule network

architectures, on the other hand, reduce the aforementioned complexities by elimi-

nating the pooling components. Additionally, capsule network architectures based

models are less sensitive to data, unlike the classical convolutional neural network

architectures. This paper proposes an ensemble capsule network model based on

the bootstrap aggregating technique. The proposed method is tested on two widely

used, highly imbalanced datasets (Malimg and BIG2015), for which the-state-of-the-

art results are well-known and can be used for comparison purposes. The proposed

model achieves the highest F-Score, which is 0.9820, for the BIG2015 dataset and

F-Score, which is 0.9661, for the Malimg dataset. Our model also reaches the-state-

of-the-art, using 99.7% lower the number of trainable parameters than the best

model in the literature. This paper is the heart of the thesis, which describes com-

plete details from the problem definition to the web-based cybersecurity application.

For this reason, the thesis is an extended version of this paper.
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6.3.2 Contributions

The main contributions of this paper can be listed as follows:

• The paper introduces the first application of CapsNet in the field of malware

type classification. Although image-based malware classification is a broad

research and application area, there is no research and application of CapsNet

in the literature to our best knowledge.

• The paper uses the first ensemble model of CapsNet. The key idea of creating

an ensemble of CapsNet is assuming a single CapsNet model as a weak classifier

like a decision tree model. In this way, an ensemble model of CapsNet can

be easily created using bootstrap aggregating. The main assumption that

CapsNet is a weak learner increases the performance of a single CapsNet for

two different well-known malware datasets, which are highly imbalanced.

• The proposed model uses simple architecture engineering instead of complex

convolutional neural network architectures and domain-specific feature engi-

neering techniques. In addition to this, CapsNet does not require the usage

of transfer learning, and the model is easily trained from scratch. Because

of that, the created network and its ensemble version have reasonably lower

number of parameters. The proposed model obtains F-Score and accuracy,

which are close to the-state-of-the-art results, using 99.7% lower the number

of trainable parameters than the best model in the literature.

• The proposed model is compared with the latest studies that use deep neural

networks for image-based malware classification tasks. For a fair comparison,

especially, the last studies using the Malimg and the BIG2015 datasets are

chosen and compared with the proposed method.

• The proposed method is reproducible and broadly simpler than other complex

deep neural network architectures regarding the number of trainable parame-

ters.
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• The proposed model is used in the WARNING application for the static mal-

ware identification module of the project supported by The Scientific and Tech-

nological Research Council of Turkey under grant number 118E400.
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7. CONCLUSION

7.1 Application

This work in the thesis is part of the research project titled ”WARNING: A Defense-

in-depth Cyber Intelligence Platform to Defend against Emerging Cyber Attacks,”

supported by The Scientific and Technological Research Council of Turkey under

the grant number 118E400. This project aims to design a cybersecurity platform

containing four different modules. Of which, the most important the is the malware

detection and prediction module.

The malware detection and prediction module contain three different approaches

such as static, dynamic, and hybrid malware analysis approaches (Raff & Nicholas

2020).The proposed model in the thesis is used for malware type classification appli-

cation as the static approach. However, there are some differences in implementation

details in the application part, unlike in the thesis. This part explains these differ-

ences and the architecture of the application. The first difference is that we have

used the BIG2015 dataset for training the RCNF model for the application because

we need to use raw files different from the Malimg dataset. The second difference is

the size of the malware images. We resize images from the raw files to 32× 32 and

use ASM or BYTE files only, unlike the proposed model, because converting files to

images proposed pre-processing part of the thesis takes much time at the user inter-

face. Last but not least, the third significant difference is that we have developed

two different RCNF models for BYTES and ASM for the application part.

To develop the application, we need to use Flask and Redis python libraries. Flask

makes using model-view-controller (MVC) pattern in python easier and faster (Mu-

51



fid et al. 2019). Redis is an in-memory database, and it allows us to use worker

abstraction for multi-request in web applications (Zhang et al. 2014).

As shown in Figure 7.1, the model in the MVC pattern for this application contains

the name of the uploaded file as a key, predicted class value, types, probabilities

coming from the prediction model, and hash values of the file using SHA256.

Figure 7.1 Model structure of the application in MVC pattern.

The view part contains an upload tool and a button that is inactive before file

uploading. The user can upload the raw file as an ASM, BYTE, or EXE format, as

shown in Figure 7.2. The controller part of the MVC pattern starts with clicking

on the button titled ”Analyze File”.

Figure 7.2 Input view structure of the application in MVC pattern.
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The button triggers a flow of a job that is scheduled by the Redis queue system

as shown is Figure 7.3. Each flow will be wrapped by a structure called worker,

which provides for handling multi-request for the application. Figure 7.4 represents

that each request coming from the application port addressed 80 starts a worker

wrapping a job flow directs to Redis queue system using the internal port addressed

6379.

Figure 7.3 A flow of a job for prediction in Redis queue system.

Figure 7.4 WARNING worker structure for multi-requests.
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Figure 7.5 Prediction results for an ASM file.

We use the un-normalized squashing activation results of class capsules for the user

interface presenting prediction results. Figure 7.5 shows the final prediction results

on the user interface of the WARNING application. If the user clicks on the button

named ”MORE...”, the application redirects the user to a new page with more

information about the final predicted malware family type.

To sum up, this thesis presents a simple, user-friendly, and multi-user-supported

user interface that uses the proposed model. From the perspective of management

information systems, the thesis explains all the steps from defining the problem in

malware classification to a web application. Therefore, the web application for the

WARNING project is one of the most valuable and the most concrete outputs of

the thesis.

7.2 Summary and Future Work

This thesis introduces the first application of CapsNet on imbalanced malware family

type classification task. Moreover, the first ensemble model of CapsNet called RCNF

is introduced in this thesis. The proposed models do not require any complex feature

engineering methods or architecture for deep networks. To show that, we used two

different malware family type datasets: Malimg and BIG2015. These datasets are

used for image-based malware classification. Our proposed models can utilize these

datasets directly using raw pixel values.
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Datasets in the thesis are highly imbalanced in terms of class distribution. CapsNet

and RCNF do not use oversampling, under sampling, and weighted loss function dur-

ing the training phase. Results show that CapsNet and RCNF are the best models

least suffering from imbalanced class distribution among others in the literature.

Experiment results show that a single CapsNet model has good performance for

both BIG2015 and Malimg datasets. However, we have assumed an ensemble model

of CapsNet can help us to increase generalization performance and RCNF has better

generalization performance results than a single CapsNet model as expected. In this

point, results show that creating a bagging ensemble model CapsNet increases the

performance on predicting rare malware classes. While single CapsNet can obtain

0.9779 F-Score for the BIG2015 dataset, an ensemble of 10 CapsNets achieves 0.9820

F-Score. We can observe the similar effects on the Malimg dataset. It is shown that

bagging increases the performance of the CapsNet for imbalanced datasets and the

ensemble model is more successful at predicting rare classes than a single CapsNet

model due to ensembling.

Many models compared with the proposed model are complex and large in terms

of the number of parameters. Some of them use data augmentation, weighted loss

functions, different extra feature engineering methods, and pre-trained deep neural

networks that have a large number of parameters. Our proposed model achieves the

F-Score, which is 2.88% lower than the state-of-the-art result with reducing 99.7%

the number of trainable parameters of the best model in the literature.

As for future work, we are planning to develop a distributed version of RCNF. On

the other hand, working on open issues such that CapsNet’s convergence strictly

dependent on Adam optimizer and limitations of the number of estimators will be

addressed.
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