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SCREENING OF NOVEL AND SELECTIVE INHIBITORS FOR NEURONAL 

NITRIC OXIDE SYNTHASE (nNOS) VIA STRUCTURE-BASED DRUG DESIGN 

TECHNIQUES 

 

 

ABSTRACT 

The overproduction of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS) is 

the main cause of several neurodegenerative diseases such as Alzheimer’s Disease 

(AD), Parkinson’s Disease (PD), and Multiple Sclerosis (MS). NO is produced in many 

cell types by three isoforms of NOS (nNOS, iNOS, and eNOS) and has various 

biological functions, generally, for its significant reactivity with proteins. NOS isoforms 

share a high sequence and structure similarity, specifically in the active site, which 

makes the development and design of nNOS inhibitors extremely challenging; mainly, 

no-selective inhibitors can affect iNOS and eNOS physiological roles. To date, there is 

no selective inhibitor against nNOS in the market with desirable ADMET (absorption, 

distribution, metabolism, elimination, and toxicity) properties, and pass the blood-brain 

barrier (BBB). With improvement of computational drug design techniques and 

accessibility of the X-ray crystal structures, development of novel drugs became less 

expensive and faster. Our research benefited from the structure-based drug design 

approaches to investigate proficient and selective inhibitors against nNOS. After 

structure-based virtual screening, the selective top-ranked compounds were filtered 

according to the ADMET prediction; then, the candidates with a high affinity with a 

suitable ADMET profile were subject to 100 ns molecular dynamics (MD) simulations. 

The stability through the 100 ns run has been evident for some nominated inhibitors, 

which are valuable lead compounds that can be optimized to reach the greatest 

physicochemical properties in addition to the selectivity. 

  

Keywords: Nitric oxide, structure-based drug design, neuronal nitric oxide synthase, 

neurodegenerative diseases, ADMET properties, selective nNOS inhibitors, molecular 

dynamics simulation. 
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NÖRONAL NITRIK OKSIT SENTAZ (nNOS) IÇIN YENI VE SEÇICI 

INHIBITÖRLERIN YAPI BAZLI ILAÇ TASARIM TEKNIKLERI ILE 

TARANMASI 

 

ÖZET 

Nöronal nitrik oksit sentaz (nNOS) tarafından aşırı nitrik oksit (NO) üretimi, Alzheimer 

Hastalığı (AD), Parkinson Hastalığı (PD) ve Multipl Skleroz (MS) gibi çeşitli 

nörodejeneratif hastalıkların ana nedenidir. NO, birçok hücre tipinde üç NOS izoformu 

(nNOS, iNOS ve eNOS) tarafından üretilir ve genellikle proteinlerle olan önemli 

reaktivitesi nedeniyle çeşitli biyolojik fonksiyonlara sahiptir. NOS izoformları, özellikle 

aktif bölgede, nNOS inhibitörlerinin geliştirilmesini ve tasarımını son derece zorlaştıran 

yüksek bir dizi ve yapı benzerliği paylaşır; esas olarak, seçici olmayan inhibitörler, 

iNOS ve eNOS'un fizyolojik rollerini etkileyebilir. Bugüne kadar piyasada nNOS'a karşı 

iyi ADMET (absorpsiyon, dağılım, metabolizma, eliminasyon ve toksisite) özellikleri 

ve yüksek biyoaktiviteye sahip seçici bir inhibitörü yoktur. Hesaplamalı ilaç tasarım 

tekniklerinin gelişmesi ve X-ışını kristal yapılarının erişilebilirliği ile yeni ilaçların 

geliştirilmesi daha ucuz ve daha hızlı hale geldi. Araştırmamız, nNOS'a karşı etkili ve 

seçici inhibitörleri araştırmak için yapı temelli ilaç tasarımı yaklaşımlarından yararlandı. 

Yapıya dayalı sanal taramadan sonra, seçici üst sıradaki bileşikler, ADMET tahminine 

göre filtrelendi; daha sonra, iyi bir ADMET profiline sahip yüksek afiniteye sahip 

adaylar, 100 ns moleküler dinamik (MD) simülasyonlarına tabi tutuldu. Bazı aday 

bileşikler için 100 ns simülasyon sonucunda kararlılık sağlandı. Seçiciliğe ek olarak 

fizikokimyasal özellikleri çok uygun olan önemli öncü bileşiklerin optimimize 

edilebileceği görüldü.  

 

 

Anahtar kelimier: Nitrik oksit, yapı temelli ilaç tasarımı, nöronal nitrik oksit sentaz, 

nörodejeneratif hastalıklar, ADMET özellikleri, seçici nNOS inhibitörleri, moleküler 

dinamik simülasyonu. 
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1. INTRODUCTION 

Neurodegenerative diseases (NDs) pose a severe threat to human health. These age-

related disorders have become more frequent due to an increase in the aged population 

in recent years (Gitler, Dhillon and Shorter, 2017, pp. 499–502). Brain aging, peripheral 

infections, and other factors make the central nervous system (CNS) more vulnerable to 

damage (Stephenson et al, 2018, pp. 204–219; Pihlstrøm, Wiethoff and Houlden, 2017, 

pp. 309–323). NDs are severe, multifactorial disorders of the nervous system. 

Conferring to the World Health Organization (WHO) data, NDs millions of people 

worldwide. The organization has predicted that NDs affecting motor function will 

become the second-most prevalent cause of death in the next 20 years (Durães, Pinto, 

and Sousa, 2018, p. 44).  

 

Neuronal damage is a pathological characteristic of Alzheimer's disease (AD) and 

Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease 

(HD), spinocerebellar ataxia, and multiple sclerosis (MS), but ND is also noticed after 

neurotropic viral infections, stroke, genetic white matter diseases, and paraneoplastic 

disorders (Xie et al, 2014, p. 648740; Stephenson et al, 2018, pp. 204–219; Ghasemi, 

Razavi and Nikzad 2017, pp. 1–10). These diseases have distinct epidemiology, clinical 

symptomatology, laboratory and neuroimaging characteristics, neuropathology, and 

therapy (Erkkinen, Kim and Geschwind, 2018, p. a033118). In many cases, they are 

expressed via impairing memory, cognition, and locomotion (Durães, Pinto and Sousa, 

2018, p. 44). 

 

In ND, oxidative and nitrergic stress are thought to initiate several pathogenic processes 

that further accelerate the existing neurodegeneration (Bourgognon et al, 2021, p. 

e2009579118). 3 N-terminal tail (3-NT) of -amyloid (A) oligomers, for instance, 

provides a direct mechanism for boosting oligomer steadiness and toxicity. Notably, 

A42 oligomerization plays a vital function in enhancing nitrergic stress, in other words, 

triggering 3-NT in a variety of neuronal proteins (Bourgognon et al, 2021, p. 

e2009579118; Heinrich, Gorath and Richter-Landsberg, 1999, pp. 244–255). The 
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enzyme triose-phosphate isomerase (TPI), one of the targeted proteins, controls 

glycolytic circulation by interconverting dihydroxyacetone phosphate (DHAP) and 

glyceraldehyde 3-phosphate (GAP). TPI's enzymatic activity is reduced by the nitrergic 

post-translational alteration generated by the A42 peptide, which changes the metabolite 

balance toward DHAP production. Following that, DHAP is immediately converted into 

the toxic metabolic ‘by-product methylglyoxal.’ In patients with Alzheimer's disease, a 

nitro-oxidative condition promotes elevated amounts of 3-nitrotyrosinated TPI, and the 

inactivation of this enzyme results in nonenzymatic methylglyoxal-mediated protein 

glycation and the development of final advanced glycation products (AGEs) (Orosz, 

Oláh and Ovádi 2006, pp. 703–715; Bourgognon et al, 2021, p. e2009579118). 

Aggregation and accumulation of AGEs are seen in TAU positive intracellular 

aggregates and Aβ plaques in AD with AGE-mediated protein cross-linking, 

considerably accelerating amyloid polymerization. Glycation at specific residues affects 

the ability to produce amyloid fibrils, revealing that this change plays a role in the 

accumulation of AGEs (Rajmohan and Reddy, 2017, pp. 975–999).  

 

Unfortunately, no ND is treatable, and present treatments only manage symptoms or 

delay disease development. As a result, new therapies for this disease category are 

desperately needed (Golde, 2009, p. 8; Durães, Pinto and Sousa, 2018, p. 44). The 

fundamental restriction of the anti-neurodegenerative disease drug efficacy is their 

failure to penetrate the blood-brain barrier (BBB); in fact, more than 98% of small 

molecules and nearly 100% of large molecules cannot reach the brain. Initially, invasive 

techniques, such as neurosurgery-based cerebral infusions or implants and physical or 

chemical disruption of the BBB to allow drug access via osmotic shift, were used to 

pass the BBB (Cascione et al, 2020, p. 566767). These approaches are dangerous, 

causing brain tissue destruction, and are likely to cause chronic neuropathological 

sequelae in patients treated (Cascione et al, 2020, p. 566767) (Table 1.1).   
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Table 1.1  Current drugs used for neurodegenerative (ND) disorders and their 

restrictions (Cascione et al, 2020, p. 566767). 

 

Drug Bioactivities Limits 

Rivastigmine 

 

Acetylcholinesterase 

inhibitor 

 

(-) BBB 

(-) Bioavailability. 

Donepezil 

 

Acetylcholinesterase 

inhibitor 

(-) Bioavailability 

(-) BBB  

Curcumin 

 

Amyloid protein 

aggregation inhibitor 

(-) Solubility  

(-) Bioavailability 

Quercetin 

 

Antioxidant capacity 

Enhance cognitive and 

memory function 

(-) ADME 

 (-) BBB 

Resveratrol 

 

Facilitates non-

amyloidogenic 

degradation of amyloid 

precursor proteins, 

increases amyloid-

peptide elimination, and 

reduces neuronal damage 

(-) solubility (-) 

Bioavailability 

 

Levodopa (SHM) 

 

Dopamine precursor 

 

 

Cytotoxicity 

Dyskinesia 

(-) BBB 

 

Neuronal nitric oxide synthase (nNOS) is an enzymatic target for the therapy of ND 

(and other neuronal-damaged) (Cinelli et al, 2017, pp. 3958–3978). nNOS can become 

hyperactive or overexpressed during neuroinflammatory or neurodegenerative 

phenotypes, which causes the formation of a high amount of nitric oxide (NO). This 

produced NO by itself can be dangerous or can interact with other molecules to generate 

other species such as peroxynitrite. (Cinelli et al, 2017, pp. 3958–3978). 
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nNOS is active in homodimeric form and transforms L-arginine to L-citrulline and NO 

via electron conduction involving five cofactors (Förstermann and Sessa, 2012, pp. 

829–837). Each monomer includes oxygenase and reductase domains connected by a 

linker domain where calmodulin attaches and stimulates the enzyme due to the 

increased calcium levels (Rao, Chaudhury and Goyal, 2008, pp. G627–G634). When the 

enzyme is active, electron transfer begins from the reductase domain bound reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) to flavin adenine dinucleotide 

(FAD), then to flavin mononucleotide (FMN), and finally to the FMN subdomain of one 

monomer towards the oxygenase domain of the other monomer through (6R)-5,6,7,8-

tetrahydrobiopterin (H4B). Lastly, the attached L-arginine is oxidized in the presence of 

molecular oxygen at the active heme center (Cinelli et al, 2017, pp. 3958–3978; 

Förstermann and Sessa, 2012, pp. 829–837; McCabe et al, 2000, pp. 6123–6128). 

 

The majority of nNOS inhibitors compete with the substrate L-arginine and have 

physicochemical features similar to it (Figure 1.1) (Boer et al, 2000, pp.1026–1034). 

However, these compounds are polar, ionizable with high-pKa, which lead to low 

bioavailability and BBB permeability. These characteristics limit their therapeutic utility 

(Pajouhesh and Lenz, 2005, pp. 541–553). the design of a selective inhibitor against 

nNOS over eNOS and iNOS is highly challenging because the inhibition of eNOS may 

induce cardiovascular risks , and the inhibition of iNOS may impair immune system 

function. This is a complex undertaking because all three NOS isoforms have similar 

sequences and structures (Ji et al, 2009, pp. 209–217; Melikian et al, 2009, pp. 256–

262; Pensa et al, 2017, pp. 7146–7165). 
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Figure 1.1  Earlier designed human nNOS inhibitors (Pensa et al, 2017, pp. 7146–

7165). 

 

The process of discovering and developing new medicines is time-consuming, risky, 

and costly. Many techniques to speeding the research cycle and decreasing the cost and 

probability of failure in drug development were explored. Computer-aided drug design 

(CADD) is one of the most successful ways to attain these goals (Ou-Yang et al, 2012, 

pp. 1131–1140). Structure-based drug design (SBDD), ligand-based drug design 

(LBDD), and sequence-based techniques are the most frequently employed 

computational drug discovery methodologies. SBDD approaches, including molecular 

docking and de novo drug design, depend on the target macromolecule's structure, 

mainly collected via crystal structures, NMR data, and homology modeling (Aparoy, 

Kumar Reddy and Reddanna, 2012, pp.3763–3778). In the most of these techniques, the 

LBDD approach is used in the absence of receptor three-dimensional (3D) data. This 

method requires a well-understanding of drugs that interact to the biological target of 

interest. The essential techniques in LBDD are 3D quantitative structure-activity 

relationships and pharmacophore modeling because they give predictive models 

employed to identify and optimize drugs (Acharya et al, 2011, pp. 10–22). 
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1.1.   Research Objectives 

• This Dissertation aims to design selective and potent human neuronal nitric oxide 

synthase (nNOS) inhibitors using CADD approaches. 

• Structure-based drug design techniques were employed, including molecular 

docking, virtual screening, and MD simulations. 

• Human NOS structures were used to have a close evaluation of isoform 

selectivity. 
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2. NITRIC OXIDE 

2.1.   Structure of Nitric Oxide (NO) 

NO is, also named nitrogen oxide or nitrogen monoxide, is an essential gaseous 

signaling radical (molecular weight =30 Da) (Bignon et al,2019, pp. 415–429; Yang et 

al, 2015, pp. 49–68). It was discovered by Robert Furchgott, Louis Ignarro, and Ferid 

Murad in 1987, and they were awarded the Nobel prize in physiology or medicine in 

1998 (Lancaster, 2015, p. FSO59; Bignon et al, 2019, pp. 415–429; Levine, Punihaole 

and Levine T, 2012, pp. 55–68). NO is composed of a double covalent bond between 

oxygen and nitrogen (Lancaster, 2015, p. FSO59). Since NO is electrically neutral, it 

can cross biological membranes at a rate of   848*10-6 m/s in the aortic wall. This 

property considerably boots its role as a second messenger. NO's action is limited by its 

reactivity due to the nitrogen atom's lack of 1 electron in its sp2 orbital, which reduces 

the NO half-life to 1–10 s. As a result, its production and half-life are determined by the 

type and the pathophysiological condition of the tissues (Picón-Pagès et al, 2019, pp. 

1949–1967). NO is a major signaling molecule that regulates many physiological 

processes in many tissues, including vasodilation, neuronal function, inflammation, and 

immune function (Shahani and Sawa, 2012, pp. 736–742). 

2.2.  Nitric Oxide (NO) Production Pathways 

The human body produces NO via different pathways in the different locations of the 

body. Its production involves a variety of enzyme isoforms (Endogenous NO) or ‘the 

enzymatic pathway,’ which is catalyzed by NOS via a series of redox reactions with L-

arginine degradation to L-citrulline and NO (Luiking, Engelen, and Deutz, 2010, pp. 

97–104).  
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NO is also produced in many tissues by four distinct isoforms of NOS: neuronal NOS 

(nNOS), inducible NOS (iNOS), endothelial NOS (eNOS), and mitochondrial NOS 

(mtNOS) (Levine, Punihaole and Levine T, 2012, pp. 55–68). NOSs have very similar 

structures but vary in expression and activities (Mittal and Kakkar,2020, p. 228). Each 

one is encoded by a specific gene (Król and Kepinska, 2021, p. 56). 

2.2.1.     Nitrate- Nitrite- Nitric oxide (NO) pathway 

The non-enzymatic pathways produce NO from nitrite through various routes, primarily 

in acidic conditions, and occur mostly in tissues. Nitrite reduction below is the primary 

pathway (Luiking, Engelen, and Deutz, 2010, pp. 97–104): 

                                             2H+ + NO2− + e−  → NO + H2O.                                    (2.1) 

Given that the half-life of NO in the blood is only 2 ms and less than 2 s in tissues, 

stabilization of NO to nitrite (NO2-) and nitrate (NO3-) is a suitable method of storing 

bioavailable NO because these anions can be reduced back to NO under hypoxia (Bryan 

and Grisham, 2007, pp. 645–657; Park et al, 2020, p. 13166). After being concentrated 

from the blood by salivary glands, nitrate absorbed from nutritional sources can be 

converted to nitrite, primarily by commensal bacterial nitrate reductases in the oral 

cavity. The nitrite in tissues is reduced to NO by several enzymatic systems, such as 

deoxyhemoglobin, deoxymyoglobin, and molybdenum containing enzymes (Park et al, 

2020, p. 13166). The nitrate- nitrite- NO pathway can be considered as a complement to 

the classical L-arg-NOS pathway, they also work in tandem to some extent., but nitrite 

reduction to NO becomes more significant under hypoxic conditions and when NOS 

activity is restricted (Lundberg, Weitzberg and Gladwin, 2008, pp. 156–167; Luiking, 

Engelen, and Deutz, 2010, pp. 97–104). The rate of formation and degradation of NO 

define its steady-state concentration (Kelm, 1999, pp. 273–289). 
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2.3.  Nitric Oxide (NO) Derivatives 

NO can quickly pass through hydrophobic areas (like plasma membrane) due to its low 

solubility in water (1.9 mM at 20°C) and liposome/water partition coefficient around 

4.4 (Zacharia and Deen, 2005, pp.  214–222). It can also interact with multiple desired 

targets to produce a wide range of end products (Thomas et al, 2008, pp. 18–31). 

 

 NO has its other derivatives, including nitrosyl cation (NO+), nitrosyl anion (NO−), and 

peroxynitrite (ONOO−), which belong to reactive nitrogen species (RNS)that are 

distinguished by their high chemical reactivity owing to their unpaired electrons. RNS 

with reactive oxygen species (ROS) together have the potential to destroy cellular 

structures, and their uncontrolled production results in a phenomenon similar to 

oxidative stress (Król and Kepinska, 2021, p. 56; Tuteja et al, 2004, pp. 227–237). 

2.4.   Nitric Oxide (NO) Signaling Mechanisms 

2.4.1.    Guanylate cyclase activation 

NO activates soluble guanylate cyclase (GC) (i.e., guanyl cyclase or guanylyl cyclase) 

by binding to its heme group producing 3′-5′-cyclic guanosine monophosphate (cGMP 

or cyclic GMP) from guanosine 5′-triphosphate (GTP) (Levine, Punihaole and Levine 

T, 2012, pp. 55–68). cGMP is a crucial intracellular signaling molecule that controls a 

wide range of physiological and pathophysiological mechanisms in various tissues 

(Ivanova and Hemmersbach, 2020, p. 1139). Once cGMP is produced, it can have a 

wide range of effects in cells, which of most are governed by the activation of protein 

kinase G (PKG). In the NO/cGMP/PKG signaling pathway, NO as the “first messenger” 

triggers a cascade of phosphorylation reactions, in which the level of each step is 

enzymatically amplified. This process is critical for the biological mechanisms like 

blood vessel relaxation (vasodilation), activating several transcription factors which can 

lead to changes in gene expression, inhibition of platelet aggregation, and improvement 

in cognitive functions (Francis,Busch, and Corbin, 2010, pp. 525 LP – 563; Russwurm 

and Koesling, 2004, pp. 4443–4450). 



 

 10 

• Smooth muscle relaxation: The relaxation of smooth muscle through the NO 

sGC-cGMP pathway is a historical and vital function of NO. Following the discovery of 

Endothelium derived relaxing factor (EDRF) by Robert Furchgott in 1980, NO has been 

studied as a signaling molecule (Moncada and Higgs, 2006, pp. S193–S201; Martin, 

2009, pp.633–637). Furchgott demonstrated endothelial cells' capacity to produce 

substance that caused the vascular segment's relaxation of the underlying smooth 

muscle (Moncada and Higgs, 2006, pp. S193–S201; Martin, 2009, pp.633–637). Later, 

Ignarro, and Murad performed some experiments to see if EDRF produced from the 

artery might activate sGC and thus accounts for increased cGMP in response to ACh or 

bradykinin (Nava and Llorens, 2016, pp. 125–145; Ignarro et al, 1986, pp. 893 – 900). 

EDRF activation of sGC, such as NO activation, was heme dependent. EDRF was NO 

discovered in 1988 (Garthwaite, Charles and Chess-Williams, 1988, pp. 385–388; 

Priviero and Webb, 2010, pp. 229–233). The binding of the 1st messengers initiates 

vasodilation signaling (Félétou, 2011). This binding activates the inositol triphosphate 

(IP3) mechanism, in which IP3 binds to Ca2+ channels in the endoplasmic reticulum, 

causing Ca2+ ions to be released into the cytosol (Foskett et al, 2007, pp. 593–658). This 

event causes the Ca2+/calmodulin complex to bind to the NOS, initiating NO synthesis 

from L-arginine to L-citrulline. 

 

The NO then passes via the cell membrane to its sGC receptor in the smooth muscle 

cells surrounding the artery. The sGC involves cGMP formation from GTP, resulting in 

the activation of cGMP-dependent protein kinases (PKG) in smooth muscle cells. 

Phosphodiesterase 5 (PDE-5) is an enzyme that controls intracellular cGMP levels by 

catalyzing the hydrolytic cleavage 3′ phosphodiester bond of the cyclic nucleotide. PKG 

promotes Ca2+ reuptake and opening of the KCa channels in the smooth muscle 

membrane (Friebe, Sandner and Schmidtko, 2020, pp. 287–302). The decrease in Ca2+ 

concentration in the cytoplasm indicates that the myosin light-chain kinase will no 

longer phosphorylate the myosin molecule, blocking the cross-bridge cycle and causing 

smooth muscle cell relaxation (Webb, 2003, pp. 201–206). 
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Abnormality of the NO-cGMP signaling pathway in arteries has been linked to 

cardiovascular disorders, such as systemic arterial and pulmonary hypertension (PAH), 

coronary artery disease, peripheral vascular disease, and atherosclerosis (Bork and 

Nikolaev, 2018, p. 801). Pulmonary hypertension (PH) is a type of high blood pressure 

in the lung vasculature caused by thinning of blood vessels related to and within the 

lungs (Bazan and Fares, 2015, pp. 11–1221). Fibrosis, another disorder, is a mechanism 

in which affected blood vessels stiffen and thicken (Harvey et al., 2016, pp. 659–668).  

 

The rise in the heart's activity induces right ventricular hypertrophy, reducing the heart's 

ability to pump blood toward the lungs (Ryan and Archer, 2014, pp. 176–188). One 

more case PAH pathology, which is caused by pulmonary endothelial cell dysfunction. 

It is characterized by dysfunction of multiple signaling pathways like reduced NO 

synthesis, prostacyclin production, and higher concentrations of endothelin-1, 

thromboxane A2, and serotonin (Lai et al, 2014, pp. 115–130; Rose-Jones and 

Mclaughlin, 2015, pp. 73–79; Morrell et al, 2009, pp.  S20–S31). O2- may also react 

with NO to produce ONOO-, which oxidizes and uncouples eNOS, affecting NO 

synthesis and inducing uncoupled eNOS to produce reactive oxygen species 

(Förstermann and Li, 2011, pp. 213–223). Consequently, oxidative stress causes sGC 

heme group oxidation, making it low receptive to NO and cause heme separation from 

sGC (Shah et al, 2018, pp. 97–104). ROS also plays a role in acute inflammation, where 

vascular abnormalities occur as the result of a multistep phenomenon (Yang et al, 2017, 

p. 600). 

• Platelet aggregation: Platelets are circulating sentinels of vascular integrity 

which are stimulated, inhibited, or controlled by a wide range of hormones, vasoactive 

substances, and drugs (Jurk and Walter, 2019, pp. 140–151). The NO/sGC/cGMP 

pathway functions in platelet activation have been studied for more than three decades 

(Gambaryan, Friebe, and Walter, 2012, pp. 5335–5336). 
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There are two principal controversies about the NO-cGMP pathway's involvement in 

platelets: (1) if the NO-cGMP pathway plays a stimulatory, inhibitory, or both role 

during platelet activation; and (2) if the inhibitory impact of NO donors on platelet 

function is cGMP-dependent or not (Makhoul et al, 2018, pp.71–80). The amounts of 

free cytosolic cAMP and cGMP are regulated by their synthesis via adenylate cyclase 

(AC) and sGC (Bassil and Anand-Srivastava, 2007, pp. 99–108). 

The normal endothelial cells produce NO, endothelial-ADPase, and PGI2, which inhibit 

platelet activation, where endothelial-ADPase lowers the platelet activator ADP. Active 

Ca2+ efflux is maintained in resting platelets by a cyclic AMP-activated Ca2+ pump.  

Platelet activation status is determined by intracellular calcium concentration, which 

causes platelet degranulation and structural alteration. cAMP and cGMP signaling 

systems, cooperate to regulate the suppression or stimulation of granule liberation (Jin 

and Loscalzo, 2010, pp. 147–162; Smolenski, 2012, pp. 167–176; Marcus et al, 1997, 

pp. 1351–1360). 

 

G-protein-coupled receptor signaling activates adenylate cyclase located in platelets. 

The linkage of PGI2 from endothelial cells to its IP receptor on the platelet surface 

stimulates the GPCRs (Midgett et al, 2011, pp. 517–528). Platelets contain a large 

amount of sGC, which is stimulated by NO produced in platelets or passed via the 

platelet membrane from endothelium. The second messenger, cGMP, which sGC 

synthesizes from GTP, stimulates PKG and blocks phosphodiesterase 3 (PDE-3), the 

enzyme which degrades cAMP (Patra et al, 2020, pp. 738–745). 

 

Protein kinase A (PKA), a recognized blocker of platelet aggregation, is activated by 

cAMP. Consequent substrate phosphorylation induces the inhibition of small G-proteins 

from the Ras and Rho families, the inhibition of Ca2+ produced from intracellular 

reserves, and the modification of actin cytoskeleton dynamics (Robichaux and Cheng, 

2018, pp. 919–1053; Robinson-White and Stratakis, 2002, pp. 256–270). In addition, 

phosphodiesterases degrade both cAMP and cGMP, which can reduce signaling to 

particular subcellular compartments (Stangherlin and Zaccolo, 2012, pp. H379–H390). 
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The extreme level of junction between stimulating and cAMP/cGMP-dependent 

inhibitory signaling pathways at all stages, like cAMP/cGMP biosynthesis and 

decomposing, and PKA/PKG-mediated substrate phosphorylation, is a developing 

principle of cyclic nucleotide signaling in platelets. As a result, abnormalities in the 

cAMP/cGMP pathways may lead to platelet hyperactivity in cardiovascular diseases 

(Nagy and Smolenski, 2018, pp.  558–571). 

• Cell cycle: NO has been proposed as a physiological cell proliferation regulator, 

capable of causing the downregulation in the majority of cases (Villalobo, 2006, pp. 

307–316; Napoli et al, 2013, pp. 89–95). The direct association of NO-sensitive GC 

with chromosomes during mitosis is a process involved in cell cycle regulation.  

Furthermore, via class II histone deacetylases, NO has been shown to modulate 

chromatin folding in human endothelial cells (Napoli et al, 2013, pp. 89–95).  

 

NO appears to be anti-apoptotic at low concentrations, in part by inhibiting caspase 

activity through nitrosation. In contrast, at greater level, it cannot directly stimulate 

caspases, where caspase-9 can be modified by nitrosylation (Parrish, Freel, and 

Kornbluth, 2013, p. a008672). In the presence of an excess of NO or peroxynitrite, the 

NO-cGMP apoptotic signaling is activated, resulting in the initiation of cytotoxicity 

toward cancerous cells and adjacent tissues through Cyt c production from 

mitochondria, p53 accretion, and JNK/SAPK stimulation (Ha et al, 2003, pp. 1036–

1047). 

 

Apoptosis can be prevented by inhibiting sGC with 1H- [1, 2, 4] oxadiazolo [4,3, -a] 

quinoxalin-1-one  (ODQ) or the cGMP-PKG inhibitor KT5822 (Sirotkin et al, 2000, pp. 

1–9; Feelisch et al, 1999, pp. 243-53). Moreover, in undisturbed neurons (NG108-15 

and N1E-115 cells), inhibition of sGC and reduction of basal cGMP levels induce 

apoptosis. The cGMP/PKG pathway plays a vital role in preventing the stimulation of a 

proapoptotic mechanism, consequently promoting neural cell survival (Fiscus, 2002, pp. 

175–190). 
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2.4.2.    S-Nitrosylation as a post-translational modification 

The covalent modification of protein cysteine thiols by NO to form S-Nitrosothiols at a 

physiological pH range is defined as S-Nitrosylation, suggested as a signaling pathway 

for NO that modulates cGMP-independent effects (Fulton, 2016, pp. 29–64). A variety 

of mechanisms are regulated by S-Nitrosylation, comprising transcription, DNA 

impairment repair, cellular growth/differentiation, and apoptosis. 

 

There are 4 different types of S-Nitrosylation reactions: 

• When NO reacts with oxygen (O2), it produces a series of nitrogen oxides. Nitrite 

and nitrosothiol are formed when N2O3 interacts with a protein thiol (Fernando et al, 

2019, p. 404). 

• NO reacts with O2 producing NO2, which then combines with a thiol to form a 

thiol radical and nitrite. NO is then reacted with a thiol radical to form nitrosothiol 

(Fernando et al, 2019, p. 404). 

• When NO encounters a thiol radical, it immediately reacts with the radical to form 

nitrosothiol (Fernando et al, 2019, p. 404). 

• Nitrosonium (NO+) is formed when a transition metal oxidizes NO. Nitrosonium 

after that reacted with a thiol nearby the catalytic center producing nitrosothiol 

(Fernando et al, 2019, p. 404). 

2.4.3.    Mitogen-activated protein kinases (MAPKs) 

Mitogen-activated protein kinases (MAPKs) are a type of serine/threonine kinases that 

are activated quickly in response to growth factor stimulation (Barman, 2005, pp. 325–

335). MAPKs control critical cellular processes like proliferation, stress tolerance, 

apoptosis, and immune response defense  (Soares-Silva et al, 2016, p. 183), and can be 

detected in the cytoplasm and nucleolus of different cell types (Yong et al, 2005, pp.  1–

9). Different MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun amino-

terminal kinase (JNK)/stress-activated protein kinase, and p38 MAPK, have been 

detected in mammalian cells. In addition, the intracellular production of peroxynitrite 

(ONOO−) from the reaction of NO with superoxide (O2−) causes the activation of 
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MAPKs (Nabeyrat et al, 2003, pp. L1112-L1120; Pacher, Beckman and Liaudet, 2007, 

pp. 315–424). MAPK plays a pivotal role in cardiac myocyte hypertrophy that is 

mediated by a variety of factors, and NO clearly inhibits that pathway (Yong et al, 2005, 

pp.  1–9). Both NO and MAPK signal pathways are tightly correlated to immune system 

functions, and it is well recognized that heavy metals, such as mercury, can seriously 

damage mammalian immunity. Mercury prevents NO synthesis by inhibiting the NF-

kappa B pathway and controls cytokine expression by activating the p38 MAPK 

pathway in macrophage cells (Kim, Johnson and Sharma, 2002, pp. 67–74). 
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3. NITRIC OXIDE SYNTHASE 

3.1. Historical Introduction 

NOS was first discovered and described by Knowles in 1989; they reported that the 

NADPH-dependent formation of NO and citrulline from L-arginine was catalyzed by a 

soluble enzyme derived from the rat forebrain (Knowles et al, 1989, pp. 5159 LP – 

5162). Between 1991 and 1994, the three main types of NOSs were cloned and isolated. 

In 1998 and 1999, the first X-ray crystal structures of NOS subdomains were exhibited 

and documented. (Alderton, Cooper and Knowles, 2001, pp. 593–615). NOSs are 

responsible for the enzymatic formation of NO (Luiking, Engelen, and Deutz, 2010, pp. 

97–104). The NOS is the primary source of NO in humans and mammals (Li et al, 

2014, p. 5272). 

3.2. NOS Isoforms 

To comprehend the importance and function of NO, it must first become acquainted 

with the enzyme responsible for its production and the structural differences between 

enzyme isoforms. NOS is a homodimer multidomain enzyme and has two constitutively 

expressed and Ca2+-dependent isoforms, nNOS [neuronal NOS, NOS1, NOS I] and 

eNOS [endothelial NOS, NOS3, NOS III], as well as an inducible and Ca2+-independent 

isoform (iNOS, NOS2, NOS II) (Oliveira et al, 2013, pp. 1537–1551; Tejero et al, 2019, 

pp. 7904–7916). As a result of its expression in neurons and the brain, NOS1 is 

recognized as nNOS. Since its expression can be triggered by cellular activation, NOS2 

is known as iNOS, and for its association with the endothelium, NOS3 is also identified 

as eNOS. NOSs are expressed in wide cell types despite their names, frequently with an 

overlapping distribution. (Mattila and Thomas, 2014, p. 478). The 3 NOS isoforms have 

been classified in mammals, sharing 50–60% sequence identity with the tremendous 

variability in the amino-terminal despite ~ 400 million years of evolution. Besides that, 

NOS isoforms are very conserved between species, and homology for a given isoform 
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may range from 85 to 92% (Fedorov et al, 2004, pp. 5892 LP – 5897; Pradhan, Bertels 

and Akerman, 2018, pp. 391–401; Gantner, LaFond and Bonini, 2020, p. 101550).  

The principal sequence difference between mammalian constitutive isoforms (cNOSs) 

and iNOSs is a sequence insertion found only in cNOSs and serving as an 

autoinhibitory control feature (Ghosh and Salerno, 2003, p. 193). The structure of the 3 

enzymes is identical, each one containing a reductase and an oxygenase domain 

(Alderton, Cooper and Knowles, 2001, pp. 593–615). Calmodulin (CaM) binding was 

discovered to be necessary for all isoforms of NOS activity and is regulated by 

intracellular calcium (Ca2+) levels. The Ca2+ requirement varies between the three 

isoforms. nNOS and eNOS need higher intracellular Ca2+ concentrations for function, 

while CaM is thought to be very closely bound to the iNOS enzyme, requiring only low 

levels of Ca2+ for activation (Schmidt et al, 1992, pp. 427–434) (Table 3.1). 

 

Table 3.1  The main binding site residues in hNOSs (Curtin et al, 2015, pp. 2558–
2579). 

 

iNOS eNOS nNOS 

Methionine 120 Valine 104 
 

Methionine 341 
 

Threonine 121 Phenylalanine 105 
 

Histidine 342 
 

Alanine 262 Serine 246 
 

Serine 482 
 

Glutamine 263 Glutamine 247 
 

Glutamine 483 
 

Arginine 266 Arginine 250 
 

Arginine 486 
 

Valine 352 Valine 336 
 

Valine 572 
 

Phenylalanine 369 Phenylalanine 353 
 

Phenylalanine 589 
 

Asparagine 370 Serine 354 
 

Serine 590 
 

Glycine G371 Glycine 355 
 

Glycine 591 
 

Tryptophan 372 Tryptophan 356 
 

Tryptophan 592 
 

Tyrosine 373 Tyrosine 357 Tyrosine 593 
 

Glutamic acid 377 
 

Glutamic acid 361 
 

Glutamic acid 597 
 

Aspartic acid 382 Asparagine 366 
 

Aspartic acid 602 
 

Tyrosine 491 Tyrosine 475 Tyrosine 711 
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The heNOS structure shows residues Lys67–Trp480, matching to residues Lys69–

Trp482 in beNOS. In addition, the frequently disarranged loop area (Arg109–Pro120) in 

bovine eNOS also is absent in heNOS (Arg107–Pro118) (Li et al, 2014, p. 5272) (Table 

3.2). Both iNOS and nNOS are cytosolic enzymes, but eNOS is membranaire (Raman et 

al, 1998, pp. 939–950). 

 

Table 3.2   Sequence variation beyond the heme active site in a binding pocket (Li et al, 

2014, p. 5272). 

 

Rat nNOS hnNOS beNOS heNOS miNOS hiNOS 

Met336 Met341 Val106 Val104 Met114 Met120 

Leu337 His342 Leu107 Phe105 Asn115 Thr121 

Tyr706 Tyr711 Tyr477 Tyr475 Tyr485 Tyr491 

Trp306(B) Trp311(B) Trp76(B) Trp74(B) Trp84(B) Trp90(B) 

3.3. Molecular Genetics of NOS 

Marsden and his collaborators separated genomic clones encoding heNOS and defined 

the gene's structural arrangement. Identification of the eNOS gene's 5-prime-flanking 

region showed that it lacks TATA and has proximal promoter elements linked with a 

constitutively expressed gene, specifically, SP1 and GATA motifs. (Marsden et al, 

1993, pp.17478–17488). Later, Janssens and collaborators separated a cDNA encoding 

a human vascular NO. The human protein was 1294 AA long and had 52% of its AA 

sequence with brain NOS in common. According to the researchers, the cDNA encodes 

a Ca2+-regulated, constitutively expressed eNOS able to generat EDRF in the vessels 

(Janssens et al, 1992, pp. 14519–14522). Marsden et al. also cloned and sequenced 

heNOS. Their cDNA clones estimated a 1203 AA with approximately 60% identity to 

the rat brain NOS isoform and 94% identity with the bovine endothelial protein. NOS 

has been divided into two groups: (i) a constitutively expressed, Ca2+-regulated category 

found in the brain, neutrophils, and endothelial cells, and (ii) Ca2+-independent class 

found in endotoxin or cytokine-istimulated macrophages and endothelial cells. 

(Marsden et al, 1992, pp. 287–293). 
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hnNOS gene is found on chromosome 12q24.26 and contains 29 exons and extends 

over 100 kb. Moreover, heNOS gene is located on chromosome 7q35-7q36 and 

comprises 26 exons over a span of 21 kb. The 37 kb gene coding for hiNOS is situated 

on chromosome 17cen-q11.2 and contains 26 exons as well (Wang and Marsden, 1995, 

pp. 71–90). 

3.4. Structure of NOS 

NOS is a homodimeric enzyme composed of many domains (modules) comprising of an 

N-terminal oxygenase domain (NOSox), where NO is produced, contains iron 

protoporphyrin IX (heme) and tetrahydrobiopterin (BH4), and binds L-argand a C-

terminal reductase domain that has binding sites for two-electron carriers flavin adenine 

dinucleotide (FAD) and flavin mononucleotide (FMN), also nicotinamide adenine 

dinucleotide phosphate(NADPH) which serves as the electron source (Venema et al, 

1997, pp. 1276–1282; Fedorov et al, 2004, pp. 5892 LP – 5897; Sharma and Patel, 

2017, pp.11–22; Gantner, LaFond and Bonini, 2020, p. 101550). Linked by a flexible 

hinge (R-Hinge) localized between the two flavin sites that regulate enzymatic activity 

is a site of diversity between NOS family members. (Astashkin et al, 2019, pp. 7075–

7086; Gantner, LaFond and Bonini, 2020, p. 101550).  

 

Another regulatory domain is the oxygenase-reductase hinge (OR-Hinge), governing the 

transfer of electrons from the NOSred domain to the NOSox domain. Such transfer is 

facilitated by structural modifications caused by the Ca2+-dependent adaptor calmodulin 

(CaM) binding. Cam binding has been found to be essential for the activity of all NOS 

isoforms and is controlled by intracellular calcium rates (Piazza, Guillemette and 

Dieckmann, 2015, pp. 1989–2000; Gantner, LaFond and Bonini, 2020, p. 101550). The 

last monitoring domain is the PSD/Disc-Large/ZO-1 (PDZ), which alters the enzyme's 

subcellular position through protein-protein interactions; as a result, the obtainability of 

substrates and accessibility to NO’s targets (Gantner, LaFond and Bonini, 2020, p. 

101550).  
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3.4.1.     The oxygenase domain 

NOSox has a single heme domain with a heme-porphyrin catalytic center, a structural 

zinc tetrathiolate (ZnS4) motif, and the BH4 cofactor. The geometry of the binding 

pocket is strongly conserved between NOS isoforms and mammalian species (Li et al, 

2014, p. 5272; Bignon et al, 2019, pp. 415–429). Heme is axially coordinated to a 

cysteine thiolate (Cys420 in nNOS); the porphyrin is the binding site for the dioxygen 

molecule necessary for L-arginine oxidation (Li and Poulos, 2005, pp. 293–305; Bignon 

et al, 2019, pp. 415–429). The binding of NOS with heat shock protein 90 (hsp90), the 

structural modifications that allows heme availability to its binding cleft in the protein 

while endorsing NOS dimerization as well, can favor heme enclosure within the NOSox 

domain (Sarkar et al, 2015, pp. 21615–21628; Ghosh, Chawla-Sarkar and Stuehr, 2011, 

pp. 2049–2060; Bignon et al, 2019, pp. 415–429).  

 

Studies have revealed that a conserved glutamate residue (Glu597 in nNOS) is crucial in 

substrate binding (Bignon et al, 2019, pp. 415–429). The pterin redox cofactor links 

nearby the binding site via attachment with the heme propionate groups, yet this 

mechanism is supposed to facilitate L-Arg adhesion. This network effectively promotes 

the preservation of the NOSox dimer interface and L-Arg binding to NOS (Chartier and 

Couture, 2004; Bignon et al, 2019, pp. 415–429).  

 

Nearby the active site, conserved aromatic residues form assembling binding with the 

porphyrin moiety (Trp414 and Phe589 in nNOS) and the pterin cofactor (Trp683 in 

nNOS), which is implicated in a vast hydrogen-bond network. It has been suggested that 

an essential tryptophan residue located at the back of the heme pocket (Trp592 in 

nNOS) transports the electron from the FMN cofactor to heme (Monni et al, 2015, pp. 

5602–5606; Bignon et al, 2019, pp. 415–429). The ZnS4 motif is another component 

that causes dimerization. The zinc ion is tetra-coordinated with two thiolates (Cys331 

and Cys336 in nNOS) from each monomer, which helps to preserve NOS architecture 

by connecting the two NOSox domains. The lack of this cation, or the adjustment of one 

of the coordinated cysteines, severely disrupts the dimer, decreasing NOS catalytic 

activity (Chreifi et al,2014; Bignon et al, 2019, pp. 415–429). 
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3.4.2.     The reductase domain 

The NOS reductase (NOSred) domain is divided into 3 subdomains: NADPH, FAD, 

and FMN, which individually bind to a different cofactor for electron transfer (Feng et 

al, 2014, pp. 130–140).  CPR has 60% sequence homology with NOSred and catalyzes 

the similar electron transfer from NADPH to the P450 reactive region. The NADPH and 

FAD domains involve in creating the 'FNR-like' unit, while the single FMN component 

is thought to be behaving as an electron shuttle toward the heme center, similar to CPR. 

A helix hinge segment binds the FMN and FAD subdomains, ensuring that the two 

flavins are appropriately aligned to facilitate electron transfer. The electron is 

transferred from NADPH to FAD and then to the FMN. Once activated, the FMN 

domain produces large-scale motions for docking on the NOSox domain and inhibits 

electron transfer to the heme center. This mechanism is caused by calmodulin binding 

and happens in trans (from one monomer's reductase domain to the other monomer's 

NOSox) (Bignon et al, 2019, pp. 415–429; Wang et al, 1997, pp. 8411–8416; Gachhui 

et al, 1996, pp. 20594–20602). Examining the FMN/FAD domain interface showed 

significant hydrophobic interactions and salt bridges, particularly between the Glu816 

and Arg1229 residues, preserved in cNOSs. It has been proposed that Arg1400, which is 

found in both nNOS and eNOS (Arg1165), plays a significant role in the selective 

binding of NADPH and the lodging of FMN in its electron-acceptor state in the lack of 

calmodulin. Phe1395, a FAD-shielding residue, is suggested to be important in 

inhibiting electron transfer in the calmodulin-free form by serving as an aromatic barrier 

between NADPH and FAD (Figure 3.1) (Bignon et al, 2019, pp. 415–429; Wang et al, 

1997, pp. 8411–8416; Gachhui et al, 1996, pp. 20594–20602). 
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Figure 3.1   (A) Molecular structure of NOS dimer. (B) Protein structure of NOS 

isoforms, where PSD95 is postsynaptic density protein (Sharma and Patel, 2017, pp.11–

22). 

3.5. Tissue Specificity and Cellular Distribution of NOS Isoforms 

The effects of NO in biological systems are determined by its steady-state level and the 

location where it is generated. Therefore, the organ in which NO is made is essential, 

and the types of cells that contribute to NO formation appear to be a primary factor in its 

impact. NOS2 has recently been shown to be fundamentally expressed in neurons, 

kidney, liver, lung, colon, and keratinocytes, while NOS3 may be expressed at a higher 

concentration than the constitutive one in different situations, like physical activities, 

estrogen activation, hyperthermia (Villanueva and Giulivi, 2010, pp. 307–316) (Table 

3.3). 
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Table 3.3   Recapitulate mammalian NOS isoform’s properties (Ignarro, 2000; 

Bivalacqua, Champion and Hellstrom, 2002, pp. 345–352; Taylor, Alarcon and Billiar, 

1998, pp. 766–781; Alderton, Cooper and Knowles, 2001, pp. 593–615; Geller and 

Billiar, 1998). 

 

Structural 
and 

enzymatic 
parameters 

nNOS 
(NOS 1, NOS I) 

eNOS 
(NOS 3, NOS III) 

iNOS 
(NOS 2, NOS II) 

Subunit 
molecular 

mass 

160 kDa 
1433 aa 

135 kDa 
1153 aa 

125–130 kDa 
1203 aa 

Gene 
structure and 

size 
 

29 exons, 28 
introns, complex 

structural 
organization, locus 

over a region of 
>200 kbp 

26 exons, 25 
introns, 21–22 kbp 

 

26 exons, 25 
introns, 37 kbp 

 

cDNA size 
 10.0 kb 

4.4 kb 
 4.1 kb 

Inducibility Constitutive Constitutive Inducible 

Calmodulin 
binding ~30 * 10-9 M ~30 * 10-9 M Subunit-like (>> 

30* 10-9 M) 

Cofactors H4B, FAD, FMN, 
heme, Zn 

H4B, FAD, FMN, 
heme, Zn 

H4B, FAD, 
FMN, heme, Zn 

Substrates NADPH, L-Arg, O2 NADPH, L-Arg, O2 
NADPH, L-Arg, 

O2 

Protein 
variants 

µ,a,ß,d 
tissue-specific 

isoforms 
- - 

Posttranslatio-
nal 

modifications 

Specific 
phosphorylation 

sites 
present 

Myristoylation, 
palmitoylation, 
phosphorylation 

sites present 

Specific 
phosphorylation 

site 
present 

Sources of 
superoxide 
formation 

Heme domain, 
reductase 
domain 

Mainly heme 
domain 

Mainly 
reductase 
domain 

Protein-
protein 

PSD-95, caveolin3, 
phosphofructokinas

Caveolin1, HSP 90, 
CAT-2, - 
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interactions e M bradykinin receptor 

Major 
physiological 

function 
Neurotransmission Vasodilatation Cytotoxicity 

Role in disease 

Stroke 
Muscular 
dystrophy 
Ischemia 

reperfusion 
injury 

Endothelial 
dysfunction 

hypercholesterolem
ia 

hypertension 

Toxic shock 
inflammation 
autoimmune 

disease 

Chromosome 
 

12q24.2–12q24.3 
of chromosome 12 

7q35–7q36 of 
chromosome 7 

17cen–q11.2 of 
chromosome 17 

NO 
production 

Low (pM) 
 

Low (pM) 
 

High (mM) 
 

Regulation 
 Ca2+/calmodulin Ca2+/calmodulin 

 

Gene 
transcription 

 

Stimuli 
 

acetylcholine; 
bradykinin; ATP; 

ADM; 
proliferation; shear 

stress 

neuro-excitatory 
amino acids; 

estrogens 
 

IL-1; TNF-a; 
NF-kB; IFN; 
endotoxin; 

injury 
 

 

3.6. NOS Reactivity 

The NOS enzyme is active to produce NO only as a dimer (Feng et al, 2014, pp. 130–

140). The urea dissociation studies show that the absolute dimer potencies are 

respectively: NOSIIIoxy ≫ NOSIoxy > NOSIIoxy (endothelial NOSoxy (eNOSoxy) ≫ 

neuronal NOSOXY (nNOSoxy) > inducible NOSoxy (iNOSoxy)) (Panda et al, 2002, 

pp. 31020–31030). The L-Arg, is converted to NO and citrulline by 2 consecutive 

monooxygenation interactions. The intermediate, Nω -hydroxy-L-arginine (NOHA), 

Throughout the enzymatic turnover, it remains associated at the active site, albeit 

dissociation and following NOHA build-up have been reported in some scenarios. 

(Daff, 2010, pp.1–11). L-Arg is transported inside the cells by a cationic amino acid 

transporter (CAT) (Prado, Martins and Tibério, 2011, p. 832560) (Figure 3.2). 
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L-Arg + 1.5 NADPH + 1.5 H+ + 2 O2 → 1.5 NADP+ + Citrulline + NO + 1.5 H2O  (3.1)                     

(Feng et al, 2014, pp. 130–140). 

 
 

Figure 3.2   NO synthesis from L-arginine (Daff, 2010, pp.1–11). 

 

The biochemical reaction is started in the NOSred domain. A functional NOS transfers 

electron from NADPH to heme in the amino-terminal oxygenase domain through the 

flavin FAD and FMN in the carboxy-terminal reductase domain (Förstermann and 

Sessa, 2012, pp. 829–837). 

 

 NADPH is transformed NADP+. This liberates electrons to reduce FAD, which later 

passes electrons to FMN. Even though NOS monomers have NOSox and redu domains, 

they do not transfer electrons within the same protein chain. However, as a dimer, this 

transition happens successfully when the FMN group of one monomer passes electrons 

to the heme group in the NOSox domain of the other monomer, known as the trans 

phenomenon. This transition is a rate-limiting step in the reaction and targets extreme 

regulation of enzymatic activities of NOS family members. CaM binding to the linker 

domain induces significant modifications in the accessibility of the FMN domain, 

allowing electron transfer to the heme group (Bignon et al, 2019, pp. 415–429; Gantner, 

LaFond and Bonini, 2020, p. 101550).  
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NOS's NOSred domain is analogous to the NADPH-dependent diflavin NOSred 

enzyme, which supplies electrons to cyt P450 enzyme domains. The oxygenase domain 

is where NO is formed since the heme-BH4 groups accept electrons and transfer them to 

molecular oxygen, which then oxidizes L-Arg to NOHA. NOHA is then oxygenated 

again by transforming it to L-citrulline, releasing NO, and completing the reaction 

(Gantner, LaFond and Bonini, 2020, p. 101550; Tejero and Stuehr, 2013, pp. 358–365). 
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4. NEURONAL NITRIC OXIDE SYNTHASE 

4.1.   nNOS Molecular Structure 

Neuronal nitric oxide synthase (also known as Constitutive NOS; IHPS1; N-NOS; NC-

NOS; Neuronal NOS; nitric oxide synthase 1; nitric oxide synthase 1 (neuronal); Nitric 

oxide synthase, brain; nNOS; NOS; NOS type I; NOS1; Peptidyl-cysteine S-nitrosylase 

NOS1) (Mattila and Thomas, 2014, p. 478; Costa et al, 2016, p. 206) is a constitutive 

enzyme (Sánchez-Ruiloba et al, 2014, p. e95191) that composed of 1434 amino acids, 

and has an estimated molecular weight of 160.8 kDa. nNOS is the principal NO source 

in the central nervous system (Freudenberg, Alttoa and Reif, 2015, pp. 46–63). nNOS 

monomer has a bidomain structure with an oxygenase domain (N-terminal) extended 

PSD/Discs-large/ZO-1 homologous (PDZ) domain (Mungrue and Bredt, 2004), by 

which it can interact with other proteins containing PDZ domains (Freudenberg, Alttoa 

and Reif, 2015, pp. 46–63; Zhou and Zhu, 2009, pp. 223–230), and a reductase domain 

(C-terminal) which are separated by a calmodulin-binding motif (Zhou and Zhu, 2009, 

pp. 223–230). nNOS is calmodulin-regulated (Gerber and de Montellano, 1995, pp. 

17791–17796). CaM activates nNOS reversibly in a Ca2+dependent manner. The N-

terminal NOSox domain comprises heme and tetrahydrobiopterin cofactors, L-Arg 

binding site, and C-terminal diflavin reductase domain with the NADPH binding sites 

and the cofactors FAD and FMN (Sobolewska-Stawiarz et al, 2014, pp. 11725–117). 

Furthermore, the binding site of Zn facilitates nNOS dimerization (Delker et al, 2010, 

pp. 10803–10810) (Figure 4.1).  

 

In 2002, the crystal structure of nNOS became accessible (Mukherjee et al, 2014, pp. 

6814–6838). Brain nNOS is present in cells in particulate and soluble forms, and its 

distinct subcellular distribution can lead to its different functions (Förstermann and 

Sessa, 2012, pp. 829–837). 
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Figure 4.1  nNOS structure and NO formation (Zhou and Zhu, 2009, pp. 223–230). 

4.2.   The Active Site of Human nNOS 

The two isoform-specific residues, Met341 and Asp602 in human nNOS are conserved; 

His342 is located in the hydrophobic pocket, which might be critical for inhibitor 

binding (Li et al, 2014, pp.2667–2674) in addition to Met336 and Tyr706 (Li et al, 

2014, pp.2667–2674). According to Li and his colleagues, Asp597 residue, as an 

important active site, mainly maintains selectivity (Li et al, 2018; Li et al, 2014, 

pp.2667–2674). Olsbu and his group suggest that Val567 has a crucial function in 

maintaining the dependability of the active site for substrate binding, stability of heme-

bound gaseous ligands, and possible NO generation (Olsbu et al, 2018, pp. 1553–1566). 

4.3.   Gene Expression of nNOS 

nNOS gene (NOS1) was the first cloned and characterized human NOS gene (Jeffrey 

Man, Tsui and Marsden, 2014, pp. 161–192). It is located on chromosome 12q24.2 

(Kishimoto et al, 1992, pp. 802–804; Reif et al, 2006, pp. 286–300; Wang, Newton and 

Marsden, 1999, pp. 21–43; Freudenberg, Alttoa and Reif, 2015, pp. 46–63; González-

Castro et al, 2019, pp. 967–977) and spreads over an area up to 200 kb in human 

genomic DNA and comprises 4299 nucleotides which encode for 1434 amino acids 

(Costa et al, 2016, p. 206); it consists of 28 coding exons (Freudenberg, Alttoa and Reif, 

2015, pp. 46–63). 



 

 29 

The nNOS gene produces various mRNA transcripts via mechanisms, such as 

alternative promoter use, alternative splicing, cassette insertions/deletions, changing 

sites for 3-untranslated region cleavage, polyadenylation, and allelic diversity in mRNA 

structure (Panda et al, 2003, pp. 37122–37131; Wang, Newton and Marsden, 1999, pp. 

21–43); 130 kb ‘variable region’ with 12 alternative first exons besides the unique 

promoters (labeled exons 1a - 1l) (Freudenberg, Alttoa and Reif, 2015, pp. 46–63) 

(Figure 4.2).  

 

The tissue and cell-specific expressions of nNOS employ a larger variety of particular 

promoters and linked exon 1 variants than every human gene. The majority of basically 

expressed nNOS variants have low translational performance (Jeffrey Man, Tsui and 

Marsden, 2014, pp. 161–192).  

 

nNOS transcripts are susceptible to various stimuli and generate diverse isoforms due to 

differences in transcriptional initiation, processing and translational performance, 

stability, and localization. Up to this point, there are five splice variants of nNOS that 

have been identified, nNOS α, nNOS β, nNOS γ, nNOS μ, and nNOS2 (Zhang et al, 

2014, pp. 3189–3200; Balke, Zhang and Percival, 2019, pp. 35–47; Panda et al, 2003, 

pp. 37122–37131). That is why nNOS is one of the most complicated genes of the 

human genome (Freudenberg, Alttoa and Reif, 2015, pp. 46–63). 

 

 

 
 

Figure 4.2   Domain organization of NOS1 (Garcin et al, 2004, pp. 37918–37927). 
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4.4.   Localization of nNOS 

Although the name of nNOS comes from the tissue (neuronal tissue) where it was first 

purified (Dai et al, 2013, p. 891581), it is also present in skeletal, cardiac, smooth 

muscle (Tengan et al, 2012), the kidney, heart, and endothelial cells (Dai et al, 2013, p. 

891581). In cardiac myocytes, nNOS differs from eNOS in terms of location because 

nNOS is located in the sarcoplasmic reticulum (SR) and the plasma membrane (Zhang 

et al, 2014, pp. 3189–3200). Generally, nNOS is found in the brain expressed in 

immature and mature neurons (Zhou and Zhu, 2009, pp. 223–230), mainly in the 

cerebellum, basal ganglia, hippocampus, frontal cortex (Freudenberg, Alttoa and Reif, 

2015, pp. 46–63). 

 

The wide range of proteins with PDZ domains may connect with the PDZ domain of 

nNOS, which affects the subcellular distribution and (or) behavior of the enzyme in the 

brain and muscle (Zhou and Zhu, 2009, pp. 223–230). There are two kinds of nNOS–

expressing neurons in the cortex: Type I and Type II (Perrenoud et al, 2012, p. 36). 

Type I, where nNOS neurons are limited, is mainly located in deeper levels and 

expresses nNOS at elevated amounts. In this type, various neuromodulatory inputs are 

obtained by nNOS neurons. Type I nNOS neurons have very wide, long-range 

projecting axonal arbors that place them in an advantageous position to influence the 

vasculature. Type II nNOS neurons, on the other hand, are a diverse group of 

interneurons located predominantly in deep and superficial layers of the cortex, 

including mechanisms that can cover many layers. (Echagarruga et al, 2020, p. e60533). 

Rothe and coworkers reported that neuronal nNOS immunoreactivity was primarily 

found in the cytosol, far from the membranes, in a patch-like mode (Zhou and Zhu, 

2009, pp. 223–230). 
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4.5.   Formation of nNOS Products 

nNOS enzymatic activity involves the dimerization of two nNOS monomers based on 

Ca2+ and calmodulin-binding (Freudenberg, Alttoa and Reif, 2015, pp. 46–63). nNOS 

catalyzes NO's production from L-arginine in two phases: the hydroxylation of L-Arg to 

the intermediate NOHA, which will then be oxidized to L-citrulline and NO (Costa et 

al, 2016, p. 206; Zhou and Zhu, 2009, pp. 223–230). NADPH transfers electrons to 

FAD and FMN during the first stage, reducing molecular oxygen to superoxide (O2-). 

Simultaneously, an electron from a flavin-mononucleotide (FMNH) reduces Fe3+ to 

Fe2+ in the heme group. The Fe3+ reduction allows O2 binding, which leads to an O2−–

Fe2+ complex. The electron of the complex switches between Fe2+ and O2, leading to the 

O2–Fe3+ intermediate. Likewise, this intermediate may receive an electron by forming 

O2−–Fe3+, which produces H2O2 and Fe3+ once combined with H+. BH4 binding to 

the O2−–Fe3+ present in the heme group is critical for the catalysis of L-Arg (Costa et al, 

2016, p. 206). nNOS proceeds the transfer of electrons to the heme and thus oxidize 

NADPH at a rapid frequency, while eNOS and iNOS will accomplish the same process 

at a much slower rate (Saravi, 2017). The nNOS enzyme is dimeric in its active form, 

demanding heme binding and dimer stabilization through L-arginine and BH4 binding 

(Dunbar et al, 2004, pp. 964 LP – 969). 

In the absence of CaM, NADPH interaction is expected to lock the nNOS reductase 

domain into a conformation that limits the mobility of the FMN-binding domain. 

Electron transfer from FMN to the NOSox domain is prevented in this locked 

conformation, and NO production is interrupted. This "conformational lock" is believed 

to be mediated by Arg-1400 in the C-tail, the impacts of which are alleviated by CaM 

joining (Freudenberg, Alttoa and Reif, 2015, pp. 46–63).  

 

nNOS can also generate ROS at saturating levels of L-Arg or NOHA before the 

formation of NO (Costa et al, 2016, p. 206). Moreover, BH4 significantly boosts H2O2 

output at the expense of O2 (Shimizu et al, 2003, pp. 1343–1352). In addition, there is 

an autoinhibitory loop that controls nNOS activity within the FMN binding domain 

(Zhou and Zhu, 2009, pp. 223–230). 



 

 32 

4.6.   Factors Regulating nNOS Function 

nNOS is a strictly modulated enzyme controlled at the transcriptional and 

posttranslational levels through protein-protein interactions and modifications, such as 

phosphorylation, ubiquitination, and sumoylation. The enzymatic activity of nNOS is 

affected by the optimum substrate concentration, cofactors, and interaction with 

controlling proteins (Sharma and Patel,2017, pp.11–22). 

4.6.1.    Extrinsic factors 

• nNOS dimerization: The active form of nNOS is the dimeric form with two 

strong affinity binding sites for BH4 and L-Arg (Rao, Chaudhury and Goyal, 2008, pp. 

G627–G634; Zhou and Zhu, 2009, pp. 223–230). The two monomers are connected by 

a disulfide bridge and bind a zinc ion. In addition, the dimer is maintained by the ‘N-

terminal hook' domain. BH4, heme, and L-Arg stabilize the dimer of nNOS (Hemmens 

and Mayer, 1998. pp. 1-32), where the dimerization protects nNOS from proteolysis. 

Low-temperature SDS-PAGE experiments indicate the dimer strength of NOSs in the 

order of eNOS> nNOS >iNOS (Panda et al, 2002, pp. 31020–31030). According to 

Okada, BH4-dependent dimer stabilization protects nNOS from PKC phosphorylation 

and hydrolyzed by trypsin (Okada, 1998, pp. 261–264; Zhou and Zhu, 2009, pp. 223–

230). 

 

• Phosphorylation: nNOS phosphorylation is crucial for enzymatic activity. PKA, 

CaM-kinases (CaM-KI and CaMKII), PKC, and phosphatase 1 regulate nNOS activity; 

nNOS is then regulated by extracellular and intracellular signals (Costa et al, 2016, p. 

206; Zhou and Zhu, 2009, pp. 223–230). The dephosphorylation of nNOS boosts nNOS 

enzymatic activity (Rameau, Chiu and Ziff, 2003, pp.1123–1133). Ca2+/calmodulin 

(CaM)-dependent protein kinase II (CaMKII) can phosphorylate nNOS at Ser847 that 

reduces NOS activity in neurons (Osuka et al, 2002, pp. 1098–1106). CaMKII binds to 

the C-terminal domain of the NR2B subunit near nNOS attached by PSD-95 and 

phosphorylates S847 of nNOS (Cao et al, 2005, pp. 117–126; Rameau et al, 2007, pp. 

3445–3455). Rameau and his collaborators demonstrated that the phosphorylation of 
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Ser1412 by Akt is necessary for activating nNOS by the N-methyl-D-aspartate receptor 

(NMDAR). The C-terminal tail of nNOS possesses a potential phosphorylation site at 

Ser1412 (Rameau et al, 2007, pp. 3445–3455; Costa et al, 2016, p. 206).  

Phosphatidylinositol-3 (PI3) kinase binds to tyrosine-phosphorylated NR2B, causing 

phosphoinositide phosphorylation and the recruitment and stimulation of Akt at the 

plasma membrane that could phosphorylate nNOS (Rameau et al, 2007, pp. 3445–

3455). CaM-KI phosphorylation at Ser741 in transfected cells also induces nNOS 

enzymatic activity (Song et al, 2004, pp. 133–137; Zhou and Zhu, 2009, pp. 223–230) 

(Figure 4.3). 

 

 

Figure 4.3   Phosphorylation, Acetylation and Ubiquitylation sites (post-translational 

modifications (PTM) sites) in nNOS (Hornbeck et al, 2015, pp. D512–D520). 
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• Protein-Protein interactions (PPIs): Unlike endothelial and inducible NOS, 

nNOS has a PDZ (PSD-95/Dlg/ZO-1) domain at its N-terminal implicated in subcellular 

targeting. The PDZ domain of nNOS appears to have class I, II, and III joining 

specificity. The PDZ domain of nNOS will bind to C-terminal sequences with acidic 

residues at the P-2 location with reduced micromolar binding constants, just like a real 

class III PDZ domain. Conjugation to C-terminal sequences with a hydrophobic residue 

at the P-2 position and an acidic residue at the P-3 position (class II) is also possible 

(Merino-Gracia et al, 2016, pp. 11581–11595; Manjunath, Ramanujam and Galande, 

2018, pp.155–171). 

nNOS can be attached to precise subcellular structures via mediating PPIs due to the 

post-synaptic density (PSD) domain. There are abundant PDZ domains in Scaffold 

proteins which are crucial for the organization of supramolecular signaling complexes 

(Gu and Zhu, 2021, pp. 1–10).  

 

The protein carboxy-terminal PDZ ligand of nNOS (CAPON) is believed to be 

selectively linked with nNOS and have comparable regional distribution (Esplugues, 

2002, pp. 1079–1095) that has a C-terminal PDZ domain binding to the N-terminal PDZ 

domain of nNOS and N-terminal phosphotyrosine binding (PTB) domain (Zhou and 

Zhu, 2009, pp. 223–230). CAPON controls NO formation in CNS neurons by 

determining the amount of nNOS connected to the plasma membrane. CAPON also 

binds nNOS to other macromolecules, such as the small G-protein Dexras-1 (Zhang et 

al, 2018, p. e12754; Fang et al, 2000, pp. 183–193). CAPON is also involved in 

regulating dendritic morphology, dendrite patterning, and dendritic spine growth (Zhang 

et al, 2018, p. e12754). 
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• nNOS uncoupling: BH4 and L-Arg are critical cofactors for nNOS. In the case of 

deficiency of such cofactors, nNOS enzymes remain "uncoupled," generating reactive 

oxygen species (ROSs) instead of NO (Landmesser et al, 2003, pp. 1201–1209; Wu et 

al, 2014, pp. 815–824; Costa et al, 2016, p. 206).  Pressure overload-induced heart 

failure, hypertension, ischemia/reperfusion damage, and atrial fibrillation are 

exacerbated by BH4 deficiency and nNOS uncoupling. Accumulation of methylarginine 

and S-Glutathionylation of nNOS enhance uncoupling (Alkaitis and Crabtree, 2012, pp. 

200–210; Hemmens et al, 2000, pp. 35786–35791). 

• Protein inhibitor of nNOS (PIN): The PIN is a small molecular weight 

endogenous protein, dynein light chain, which inhibits nNOS by destabilizing the dimer 

isoform. There is a binding site at the NH2-terminus of nNOS for PIN (Costa et al, 

2016, p. 206; Lajoix et al, 2004, pp. 1467–1474). PIN has been shown to bind to a 17-

residue peptide fragment of nNOS (Met-228 to His-244), thus destabilizing the dimeric 

structure of nNOS resulting in a catalytically inactive monomeric state. Since PIN 

shares similarities with the light chains of myosin and dynein, it is possible that PIN is 

involved in the interaction of nNOS with the neuronal cytoskeleton during axonal 

transport (Sharma and Patel, 2017, pp.11–22; Zhou and Zhu, 2009, pp. 223–230).  

The overexpression of PIN reduces the erectile response to electrical field activation, 

whereas shRNA-mediated knockdown of PIN aids in the reversal of age-related ED. 

PIN colocalizes with nNOS in neurons and physically cooperates with 

nNOS, destabilizing nNOS dimers to catalytically inhibited monomers vulnerable to 

fragmentation (Sharma and Patel, 2017, pp.11–22; Zhou and Zhu, 2009, pp. 223–230). 
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4.6.2.     Intrinsic factors 

• Auto-Inhibitory domain and c-terminal tail: The sequence of 40–50 AA found 

in the FMN domain destabilizes CaM binding to the enzyme and inhibiting intra- and 

inter-module electron transferring, which cause the nNOS auto-inhibition (Costa et al, 

2016, p. 206). Calmodulin appears to serve as an allosteric activator of nNOS; when 

CaM and Ca2+ are not present, electron flow from FAD to FMN decreases. At basal 

intracellular Ca2+ concentrations, nNOS is inactive. Though stimulating factors raise 

intracellular Ca2+ levels, calmodulin binds to nNOS and activates it. (Zhou and Zhu, 

2009, pp. 223–230). At the C-terminus of nNOS, there is a tail sequence of 21–42 

amino acids linked to enzyme inhibition (Roman et al, 2000, pp. 29225–29232). The 

elimination of this extension enhances electron flow transfer rates in the NOSred 

domain. Even though CaM is still necessary to promote electron transfer from the FMN 

domain to the heme for NO processing, removing the auto-inhibitory domain and C-

terminal tail results in CaM-independent electron transfer via the NOSred domain 

(Tejero et al, 2010, pp. 27232–27240; Costa et al, 2016, p. 206). 

• Dimer stability: The ability of the N-terminal domain to sustain dimerization is 

critical for the enzymatic activity of nNOS. If this domain does not properly process, the 

electron transport and formation of nNOS products do not occur (Panda et al, 2003, pp. 

37122–37131).  The cysteines are found in all recognized nNOS sequences, with the N-

terminal of the dimer located about 30–35 residues from the oxygenase domain 

boundary. Zinc binding has an important role in dimer stabilization (Costa et al, 2016, p. 

206; Hemmens et al, 2000, pp. 35786–35791). 

4.7.   nNOS Gene Polymorphism 

At least 124 commons (Minor allele frequency (MAF) > 0.05) single nucleotide 

polymorphisms (SNPs) in the nNOS gene, but none in the coding regions. As a result, 

the existence of SNPs in the promoter region may be significant. For instance, the 

guanine to adenine (GàA) transition positioned in the promoter of nNOS exon 1c 
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 (-84GàA) and a cytosinetothymine (CàT) transition identified at 276 base pairs (bp) 

downstream from the translation termination site (276CT; rs2682826) is associated with 

impaired expression of the nNOS gene. Li and his group suggested that selected 

functional SNPs in the nNOS genes relate to the risk of cutaneous melanoma (CM) (Li 

et al, 2007, pp. 1570–1578). 

 

Few investigations have been done to date to explore the relationship between nNOS 

gene polymorphism and Ischemic Stroke (IS) pathogenesis (Dai et al, 2013, p. 891581). 

Some findings indicated that the NOS1 gene polymorphism (rs1483757, rs7308402, 

rs2293050, and rs2139733) was linked to IS disease (Dai et al, 2013, p. 891581). 

 

Two polymorphisms in the promoter region of the NOS1 gene (a VNTR and 

rs41279104) have been linked to schizophrenia (SCZ) in addition to another SNP in 

intron 3 (rs3782206), and SNP (rs6490121) in intron 2 is among the most critical SNPs 

that showed associations with SCZ (Zhang et al, 2015, pp. 1383–1394). As a 

neurotransmitter for bronchodilator nonadrenergic noncholinergic (NANC) nerves, 

neurally derived NO that is provided by NOS1 is physiologically linked to asthma. 

Previous findings in Caucasian populations have linked asthma diagnosis and IgE levels 

to chromosome 12q14–24.2 (Grasemann et al, 2000, pp. 391–394; Martínez et al, 2007, 

pp. 105–113). 

 

Several gene polymorphisms of NOS1 were identified as potential risk factors for 

Parkinson's disease (Huang et al, 2016, p. e4982). There is a connection between 2 

single nucleotide polymorphisms (SNPs) of NOS1 and the pathology. NOS1 exon18 

has been linked to Parkinson's disease in four studies (Huang et al, 2016, p. e4982). 
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5.  nNOS IMPLICATIONS IN THE CENTRAL NERVOUS 
SYSTEM 

5.1. Implications of the Neuronal Nitric Oxide Synthase in the Physiological 

Central Nervous System 

NO is involved in various neurobiological processes. Such a controlling molecule has 

been linked to many roles in the nervous system, including the mechanism of 

endothelial-dependent vasodilation in neurotransmission and host-defense functions 

(Džoljić, Grabatinić and Kostić, 2015, pp. 159–163; Araki et al, 2020, p. 7997). In 

physiological conditions, NO levels vary within a narrow range of 100 pM (or below) 

up to 5 nM orders of magnitude (Džoljić, Grabatinić and Kostić, 2015, pp. 159–163; 

Hall and Garthwaite, 2009). 

 

nNOS is found in the cytoplasm of a small subpopulation of GABA-ergic cells in the 

cortex and hippocampus. It is also located in a much larger excitatory neuron 

population, but only in the spine head.  nNOS is the source of 95% of the NO in the 

cortex and plays a crucial role in synaptic plasticity (Hardingham, Dachtler and Fox 

2013, p.190).  As a free radical and a small gas molecule, NO can diffuse through 

membranes and serve as a second messenger in signaling pathways (Reierson et al, 

2011, pp. 715–727; Džoljić, Grabatinić and Kostić, 2015, pp. 159–163). The activation 

of NMDA (N-methyl-d-aspartate) receptors, in particular, has been shown to raise 

postsynaptic NO synthesis by Ca2+-calmodulin-dependent nNOS (Araki et al, 2020, p. 

7997). The diffusible NO will then induce sGC, culminating in presynaptic cGMP 

output and neurotransmitter production (Hardingham, Dachtler and Fox 2013, p.190; 

Reierson et al, 2011, pp. 715–727). NO has a suppressive activity on synaptic GABA-

ergic transmission. NO functions on ion channels and ion exchangers via cGMP-

dependent mechanisms with an immediate impact on membrane excitability. Besides 

that, NO signaling influences synaptic repression in the superior paraolivary nucleus 

through cGMP-dependent inhibition of a potassium ion/chloride co-transporter. Since 
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NO serves as a stopper of inhibition intensity at the post-synaptic point, this allows for 

altering the information processing (Džoljić, Grabatinić and Kostić, 2015, pp. 159–163). 

5.1.1.     Neuroprotection process of nitric oxide 

NO provides neuroprotection across a variety of processes such as (Calabrese et al, 

2007, pp. 766–775): 

• Akt and CREB: NO and Akt have survival-promoting effects and play critical 

roles in CNS development and plasticity. The kinase Akt and the transcription factor 

CREB are implicated in the NO-induced survival mechanism in cerebellar granule cells 

(Mejía-García et al, 2013, pp. 2424–2439; Calabrese et al, 2007, pp. 766–775). The 

Impact of NO on Akt and CREB is thought to be mediated by cGMP and the sequential 

activation of PKG, an essential intermediate in the NO-mediated stimulation of Akt and 

CREB (Mejía-García et al, 2013, pp. 2424–2439; Calabrese et al, 2007, pp. 766–775). 

• Neuroprotection through S-Nitrosylation: In the NMDA-mediated 

neurotoxicity model, where persistent activation of NMDA receptors induces 

excitotoxic cell damage, NO provides neuroprotection by the S-nitrosylating NMDA 

receptors NR1 and NR2 subunits that decrease the intracellular Ca2+ influx causing 

neurodegeneration (Calabrese et al, 2007, pp. 766–775). Neurons expressing elevated 

amounts of NMDA receptors, for instance, for people with neurodegenerative disorders, 

injection of NMDA receptor agonists further into the striatum of rodents or non-human 

primates mimics the process of neurodegeneration have been seen in Huntington's 

disease (Dong, Wang and Qin, 2009, pp. 379–387). 

• Neuroprotection by the overexpression of heme oxygenase: Heme oxygenase-1 

(HO-1) is an enzyme with 32 kDa weight (Si and Wang, 2020, pp. 1259–1272) that 

degrades heme to carbon monoxide (CO), free iron II (Fe2+), and biliverdin. Protecting 

cells against oxidative stress is essential, which may be a potential therapeutic goal for 

neuroprotection. Biliverdin is transformed to bilirubin by the action of biliverdin 

reductase (BVR), which can scavenge hydroxyl radicals, singlet oxygen, and superoxide 

anions and inhibit protein and lipid peroxidation, exerting a potent antioxidant, anti-

apoptotic, and anti-inflammatory action. CO has anti-apoptotic and anti-inflammatory 

properties by influencing the sGC and MAPK mechanisms. Free iron II production 
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promotes the formation of a heavy chain of ferritin, which quenches free iron II and 

stimulates the membrane transporter Fe-ATPase. This process allows cytosolic iron 

efflux to lower intracellular free Fe2+ ion concentration and stops cellular oxidative 

damage caused by the Fenton reaction. (Jazwa and Cuadrado, 2010, pp.1517–1531; 

Nitti et al, 2018, p. 2260). 

5.2. Implications of Neuronal Nitric Oxide Synthase in the Pathological Central 

Nervous System Condition 

In latest years, studies have associated with NO as a central mediator of 

neurodegeneration in a variety of nervous system impairment, particularly PD, AD, 

ALS, HD, and ischemic brain injury (Knott and Bossy-Wetzel, 2009, pp. 541–554). 

Probable NO-based neurotoxicity pathways include protein nitrosylation and 

nitrotyrosination, excitotoxicity, mitochondrial respiratory complex repression, 

organelle fragmentation, and zinc (Zn2+) release from intracellular stores. In 

pathological conditions, including brain ischaemia or neurological diseases, NO is 

generated in abundance by overactivated NMDA receptors in neurons (Moncada and 

Bolaños, 2006, pp. 1676–1689; Knott and Bossy-Wetzel, 2009, pp. 541–554). 

 

Initially, animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

induced neurotoxicity studies have found NOS inhibition delays in disease progression 

(Jakowec and Petzinger, 2004, pp.497–513; Knott and Bossy-Wetzel, 2009, pp. 541–

554; Zhu and Gong, 2020, p. e9209). MPTP is a neurotoxin that destroys substantia 

nigra neurons while preventing complex I of the mitochondrial respiratory chain. Due to 

its lipophilicity, MPTP effectively passes the blood-brain barrier (BBB) and is oxidized 

to a toxic compound, MPP+ (1-methyl-4-phenylpyridinium), via monoamine oxidase in 

glial cells. The dopamine carrier transports MPP+ through dopaminergic neurons, where 

it gathers in the mitochondria. MPP+ prevents the mitochondrial complex I in the 

electron transport chain by blocking electron flow, decreasing ATP output, and 

enhancing ROS production (Subramaniam and Chesselet, 2013, pp. 17–32). In addition 

to many studies on NO in PD models, a proteomic analysis suggested an association 

between β-amyloid aggregation and nitration in a variety of proteins in AD patients 
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(Butterfield, Swomley and Sultana, 2013, pp. 823–835). The mutant huntingtin 

(mtHTT), a pathologically mutated protein in HD, can bind with glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and Seven in absentia homolog 1 (SIAH-1), a 

protein complex that interacts with NO in cell cultures (Schulte and Littleton, 2011, pp. 

65–78; Bossy-Wetzel, E., Petrilli and Knott, 2008, pp. 609–616). 

5.3. Potential Mechanisms of NO-Mediated Neurodegeneration 

5.3.1.     S-Nitrosylation 

Protein nitrosylation is a well-known mechanism of protein adjustment and regulation. 

Several S-nitrosylated proteins have been identified in the literature (Knott and Bossy-

Wetzel, 2009, pp. 541–554). S-Nitrosylation is a redox-mediated post-translational 

modification that controls protein function by covalently binding nitric oxide (NO)-

based species with the cysteine thiol group of the target protein within the biologycal 

circumstances (Nakamura et al, 2013, pp. 596–614; Nakamura and Lipton, 2008, pp.  

87–101; Okamoto and Lipton, 2015, pp. 1588–1593).  Nevertheless, in the case of aging 

or environmental contaminants that produce intense NO, abnormal S-Nitrosylation 

reactions can occur, which change protein misfolding, mitochondrial fragmentation, 

synaptic role, apoptosis, or autophagy (Nakamura and Lipton, 2011, pp. 1479–1492). 

• Parkin:  The ubiquitin E3 ligase controls ubiquitin insertion on specific substrates 

(Chung et al, 2004, pp. 1328–1331). In the case of Parkin nitrosylation, experiments 

discovered an increased level in E3 ubiquitin ligase activity before a substantial loss of 

activity (Knott and Bossy-Wetzel, 2009, pp. 541–554). 

• Prx2: By interacting with NO (forming SNO-Prx2), peroxiredoxin 2 (PRX2), a 

component of a class of abundant antioxidants that uses cysteine residues to decompose 

peroxides, remains S-Nitrosylated. In human PD brains, S-Nitrosylation of Prx2 

blocked both its enzymatic activity and defensive action against oxidative stress. 

Dopaminergic neurons, which are damaged in PD, are especially susceptible (Fang et al, 

2007, pp. 18742 LP – 18747; Low, Hampton and Winterbourn, 2008, pp. 1621–1630; 

Knott and Bossy-Wetzel, 2009, pp. 541–554). 

• Protein-disulfide isomerase (PDI): Protein-disulfide isomerase (PDI) is a third 

nitrosylated protein relevant to both PD and AD, and it is an endoplasmic reticulum 
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(ER)-associated chaperone protein that protects neurons from ER stress and protein 

misfolding. Relying on the cellular environment, PDI may also act as an NO receptor or 

donor (Perri et al, 2016, p. 80; Knott and Bossy-Wetzel, 2009, pp. 541–554; Grek and 

Townsend, 2014, pp. 4–17). In addition, NO-induced S-Nitrosylation of PDI inhibits the 

enzymatic activity of PDI and leads to the accumulation of polyubiquitinated proteins. 

PDI protects against neurotoxicity coupled with ER stress and protein misfolding; 

however, NO inhibits this neuroprotective consequence in neurodegenerative diseases 

by S-Nitrosylating PDI. In the AD brain, the expression of the ER stress marker, growth 

arrest, and DNA damage protein (GADD34) was dramatically amplified in neurons and 

oligodendrocytes (Honjo et al, 2017, pp. 495–50). 

• Heat-shock protein 90 (Hsp90): Hsp90 is a molecular chaperone that plays a 

critical role in pathogenic transformation. Furthermore, in addition to its well-known 

roles in cancer, Hsp90 plays a role in preserving the functional stability of neuronal 

proteins with abnormal potential, if mutated or over-activated, and enabling and 

maintaining the concentrations of toxic aggregates. Moreover, Hsp90 controls the 

function of the transcription factor heat shock factor-1 (HSF-1), which is the key 

molecule of the heat shock response, a process that cells are using to protect themselves 

when stressed (Luo et al, 2010, p. 24). In the AD case, inactivation of Hsp90 can cause 

tau and amyloid-β aggregates to concentrate in the brain. As a result, S-Nitrosylation of 

Hsp90 inhibits ATPase activity, which is essential for its chaperone role (Knott and 

Bossy-Wetzel, 2009, pp. 541–554). 

• GAPDH: Glyceraldehyde-3-phosphate dehydrogenase (Lazarev et al, 2018, pp. 

1003–1008) has different roles beyond conventional aerobic glucose metabolism. 

GAPDH can interact with a wide range of small molecules, proteins, membranes, and 

other molecules that contribute to normal and pathologic cell activities due to its various 

isoforms and cellular positions. GAPDH is shown to connect with proteins associated 

with neurodegenerative disorders, such as the β-amyloid precursor protein (AβPP) 

(Butera et al, 2019, p. 2062). According to Sen and collaborators, the S-Nitrosylation 

(SNO) of GAPDH was enhanced by the high amount of NO; S-Nitrosylated 

GAPDH (GAPDH-SNO) stimulated the acetylation and the activation of 

acetyltransferase p300, also promoted nitrosylation and inhibiting the deacetylase 

sirtuin1 (SIRT1) (Sen, Saha and Sen N, 2018, p. eaao6765; Kornberg et al, 2010, pp. 
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1094–1100). Within the pathological conditions, NO S-nitrosylates GAPDH at the 

catalytic cysteine residue (Cys152 in humans) and S-nitrosylated GAPDH is suggested 

to contribute to nuclear signaling events leading to apoptotic cell death (Hara et al, 

2005, pp. 665–674). Enzymatic activity of GAPDH is interrupted by S-Nitrosylation, 

allowing GAPDH to bind to SIAH1, an E3 ubiquitin ligase. SIAH1 brings GAPDH to 

the nucleus and also has a nuclear localization signal. GAPDH regulates SIAH1 in the 

nucleus and enables nuclear proteins to be degraded by ubiquitination (Lee et al, 2012, 

pp. 65–76). As a result, the GAPDH/SIAH1 ubiquitination and cell death pathway could 

be a key mechanism in the pathology of a variety of neurological disorders (Ko et al, 

2019, pp. 15435–15445). 

• MMP-9: Matrix metalloproteinase-9 (MMP-9) (Knott and Bossy-Wetzel, 2009, 

pp. 541–554) is a Zn2+ dependent endopeptidase that is present in several kinds of cells, 

namely neurons and glia, endothelial cells, glandular epithelia, protective connective 

tissue, and muscle cells (Reinhard, Razak and Ethell, 2015, p. 280). MMP-9 is among 

the most frequently studied MMPs, which controls pathological remodeling 

mechanisms in cardiovascular disease that include inflammation and fibrosis 

(Yabluchanskiy et al, 2013, pp.  391–403; McCarthy et al, 2008, pp. 5832–5840). The 

controlled function of MMP-9 is essential for the development of the CNS. MMP-9, in 

particular, plays a significant role in the development of sensory circuits during the 

crucial periods of early Postpartum development. It also governs sensory-mediated, 

local circuit reorganization by controlling synaptogenesis, axonal pathfinding, and 

myelination. While the activity-dependent stimulation of MMP-9 at particular synapses 

is critical in multiple plasticity pathways in the CNS, uncontrolled stimulation of the 

enzyme has been linked to a variety of neurodegenerative diseases, such as traumatic 

brain injury, MS, Fragile X Syndrome, and AD (Reinhard, Razak and Ethell, 2015, p. 

280).  Numerous findings suggest that by S-Nitrosylation of the pro-domain Cys 

residue, NO participates in activating MMPs or associated metalloproteinases 

(McCarthy et al, 2008, pp. 5832–5840). MMPs are a subject for S-Nitrosylation during 

pathological processes characterized by highly dynamic rises in NO bioavailability due 

to NOS activation. S-Nitrosylation of MMP-9 has been linked to neurodegeneration 

(Underly and Shih, 2021, p. 619230). 
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5.3.2.     3-Nitrotyrosination 

While ONOO-, produced by the reaction of NO and O2, targets proteins, it frequently 

induces 3-nitrotyrosination of tyrosine residues to form 3-nitrotyrosine (3-NT). 3-NT is 

a considerably specific marker of peroxynitrite-mediated oxidative damage 

(Bandookwala and Sengupta, 2020, pp. 1047–1062; Ahsan, 2013, pp. 1392–1399). 

Protein nitration at the subcellular level generates conformational changes that harm the 

cytoskeleton and cause neurodegeneration (Bandookwala and Sengupta, 2020, pp. 

1047–1062; Mihm et al, 2001, p. RC149). 

 

Tohgi and his group suggested that tyrosine nitration stimulation could be implicated in 

brain aging and cause AD. They found that the 3-nitrotyrosine level and the 3-

nitrotyrosine/tyrosine proportion raised significantly with age, while the tyrosine level 

remained unchanged. The 3-nitrotyrosine level and the 3-nitrotyrosine/tyrosine ratio 

augmented dramatically (>6-fold) in patients with AD compared to control group 

patients of similar age and dropped considerably with declining cognitive functions, 

while the tyrosine level did not alter (Tohgi et al, 1999, pp. 52–54). 

5.3.3.     Glutamate excitotoxicity 

Glutamate and aspartate are the most important excitant neurotransmitter in the brain. 

Glutamate links and activates ligand-gated ion channels (ionotropic glutamate 

receptors) and a group of GPCRs. Whereas intracellular glutamate rates in the brain are 

millimolar, excitatory AA transporters which import glutamate and aspartate through 

astrocytes and neural synapses keep extracellular glutamate levels in the reduced 

micromolar range (Lewerenz and Maher, 2015, p. 469; Sheldon and Robinson, 2007, 

pp. 333–355). 

 

 Excitotoxicity is frequent in several NDs, such as ischemic stroke, AD, ALS, and HD 

(Prentice, Modi, and Wu, 2015, p. 964518; Sheldon and Robinson, 2007, pp. 333–355). 

Glutamate excitotoxicity is a cell death process caused by high glutamate release from 

neurons and glial cells. Overstimulation of synaptic glutamate receptors leads to 
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increased Ca2+ influx and neuronal damage (Knott and Bossy-Wetzel, 2009, pp. 541–

554; Belov Kirdajova et al, 2020, pp. 14 -51; Sheldon and Robinson, 2007, pp. 333–

355). NO can effectively protect from excitotoxicity by preventing NMDA-receptor 

activation. Increased intracellular Ca2+ levels, caused by glutamate receptor activation, 

such as NMDA receptors, induce nNOS to generate additional NO. NO is extremely 

important in excitotoxicity, and under circumstances of excessive glutamate receptor 

activation, NO binds with O2– to form the toxic molecule ONOO– (Prentice, Modi, and 

Wu, 2015, p. 964518; Knott and Bossy-Wetzel, 2009, pp. 541–554). 
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6. NOS INHIBITORS 

NOS became a drug target after discovering that this enzyme is responsible for NO 

biosynthesis. Following identifying the different NOS isoforms, such inhibitor studies 

have rapidly expanded. NOS quickly has become apparent that the isoform selectivity 

poses a significant problem due to the similarity of the active site structures of the three 

human NOS isoforms, nNOS, eNOS, and iNOS. NOSs have the same structural 

architecture, with 16 of 18 residues within 6 Å of the substrate-binding site being the 

same and causing selective inhibitor development challenging (Raman et al. 2001, pp. 

26486–26491; Annedi S, 2015, pp. 1064–1066; Poulos and Li, 2017, pp. 68–77). 

 

The upregulation or increased production of NO by any specific NOS isoform plays an 

essential role in many diseases, involving septic shock, stroke, NDs (PD, ALS, MS, and 

AD), pain (migraine, chronic tension-type headache, visceral and neuropathic pain), 

arthritis, diabetes, and ischemia-reperfusion injury (Mukherjee et al, 2014, pp. 6814–

6838; Annedi S, 2015, pp. 1064–1066). 

 

Due to the absence of NOS crystal structure, early selective NOS inhibitor design 

(between the 1980s and 1990s) was established on the substrate L-Arginine (Figure 

6.1). This process resulted in the first-generation NOS inhibitors, L-arginine mono- and 

disubstituted derivatives. Whereas most of these preliminary inhibitors were found to be 

effective, many of them demonstrated bad selectivity among the 3 NOS isoforms 

(Silverman, 2009, pp. 439–451; Annedi S, 2015, pp. 1064–1066). Since the 3D 

structures of all NOS isoforms became known in the late 1990s and early 2000s, 

developed inhibitor synthesis became increasingly valuable (Víteček et al, 2012, p. 

318087; Annedi S, 2015, pp. 1064–1066). 
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Figure 6.1   L-Arginine-based first-generation NOS inhibitors. (Annedi S, 2015, pp. 

1064–1066) 

6.1. Classification of Nitric Oxide Synthase Inhibitors 

NOS inhibitors can be categorized according to their different characteristics (Víteček et 

al, 2012, p. 318087), such as chemical properties, isoform selectivity, and binding site 

(Sundaresan, Giri and Chatterjee, 2016, pp. 81–107) (Table 6.1). 

 

Table 6.1   NOS inhibitors with pharmacological examples depending on binding sites 

(Sundaresan, Giri and Chatterjee, 2016, pp. 81–107). 

 

Binding site Pharmacological inhibitors  
Substrate binding site 

 L-N ω -Methylarginine 

Pterin binding site 
 

4-amino pteridine derivatives 
2,4-diamino-5-(3’,4’dichlorophenyl) 

pyrimidine 
7-Nitroindazole 

 
Inhibitor which binds with the heme 

group 
 

S-Methyl-L thiocitrulline 
 

flavin/ NADPH site Diphenyleneiodonium chloride 
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According to their mechanism of action, NOS inhibitors can be categorized to: 

• Reversible inhibitors (subgroups: competitive, uncompetitive, non-competitive, 

and mixed type). 

• Irreversible inhibitors. 

• Reaction-based inhibitors, whose activity is contingent on the enzymatic reaction, 

can be distinguished using the classical enzymological reaction. 

• This classification matches the classical enzymological approach (Víteček et al, 

2012, p. 318087). 

 

In addition, NOS inhibitors are classified into four classes based on their 

mechanism of action: 

• Arginine analogs: which can be attached to the substrate-binding site. Many 

arginine-based analogs are included in this category, including L-NMA, L-NAME, and 

others. 

• Agents with a structure similar to tetrahydrobiopterin, for example, derivatives of 

4-amino pteridine. 

• Inhibitors link to the heme, interacting with monomer dimerization and enzymatic 

activities. S-Methyl-L thiocitrulline (SMTC), for instance. 

• Molecules that interfere with flavin cofactors (DPI) such as Diphenyleneiodonium 

chloride (DPI) (Sundaresan, Giri and Chatterjee, 2016, pp. 81–107). 

 

Depending on the chemical properties, NOS inhibitors can be classified into two 

groups: the first group is an amino acide -based. Most of them are arginine products 

and analogs, while the other class contains a variety of ligands with structures that differ 

from arginine (Sundaresan, Giri and Chatterjee, 2016, pp. 81–107). 

6.1.1.     Arginine-based inhibitors of NOS 

Since Arginine-based inhibitors were supposed to compete with Arginine for the active 

site of NOS, they were initially proposed as inhibitors for experimental purposes, in 

which some objectives have been met. Furthermore, certain members of this class of 

inhibitors can function as reaction-based inhibitors (Víteček et al, 2012, p. 318087).  
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The widely investigated compounds are L-Nω-Nitroarginine, LN -Nitroarginine methyl 

ester, and NG-propyl-L-arginine (Sundaresan, Giri and Chatterjee, 2016, pp. 81–107). 

6.1.2.     Non-amino acid-based inhibitors 

Non-amino acid-based NOS inhibitors have been studied for the particular selectivity 

and therapeutic efficacy in order to enhance the selectivity and therapeutic potential of 

L-Arg products (Saleron et al, 2002, pp. 177–200; Garvey et al, 1994, pp. 26669–

26676), such as Guanidines, Isothioureas, Amidines, Thiazines, Imidazoles, Indazoles, 

Benzoxazoles, Pyridines, and Pteridines. These compounds can be sub-classified into 

two major classes by their chemical properties: amidinic compounds and heterocyclic 

compounds (Saleron et al, 2002, pp. 177–200). 

6.1.3.     Amidinic compounds 

All compounds with a carbamidine carbon bound to N (guanidines), S (isothioureas), or 

another carbon (simple amidines) are presented in Figure 6.2 (Mukherjee et al, 2014, 

pp. 6814–6838; Saleron et al, 2002, pp. 177–200). 

 

 
 

Figure 6.2   Non-amino acid-based NOS inhibitors: Amidinic compounds (Saleron et 

al, 2002, pp. 177–200). 



 

 50 

6.1.4.     Heterocyclic compounds 

The other non-amino acid-based NOS inhibitors consist of heterocyclic compounds, 

such as indazoles, imidazoles, and tetrahydrobiopterine analogs (Figure 6.3) as the most 

common ones. 

 

 
 

Figure 6.3   Structures of non-amino acid-based inhibitors: heterocyclic compounds 

(Saleron et al, 2002, pp. 177–200). 

 

 

 



 

 51 

 
 

 

Figure 6.4   Structures of non-amino acid-based inhibitors: heterocyclic compounds 

(Saleron et al, 2002, pp. 177–200). 

6.2. nNOS Inhibitors 

After discovering the function of nNOS in neurodegenerative disorders and pain, 

several efforts were made to block or deactivate nNOS selectively over its 

otherisoformsfor the treatment of diseases, as inhibition of the incorrect isoform may 

result in damaging consequences (Mukherjee et al, 2014, pp. 6814–6838). The first 

challenge in designing nNOS inhibitors is to achieve selective ligands that do 

not affect iNOS and eNOS (Maccallini and Amoroso, 2016, pp. 1731–1734). Earlier 

nNOS inhibitors, which were substrate analogs or arginine-based dipeptides, have been 

rejected by the researchers because they caused undesirable cardiovascular 

complications (hypertension, heart failure, etc.) due to their weak isoform selectivity 

(Baylis, 2006, pp. 209–220; Maccallini and Amoroso, 2016, pp. 1731–1734; 
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Papageorgiou et al, 2015, pp. 1741–1750). Sterically hindered amidines, non-

aminoacidic compounds are selectively capable of inhibiting nNOS (Compounds 1 and 

2 presented in Figure 6.5). Since they are liable with the desirable interactions inside 

the nNOS catalytic region, these compounds' phenyl and isopropyl groups are the main 

segments granting the desired selectivity. Thienyl-carbamidines generated affirmative 

outcomes, as they were victorious against hnNOS and demonstrated neuroprotective 

effects in ischemia models and neuropathic pain (Compounds 3 and 4 presented in 

Figure 6.5). In addition, compounds 5 and 6 in Figure 6.5 demonstrated high potency 

against nNOS as the most successful candidates (Maccallini and Amoroso, 2016, pp. 

1731–1734). 

 

 
 

Figure 6.5   Inhibitors of neuronal nitric oxide synthase (Maccallini and Amoroso, 

2016, pp. 1731–1734). 
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6.2.1.     Different approaches to neuronal nitric oxide synthase inhibition 

there are many methods of inhibition, which vary from minor inhibition through 

substrate or cofactor imitation (Competitive inhibition) (Furfine et al, 1993, pp. 8512–

8517) and mechanism-based inactivation to inhibition of protein-protein interactions 

inside nNOS (Dimer inhibition) (Palumbo, Astarita and d'Ischia, 2001, pp. 105–110) or 

between enzyme and associated proteins (CaM antagonism) (Fukunaga et al, 2000, pp. 

693–699). Initiatives to suppress nNOS in combination with other targets involved in 

neurodegenerative disorders and pain are made (Dual inhibition) (Mukherjee et al, 

2014, pp. 6814–6838) (Figure 6.6). 

 

 
 

Figure 6.6   Neuronal nitric oxide synthase inhibition modes (PDB ID: 5VV5). 

 

For instance, L-Nω-Nitroarginine is a competitive inhibitor of nNOS which adheres to 

the active site of the enzyme and prevents substrate binding. Still, this competitive 

inhibitor has low selectivity over eNOS. Unfortunately, extreme hypertension is 

triggered by the methyl ester of L-Nω-nitroarginine, a prodrug for L-nitroarginine, and is 
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stimulated by esterase-catalyzed hydrolysis to L-Nω-nitroarginine (Ji et al, 2009, pp. 

209–217; Lajoix et al, 2004, pp. 1467–1474). According to Zhou and his group, 

ischemia causes nNOS to interfere with postsynaptic density protein-95 (PSD-95). 

Increased N-terminal AA residues 1-133 of nNOS (nNOS-N (1-133)) prevent 

glutamate-induced excitotoxicity and cerebral ischemic endangerment. ZL006 was 

created to inhibit the ischemia-induced nNOS-PSD-95 association selectively. ZL006 

easily penetrated the blood-brain barrier without implying violent behavior and 

disrupting NMDAR action, nNOS catalytic activity, or spatial memory (Zhou et al, 

2010, pp. 1439–1443). 

 

The compound 6-(((3R,4R)-4-(2-((3-fluorophenethyl) amino) ethoxy) pyrrolidin-3-yl) 

methyl)-4-methylpyridin-2-amine showed a high potency and selectivity, but poor 

membrane permeability due to the 2 secondary amino groups (Drerup, Ermert, and 

Coenen, 2016, pp.1160). The compound IC87201 has also been shown to be a potent 

inhibitor of the nNOS/ PSD-95 protein-protein interaction in vitro and in vivo studies 

(Bach et al, 2015, p. 12157). 
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7. COMPUTER-AIDED DRUG DESIGN (CADD) 

The term ′drug design‵ refers to the systematic, rational search for new drugs with 

biological activity. It is essentially based on experimental data from the expected target 

molecule or a related biomolecule (direct drug design) and/or recognized binders of this 

target (indirect drug design) (Talevi, 2018, pp. 1–19).  

 

The drug production and discovery process are complex, costly, and time-consuming 

(Mohs and Greig, 2017, pp. 651–657). In the last years, drug design noticeably 

increased due to the advancement of computational techniques and methods (Bibi and 

Sakata, 2016, pp. 167–177). CADD, also recognized as in silico screening, 

computational drug design, computer-aided molecular design (CAMD), computer-aided 

molecular modeling (CAMM), rational drug design, in silico drug design, computer-

aided drug discovery and development, and computer-aided rational drug design, is 

becoming a potent tool in recent years due to its importance in different phases of drug 

discovery and development using multiple innovative tools (Kapetanovic, 2008, pp. 

165–176; Macalino et al, 2015, pp. 1686–1701).  

 

Fortune magazine released a news article titled "The Next Industrial Revolution: 

Designing Drugs by Computer at Merck" on October 5, 1981(Merck makes ethical 

drugs and fine chemicals (Brown et al, 2017, pp. 255–266)). Many considered this the 

beginning of remarkable progress in the future of computer-aided drug design 

(Sliwoski, 2013, pp. 334–395).  

 
Novel therapeutic agents are discovered through the combination of rational drug design 

and structural biology. CADD partners with structure biologists, biophysicists, and 

computational researchers to find acceptable chemical compounds (Chegkazi et al, 

2018, pp. 89–111). 
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Drug development and discovery require a minimum of 10-15 years of process and 0.8-

1.8 billion USD expense (Macalino et al, 2015, pp. 1686–1701) (Figure 7.1). Besides 

this, the number of new molecular entities (NMEs) effectively commercialized has 

declined in recent years (Myers and Baker, 2001, pp.  727–730). For that, the use of 

CADD techniques and strategies by many major pharmaceutical firms and research 

institutions has become critical for the primitive stage of drug discovery to speed up the 

drug delivery in a much more cost-effective manner and to reduce failures in the final 

stage (Leelananda and Lindert, 2016, pp.2694–2718; Macalino et al, 2015, pp. 1686–

1701). 

 
 

Figure 7.1   The traditional HTS and CADD. 

 

 Using computational tools may minimize drug production costs by 50% (Katsila et al, 

2016, pp. 177–184). CADD tools distinguish lead drug molecules for development, 

estimate the efficacy and potential side effects, and help improving the bioavailability of 

potential drug molecules (Talevi, 2018, pp. 1–19; Sliwoski, 2013, pp. 334–395). For 

instance, in a recent CADD research, it was revealed that by adding a 

triphenylphosphine group into the base molecule pyridazinone (Yang et al, 2016, pp. 

2801–2805), it would be possible to acquire proteasome inhibitors (Fricker, 2020).  
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Moreover, analogs with high potency have been developed using this starting pattern. 

Several findings demonstrate that CADD can impact the production of novel treatments 

(Leelananda and Lindert, 2016, pp.2694–2718). 

 

In addition, the Pfizer company has also employed CADD tools to screen for inhibitors 

of tyrosine phosphatase-1B, an enzyme involved in diabetes (Taylor, 2003, pp. 759–

782). The virtual screening generated 365 compounds, of which 127 inhibited 

effectively, yielding a hit rate of approximately 35%. This group also ran a standard 

high-throughput screening (HTS) (Entzeroth, Flotow and Condron, 2009, pp. 9.4.1-

9.4.27) against the same target at the same time as the standard HTS. Only 81 of the 

evaluated 400,000 compounds demonstrated inhibition, generating a hit rate of 0.021 %. 

This comparative study clearly illustrates the working capacity of CADD tools (Table 

7.1) (Johnson, Ermolieff and Jirousek, 2002, pp. 696–709; Sliwoski, 2013, pp. 334–395; 

Vijayakrishnan, 2009). 

 
Table 7.1   A brief history of CADD 

 

Year Research References 

1900 

The ‘Lock and Key’ concept of 

protein-ligand binding of P. Ehrich 

(1909) and E. Fisher (1894) 

(Tripathi and 

Bankaitis, 2017, p. 

10.16966/2575-

0305.106) 

1970s 
Quantitative structure-activity 

relationships (QSAR) 

(Cherkasov et al, 

2014, pp. 4977–

5010) 

1980s 

CADD Molecular Biology X-ray 

crystallography multi-dimensional 

NMR Molecular modeling 

Computer graphics 

(Baig et al, 2018, pp. 

740–748) 

1990s 

Human genome bioinformatics 

Combinatorial chemistry High-

throughput screening 

(Chaguturu, 2013, 

p.1; Kore et al, 2012, 

pp. 139–148) 
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Many approved drugs that attribute their development in large portion to CADD 

techniques, such as Dorzolamide, a carbonic anhydrase inhibitor approved in 1995 

(Sugrue, 1996, pp. 363–376), captopril that is an angiotensin-converting enzyme (ACE) 

inhibitor approved in 1981 as being an anti-hypertensive drug (Bicket, 2002, pp. 461– 

468). In addition to HIV drug discoveries: saquinavir was approved in 1995 (James, 

1995, pp. 1–2), ritonavir (Lea and Faulds, 1996, pp. 541–548) as well as indinavir 

(Plosker and Noble, 1999, pp. 1165–1203), both approved in 1996, and tirofiban that is 

a fibrinogen antagonist approved in 1998 (McClellan and Goa, 1998, pp. 1067–1080). 

7.1.   CADD Position in the Drug Discovery Pipelines 

Since CADD utilizes a more focused search than standard HTS and combinatorial 

chemistry, it can improve the hit rate of innovative drugs. This serves not only to 

understand the molecular basis of therapeutic action but to potentially identify 

compounds that might enhance efficacy (Liao et al, 2011, pp. 21–54). CADD is 

generally used for three main reasons in drug development (Sliwoski, 2013, pp. 334–

395): (i) Utilization of computational resources to speed up the drug discovery and 

production mechanism, (ii) Applying chemical and biological knowledge about ligands 

and (or) targets to define and improve new drugs, and (iii) in silico filter design to 

remove compounds with undesirable properties like limited activity and/or bad 

ADMET, but instead, to find the most suitable candidate (Kapetanovic, 2008, pp. 165–

176). 

7.2. General Computer Aided Techniques for Drug Discovery 

 

Computational techniques have developed vital tools for target recognition, drug 

discovery, and drug candidate target optimization (Ou-Yang et al, 2012, pp. 1131–

1140). In conjunction with statistics and chemoinformatic methods, technological 

advances differ depending on disorder pathways and phenotypes, identifying new drug 

targets that can be validated using HTS Technologies (Katsila et al, 2016, pp. 177–184). 
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7.2.1.     Target identification and validation 

 
With the release of the maps of the human genome and an initial conclusion that the 

human genome contains approximately 21000 genes, there is a significant expectation 

that several new disease-specific molecular targets must quickly be defined, and this 

will therefore serve as the foundation for many novel drug development projects 

(Williams, 2003, pp. 571–577). Identifying drug targets from vast numbers of candidate 

drugs is critical and complicated as the 1st stage in the drug discovery process (Ou-Yang 

et al, 2012, pp. 1131–1140; Tang et al, 2006, pp. 307–313). Many tools are used 

frequently effectively employed for this purpose, for instance: (i) Chemical structure 

similarity searching, (ii) data mining/machine learning, (iii) panel docking, and (iv) 

bioactivity spectra-based algorithms (Katsila et al, 2016, pp. 177–184).    

 

Target identification may be established as target-based or reverse chemical genetics at 

the beginning of the biological screening or as phenotype-based or forward chemical 

genetics at the end (Macalino et al, 2015, pp. 1686–1701). The online target 

identification databases play essential roles, and there is no doubt that an immensely 

detailed collection is easily accessible nowadays. 

 

High-resolution 3D structures are the most important resource of structural data for drug 

discovery, notably for proteins varying in size from a few AA to 998 kD (Singh, Malik, 

and Sharma, 2006, pp. 314–320). The crystal structure data must be checked for 

diffracted amplitude resolution, such as reliability or R factors, coordinate error, T0 

factors, and chemical correctness (Smyth and Martin, 2000, pp. 8–14; Maveyraud and 

Mourey, 2020, p. 1030). The 3D structures defined with R ranging under 2.5 Å are 

usually appropriate for drug design because they provide a good data to parameter ratio 

and a prominent position of residues in the electron density map (Wlodawer et al, 2008; 

Singh, Malik, and Sharma, 2006, pp. 314–320).  A homology model may also be used 

for drug discovery if no experimentally defined structure is available. For instance, 

SWISS MODEL generates a confidence factor per residue to analyze a homology 

model, representing the amount of structural knowledge used to construct that model 

section (Singh, Malik, and Sharma, 2006, pp. 314–320; Vyas et al, 2012). Many in 
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silico methods are available to start the drug design process if the target has been 

determined. Each of these methods is determined by the target's nature and information 

on the framework (Bajorath, 2015; Katsila et al, 2016, pp. 177–184; Liao et al, 2011, 

pp. 21–54).  In general, there are 2 approaches to computational drug design, structure-

based (SB) and ligand-based (LB) (Macalino et al, 2015, pp. 1686–1701; Leelananda 

and Lindert, 2016, pp.2694–2718; Sliwoski et al, 2013, pp. 334–395; Katsila et al, 2016, 

pp. 177–184; Liao et al, 2011, pp. 21–54). 

7.3. Structure-Based Drug Design (SBDD)  

Structure-Based Drug Design (SBDD) is a cyclic process that involves the acquisition 

of information in steps as inputs for the further next steps. This pathway is carried out to 

recognize probable compounds starting from a known target structure (Ferreira et al, 

2015, pp. 13384–13421). Structure determination techniques, such as X-ray 

crystallography (Zheng et al, 2014, pp. 125–137) and nuclear magnetic resonance 

(NMR) (Pellecchia et al, 2008, pp. 738–745), have quickly progressed in the last few 

years. As a result, several three-dimensional (3D) structures of biomolecules have been 

identified, creating a new phase of SBDD in drug discovery and development (Wang et 

al, 2018, pp. D1074–D1082). The 3D-structures of biomolecules, especially those 

established by X-ray crystallography, are frequently regarded as the "gold standard" of 

data identifying the molecular architecture of crucial proteins and nucleic acids (Davis, 

Teague and Kleywegt, 2003, pp. 2718–2736; Zheng et al, 2014, pp. 125–137). 

 

Furthermore, the accessible number of macromolecular structures has dramatically 

increasedsince its beginning in 1971, with the increase in the range of deposition of 

such structures to the PDB (Burley et al, 2017, pp. 627–641). Moreover, several 

NMR applications for SBDD have been generated since the 1970s (Pellecchia et al, 

2008, pp. 738–745). The standard NMR task is identifying a particular inhibitor and 

studying its binding mode (Shi and Zhang, 2021, p. 576).  The SBDD can represent the 

binding process of the compounds to the target (enzymes, proteins, or receptors), and 

estimate the main binding pocket sites and affinity of compounds to their target, which 

seem to be essential for their related biological activities, once the 3D-structural details 
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of targets are defined, that is usually obtained experimentally or via computational 

homology modeling (Batool, Ahmad and Choi, 2019, p. 2783; Wang et al, 2018, pp. 

D1074–D1082). This knowledge is then used to obtain high affinity compounds with 

the essential properties for expected pharmacological and therapeutic results (Wang et 

al, 2018, pp. D1074–D1082). The SBDD is a common computational technique used by 

drug companies and researchers, with which various drugs that are still on the market 

have been defined (Table 7.2) (Batool, Ahmad and Choi, 2019, p. 2783). 

 

Table 7.2   The successful example of drug discovery by the SBDD technique. 

 

Drug Target Disease Approved 
in Year References 

Raltitrexed 
 

Thymidylate 
synthase 

HIV 
 2007 

(Batool, Ahmad 
and Choi, 2019, p. 
2783; Baig et al, 

2016, pp. 572–581) 

Amprenavir 
 

Antiretroviral 
protease 

HIV 
 1999 

(Noble and Goa, 
2000, pp. 1383–

1410; Batool, 
Ahmad and Choi, 

2019, p. 2783) 

Isoniazid InhA Tuberculosis - 

(Batool, Ahmad 
and Choi, 2019, p. 

2783; Jagadeb, 
Rath and 

Sonawane, 2019, 
pp. 3388–3398) 

Pim-1 
Kinase 

Inhibitors 
Pim-1 Kinase 

 
Cancer 

 
2009 

(Arrouchi, Lakhlili 
and Ibrahimi, 2019, 

pp. 116–120; 
Batool, Ahmad and 

Choi, 2019, p. 
2783) 

Epalrestat Aldose Reductase 
 

Diabetic 
neuropathy 

 
- 

(Batool, Ahmad 
and Choi, 2019, p. 

2783; Steele, 
Faulds and Goa, 

1993, pp. 532–555; 
National Center for 

Biotechnology 
Information, 

2021b) 
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Flurbiprofen 
 

Cyclooxygenase-2 
 

Rheumatoid 
arthritis, 

Osteoarthritis 
 

1987 

(Batool, Ahmad 
and Choi, 2019, p. 

2783; National 
Center for 

Biotechnology 
Information, 

2021a) 

STX-0119 STAT3 
 

Lymphoma 
 - 

(Batool, Ahmad 
and Choi, 2019, p. 
2783; Choi et al, 

2019) 

Norfloxacin 
 

Topoisomerase II, 
IV 

 

Urinary tract 
infection 1983 

(Batool, Ahmad 
and Choi, 2019, p. 

2783; Rowen, 
Michel and 

Thompson, 1987, 
pp. 92–110) 

Dorzolamide 
 

Carbonic 
anhydrase 

 

Glaucoma, 
cystoid 
macular 
edema 

1994 

(Batool, Ahmad 
and Choi, 2019, p. 
2783; Balfour and 
Wilde, 1997, pp. 

384–403) 
 

7.3.1.     Structure-based drug design workflow 

The SBDD comprises many steps, including protein structure preparation, active site 

recognition, ligand library preparation, docking, MD simulation, and scoring functions 

(Anderson, 2011, pp.359–366; Wang et al, 2018, pp. D1074–D1082). Virtual screening 

(VS) and de novo drug discovery (DNDD) are two cutting-edge structure-based drug 

design methods that are effective and alternative methods to HTS (Lionta et al, 2014, 

pp. 1923–1938).  

 

The VS is an in-silico process used in drug discovery (Ekins, Mestres and Testa, 2007, 

pp. 9–20). A wide range of databases of known 3D structures is mechanically analyzed 

during VS by the employment of computational methods (Green, 2003, pp. 61–97). The 

VS is a filter that picks the successful compounds for in vitro experiments (Maia et al, 

2020, p. 343). There are three types of VS: (i) Structure-based virtual screening 
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(SBVS), (ii) ligand-based virtual screening, and (iii) fragment-based virtual screening 

(Lavecchia and Di Giovanni, 2013, pp. 2839–2860; Maia et al, 2020, p. 343).  

The SBVS is a computational method used during the primary phase of drug 

development to scan a chemical compound library for novel bioactive molecules vs. a 

aimed drug target. The 3D structure of the biomolecule determined by X-ray, NMR, or 

computational modeling is used to dock a series of chemical compounds into the 

binding pocket and pick a portion among these compounds for the next steps based on 

the predicted binding results (Li and Shah, 2017, pp. 111–124). The SBVS aims to 

estimate the strongest interaction mode between two molecules to create a stable system 

and employs scoring functions to determine the force of non-covalent interactions 

between the compound and the protein (Maia et al, 2020, p. 343). 

7.3.2.     Target structure preparation 

The critical step in the SBDD is to prepare the structure of the target (Wang et al, 2018, 

pp. D1074–D1082). Some target structure preparation steps are reviewed: 

• Hydrogens are added to macromolecular structures because the crystal structures 

with resolutions lower than 1 Å generally miss hydrogens (Anderson, 2011, pp.359–

366). 

• Estimation and identification of individual residue charges (Anderson, 2011, 

pp.359–366). 

• Identifying the active site of the target macromolecule (Wang et al, 2018, pp. 

D1074–D1082; Anderson, Chen and Linusson, 2010, pp. 1408–1422). Binding sites in 

the target can experimentally be obtained via site-directed mutagenesis or X-ray 

crystallography. In addition, many studies on proteins co-crystallized with their 

substrates or known inhibitors give data about the active site (Wang et al, 2018, pp. 

D1074–D1082). When no data about the binding site is present, there are numerous web 

servers and software that can assist in acquiring information about the binding site in the 

target protein, including the DoGSite Scorer server, CASTp, NSiteMatch, metal pocket, 

DEPTH, LISE, and MSpocket (Yang, Roy and Zhang, 2013, pp. 2588–2595; Wang et 

al, 2018, pp. D1074–D1082; Xie et al, 2013, pp. W292–W296). If the binding site is 

known, the volume of the binding pocket can be determined using computational tools 
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or web servers, like EpockTRAnsient Pockets in Proteins (TRAPP) (Stank et al, 2017, 

pp. W325–W330) as well as POVME (Durrant, de Oliveira and McCammon, 2011, pp. 

773–776). 

• At this stage, the choice to retain any metals or cofactors attached to the docking 

site is taken. Metals and cofactors may also be involved in the complex formation with 

the compound and, if so, they are counted as part of the binding sites. Nevertheless, if 

the removal of the metal or cofactor is needed, it must be extracted to make the 

functional groups to which they link accessible to the compound (Chai, Lu and Ye, 

2009; Anderson, 2011, pp.359–366). 

• At this level, a determination is taken to preserve or remove the water molecules 

that remain in the binding sites. If the water molecules are essential to 

compound binding, they can stay in the binding domain; otherwise, they can be 

extracted (Schiebel et al, 2018, p. 3559). 

• The sum and nature of flexible residues and the degree of flexibility are 

established if the docking software requires target elasticity to fit conformational 

changes caused by the compound (Lexa and Carlson, 2012, pp. 301–343). 

7.3.3.     Structure based virtual screening 

7.3.3.1. Ligand library preparation for the structure based virtual screening  

The library preparation diverges according to the target and the type of research (for 

example, drug production, toxin detection, pesticide improvement); we can build the 

ligands library, which can be chosen from NPs, public repositories, or commercial 

resources (Table 7.3). The library may include existing known drug substances for 

repositioning, synthetic substances analogous to lead or drug compounds for subsequent 

structural optimization, or other natural or xenobiotic ligands (Glaab, 2016, pp. 352–

366; Wang et al, 2018, pp. D1074–D1082).  

 

The ligand library can be screened at the start to identify compounds that are more 

expected to be bioavailable in the final phase. Many parameters, such as molecular 

weight, number of rotatable bonds, and number of HD and HA, can be used for the 
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screening (Anderson, 2011, pp.359–366; Glaab, 2016, pp. 352–366). Besides that, the 

compounds should be evaluated for the restrictions of “Lipinski's rule of five” (logP 

values, molecular weight, number of HD and HA) to increase efficiency (Giménez et al, 

2010, pp. 148–152). Before docking, ligands' ADMET risk score (absorption, 

distribution, metabolism, excretion, and toxicity) (Guan et al, 2018, pp. 148–157) and 

risk parameters (size, charge, water solubility, volume of distribution, severe rat 

toxicity, carcinogenicity, serum glutamic oxaloacetic transaminase acceleration, 

hepatotoxicity, and inhibition of 3A4 oxidation of midazolam) should be evaluated 

earlier than the docking and are effective in finding bioactive compounds with 

pharmacokinetic properties and drug safety (Mansoor and Mahabadi, 2020; Wang et al, 

2018, pp. D1074–D1082; Campos et al, 2011, pp. 1387–1393). Then, the compounds 

must be analyzed for proper geometry, such as bond distances and angles (Long et al, 

2017, pp. 103–111). If needed, the conformation of the compounds can be minimized to 

ensure optimum structure (Mirzaei et al, 2015, pp. 1063–1076; Anderson, 2011, 

pp.359–366). Furthermore, compounds can be protonated following the pH of the target 

solution (Onufriev and Alexov, 2013, pp. 181–209). 

 

Table 7.3   List of some accessible databases 

 

Database Website Availability 
 References 

PubChem 
 www.pubchem.ncbi.nlm.nih.gov/ Public 

 

(Kim et 
al,2016, pp. 

D1202–
D1213) 

ChEMBL 
 www.ebi.ac.uk/chembl/ Public 

 

(Gaulton et al, 
2012, pp. 
D1100–
D1107) 

BindingDB 
 

www.bindingdb.org/bind/index.js
p 

Public 
 

(Liu et al, 
2007, pp. 

D198–D201) 

ZINC 
 www.zinc.docking.org/ Public 

 

(Irwin et al, 
2012, pp. 

1757–1768) 
ChemSpider 

 www.chemspider.com/ Public 
 

(Williams et al, 
2010, p.  O16) 
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DrugBank 
 www.drugbank.com/ Public 

 

(Wishart et al, 
2018, pp. 
D1074–
D1082) 

ChemBridge 
 www.chembridge.com/ Commercial 

 

(Desai et al, 
2004, pp. 

6609–6615) 

Maybridge 
 

www.fishersci.com/us/en/brands/I
9C8LZ4U/maybridge.html 

Commercial 
 

(Major and 
Smith l, 2011, 

p. 389364) 

ChemDiv 
 www.chemdiv.com/ Commercial 

 
(Patnaik, 2020, 

p. 254) 

Life 
Chemicals 

 
www.lifechemicals.com/ Commercial 

 

(Wang 
Et al, 2018, pp. 

D1074–
D1082) 

Specs 
 www.specs.net/ Commercial 

 

(Zhang, Zhu 
and Li, 2013, 
pp. 301–310) 

Enamine 
 https://enamine.net/ Commercial 

 

(Pérez-Regidor 
et al, 2016, p. 

1508) 
 

 

7.3.3.2. Docking and scoring functions  

Molecular docking has gained much importance as a drug discovery tool since the mid-

1970s. The molecular docking strategy is used to study the interaction between a ligand 

and a protein at the atomic scale, permitting us to characterize small molecule activity in 

target protein active sites and explain essential biological processes (Meng et al, 2011, 

pp.  146–157; Pinzi and Rastelli, 2019, p. 4331).  

 

The docking technique consists of two basic procedures: estimating the ligand 

conformation and its location and orientation inside this pocket (typically called pose) 

and determining the binding affinity of the ligand-receptor complexes (Ferreira et al, 

2015, pp. 13384–13421; Meng et al, 2011, pp.  146–157). In other words, sampling, and 

scoring (Huang and Zou, 2010b, pp. 262–273). Fisher proposed the Lock–Key Model 

hypothesis in 1894, and it was 1st used to describe the theoretical model of receptor–
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ligand interaction, which claimed that ligands and receptors might distinguish each 

other via geometric and energy coordinates (Chen, Seukep, A and Guo, 2020, p. 545; 

Pagadala, Syed and Tuszynski, 2017, pp. 91–102), and either the ligand or the receptor 

were considered as rigid bodies (Meng et al, 2011, pp.  146–157; Pagadala, Syed and 

Tuszynski, 2017, pp. 91–102).  

 

In 1958, Koshland suggest the Induced Fit Theory regarding the disadvantages of the 

Lock–Key Model and the modifications in enzyme conformation caused by substrate 

induction during the enzyme-substrate interaction (Chen, Seukep, A and Guo, 2020, p. 

545; Pagadala, Syed and Tuszynski, 2017, pp. 91–102). According to this principle, the 

ligand and receptor should be flexible during docking. As a result, it may identify the 

binding events more effectively than the rigid procedure (Meng et al, 2011, pp.  146–

157). 

 

 Given the limitations of computer resources, docking has just been conducted for an 

extended period with a flexible compoundand a rigid receptor. It continues to be a 

powerful method used nowadays. Several attempts have been principally made to deal 

with receptor flexibility; furthermore, flexible target docking, notably backbone 

flexibility in receptors, makes it very difficult for current docking approaches (Meng et 

al, 2011, pp.  146–157; Pagadala, Syed and Tuszynski, 2017, pp. 91–102). 

• Molecular docking methodologies 

a. Rigid docking: The conformations of the ligands and target do not modify in the 

Rigid Docking computation; just the spatial location and posture of the 2 molecules 

vary (Meng et al, 2011, pp.  146–157). The dimensional conformation of the ligand and 

receptor is assumed to be unchanged in this molecular docking. Specifically, because of 

the easiest measurement challenge and calculation amount, this docking method is the 

most useful (Chen, Seukep, A and Guo, 2020, p. 545). As a result, it is appropriate for 

studying docking systems with pretty large structures, like protein-protein and protein-

nucleic acid complexes (Vakser, 2014, pp. 1785–1793). DOCK, FLOG, and some 

protein-protein docking software, including FTDOCK, used an approach that held the 
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ligand and receptor rigid throughout the docking process (Meng et al, 2011, pp.  146–

157; Chen and Zhi, 2001, pp. 217–226). 

b. Flexible docking: The conformations of the ligand and target are enabled to 

modify spontaneously during the flexible docking measurement. Since this sort of 

molecular docking is remarkably accurate and strongly matches the real docking 

circumstance, it is frequently employed to study the identification between two 

molecules (Pagadala, Syed and Tuszynski, 2017, pp. 91–102). Due to the geometric 

development of variables with the atomic number in the model, the flexible docking 

approach is computationally expensive and time-consuming, necessitating high 

demands on PC software and hardware devices. FlexX is a very well-known molecular 

docking software for this docking (Meng et al, 2011, pp.  146–157; Chen and Zhi, 2001, 

pp. 217–226; Pagadala, Syed and Tuszynski, 2017, pp. 91–102). 

c. Semi-flexible docking: The receptor's conformation is rigid and constant 

throughout the semi-flexible docking calculation process. Only the ligand's 

conformation can adjust within a certain limit, like adjusting the bond angle and bond 

length of certain non-critical elements. To measure and estimate the model, such a 

docking approach is usually used in docking simulations between ligands and target 

(proteins, enzymes, and nucleic acids). FlexX, Dock, AutoDock, and other semi-flexible 

docking programs are currently used in this docking (Meng et al, 2011, pp.  146–157; 

Chen and Zhi, 2001, pp. 217–226; Pagadala, Syed and Tuszynski, 2017, pp. 91–102). 

 

• Molecular docking software 

In the last decades, over than 50 different docking tools and software for both academic 

and commercial use have been developed like such as DOCK, AutoDock, FlexX, 

Surflex, GOLD, ICM, Glide, Cdocker, LigandFit, MCDock, FRED, MOE-Dock, 

LeDock, AutoDock Vina, rDock, UCSF Dock, and many others (Pagadala, Syed and 

Tuszynski, 2017, pp. 91–102Glaab, 2016, pp. 352–366). Most of them are docking 

software for small molecules (ligands) and proteins (receptors) and docking software for 

protein-protein, protein–DNA, and protein–RNA molecules. This docking system had 
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been launched by laboratories and was initially freely available. When software is 

updated with only a few bugs, it can be obtained by a professional commercial software 

firm and used as an element in a complex software kit (Chen, Seukep, A and Guo, 2020, 

p. 545). 

• Molecular docking scoring functions 

Docking software tools cover a wide scale of structure representation and search 

strategies, supplemented by a similarly diverse variety of scoring functions used to 

analyze docking poses (Glaab, 2016, pp. 352–366). The scoring function's goal is to 

separate valid poses from inaccurate poses or binders from inactive compounds in a 

decent time. On the other hand, scoring functions imply predicting instead of measuring 

the Ki between the target and the ligand, and these functions use a variety of predictions 

and simplifications (Meng et al, 2011, pp.  146–157). 

 

There are three types of approaches for docking software according to the scoring 

function (Teramoto and Fukunishi, 2007, pp. 526–534, pp. 526–534; Meng et al, 2011, 

pp.  146–157), force-field, empirical, and knowledge-based (Huang, Grinter and Zou, 

2010, pp. 12899–12908; Huang and Zou, 2010a, pp. 3016–3034): 

 

a. Classical molecular mechanics or force field-based methods: Classical force-

field-based scoring functions determine the free energy by adding the non-bonded 

(electrostatics and van der Waals) interactions. In addition, Hydrogen bonds, solvations, 

and entropy contributions are all considered in extensions of force-field-based scoring 

functions (Meng et al, 2011, pp.  146–157). 

 

Extended force fields like AMBER and CHARMM and variants applied in Dock, 

GoldScore, and AutoDock (Huang, Grinter and Zou, 2010, pp. 12899–12908; Ferreira 

et al, 2015, pp. 13384–13421; Meng et al, 2011, pp.  146–157). 
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The total of van der Waals, hydrogen bond, coulomb energy, and desolvation is used to 

calculate the pair-wise atomic energy of two atoms I j. The weighted factors W are used 

to adjust the empirical free energy (Meng et al, 2011, pp.  146–157). 

 

b. Empirical scoring functions:  Estimated by regression analysis of experimental 

structural and binding score details (Guedes, Pereira and Dardenne, 2018, p. 1089; 

Eldridge et al, 1997, pp. 425–445). ChemScore, FlexX/F-Score, X-Score, GlideScore, 

LUDI, PLP, Cyscore, ID-Score, and Surflex are examples of software programs that 

provide such functions to users (Ferreira et al, 2015, pp. 13384–13421; Huang, Grinter 

and Zou, 2010, pp. 12899–12908; Meng et al, 2011, pp.  146–157). Founded on the 

concept that the free energy of binding can be connected to several unrelated parameters 

(Böhm, 1994; Guedes, Pereira and Dardenne, 2018, p. 1089). 

For example, the empirical scoring function from FlexX: 

 
Where: 

ΔG: The calculatedfree free energy  

 ΔG0: The regression constant 

ΔGrot, ΔGhb, ΔGio, ΔGaro , ΔGlipo: Regression coefficients  

f (ΔR, Δα): Scaling function penalizing deviations  

Nrot: The free rotate bonds that are immobilized in the system 

(Meng et al, 2011, pp.  146–157). 

 

c. Knowledge-based scoring functions: Generated from knowledge obtained from 

solved crystal structures. Software like DrugScore, DSX, PMF, ITScore, SMoG, 

STScore, and ASP profide that (Ferreira et al, 2015, pp. 13384–13421; Meng et al, 

2011, pp.  146–157; Huang, Grinter and Zou, 2010, pp. 12899–12908). 
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Where: 

kB: The Boltzmann constant  

T: The Temperature 

r: The atom pair distance 

 fjVol_corr(r): The compound volume correction factor 

 ρijseg(r) / ρijbulk:  The radial distribution function of a protein atom of type i and a 

compound atom of type j (Meng et al, 2011, pp.  146–157). 

• Consensus scoring  

Consensus scoring is a technique of protein-ligand docking and not a specific scoring 

function. It increases the chances of discovering an accurate result by integrating 

scoring information from different scoring functions to compensate the failures of the 

individual scoring functions (Teramoto and Fukunishi, 2007, pp. 526–534; Teramoto 

and Fukunishi, 2008, pp. 747–754). As a result, the major challenge in consensus 

scoring is finding how to establish the combination rule for individual scores so that 

proper binder can be distinguished from others using the consensus calculation, for 

example of consensus scoring methods MultiScore and X-Cscore (Huang and Zou, 

2010b, pp. 262–273; Obiol-Pardo and Rubio-Martinez, pp. 134–142, 2007; Teramoto 

and Fukunishi, 2007, pp. 526–534). In addition, “rank-by-number” is a consensus 

scoring method in which each binding pose's consensus score is the mean of the values 

calculated by correspondingly independent scoring function in a defined consensus 

scoring scheme (Liu et al, 2012, p. e38086). 

7.3.3.3. MD simulations 

MD simulations are defined as the science that imitates a system of particles (Karplus 

and Petsko, 1990, pp. 631–639). MD simulations calculate how each atom in a target or 

other molecular system may migrate over time based on a general physics model 

governing interatomic interactions. Although, the first simple gasses MD simulations 

were performed in the 1950s, and the first protein MD simulation in the 1970s, the 

foundation that enabled these simulations was among the accomplishments 
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acknowledged by the 2013 Nobel Prize in Chemistry (Hollingsworth and Dror, 2018, 

pp. 1129–1143). In addition, the history of molecular dynamics can be traced from 

Galileo's time (1564-1642) to the present day (Hoover et al, 1983, pp.29–46). 

i. MD applications: For decades, X-ray crystallography has been the most 

important experimental technique to explain the three-dimensional structure of 

biological macromolecules; conversely, it can only give a static snapshot of a functional 

state of a protein (Srivastava et al, 2018, p. 3401). Therefore, Nuclear magnetic 

resonance (NMR) spectroscopy has been rapidly used because it offers many features: 

Over a large range of timescales, the dynamics of protein folding, structural 

fluctuations, internal mobility, and chemical exchange of target molecules can be 

studied. Furthermore, physiological conditions may be employed to study protein-

protein or protein–ligand interactions (Sugiki, Kobayashi and Fujiwara, 2017, pp. 328–

339). 

 NMR spectroscopy has some limitations. Consequently, MD simulations are often used 

to help understand NMR dynamic experiments and to discover new leads that can be 

followed up experimentally. MD may also be used to conduct experiments that aren't 

possible with NMR, such as focusing on a single molecule instead of an ensemble 

average (Fisette et al, 2012, p. 254208). 

 

MD offers energetic information about protein and ligand interactions and solve some 

hard problems which cannot be solved by experimental methods alone, as the 

pathogenic pathway of diseases due to the protein misfolding, VS, and drug resistance 

mechanisms caused by target mutations (Liu et al, 2018, pp. 23–37). 

ii. Molecular dynamics simulations principles: Newton's second law, also known 

as the equation of motion, supports the MD simulation process to study the time 

independent performance of the systems (De Vivo et al, 2016, pp. 4035-4061): 
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fi (t): The net potency applicated on the ith atom of the system at a fixed point in time t 

 ai (t): The acceleration 

 mi: The mass 

 

In (7.4), the location of the N interacting atoms in the Cartesian space, expressed by the 

sudden configuration of the system i denoted by the vector x(t). 
The empirical potential power function is introduced V(x) in (7.4), the FF or MM is the 

model that results from this simplified representation: 

 

In (7.5): 

1. The 1st three terms are the intramolecular interactions of the atoms 

2. The 4th and 5th terms are van der Waals and electrostatic interactions between 

atoms or “non-bonded” at the time (t + δt) are estimated by current positions, velocities 

(v(t)), and accelerations given by: 

 
After that, the velocities are generated in the following manner: 

 

iii. Advantages and limitations: The main advantage of MD simulations is in 

specifically treating structural elasticity and entropic effects (De Vivo et al, 2016, pp. 

4035-4061).  
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Besides the calculations in the simulations involving high computational and memory 

costs (Nicolas-Barreales, Sujar and Sanchez, 2021, pp.  1–18), MD simulations are 

still constrained by major issues: 

• The force fields used need refinement in certain cases to an ineffective sampling 

of conformational states (Durrant and McCammon, 2011, p. 71). 

• The time scales are too short of addressing several interesting and important 

molecular events (Elber, 2016, p. 60901). 

iv. Popular molecular dynamics simulations software: There are many software 

tools available for MD of biomolecules (Salo-Ahen et al, 2020, pp. 71): 

• ACEMD:  A production-class biomolecular dynamics (MD) engine which 

supports CHARMM and AMBER force fields. Free Serial Version (for Academia). It is 

capable of supercomputing scale efficiency of 40 ns per day for all-atom protein 

systems with over 23 000 atoms due to its GPU-specific design (Harvey, Giupponi and 

Fabritiis, 2009, pp. 1632–1639). 

• Amber: A paid MD Engines supports AMBER force fields, GAFF (the general 

AMBER force field) (Case et al, 2005, pp. 1668–1688). 

• CHARMM:  CHARMM (Chemistry at Harvard Molecular Mechanics). It is a 

free serial high-performance version supporting large-scale parallelism and GPUs, 

supporting CHARMM and Amber force fields (Brooks et al, 2009, pp. 1545–1614). 

• Desmond: A free MD Engines, available in a graphics processing unit (GPU) 

accelerated version (Gioia et al,2017). Supported force fields by Desmond are: 

CHARMM (22,27,32,36), AMBER (94,96,99,03), and OPLS (2001,2005), in addition 

to several in-house-developed variants (such as CHARMM22 and AMBER99SB-

ILDN) (Bowers et al, 2006, p. 43). 

• GROMACS: It is an open-source and free tool that supports GPU. All commonly 

used molecular mechanics force fields can be included, and 15 AMBER’s varieties, 

CHARMM, GROMOS, and OPLS, have been validated and included (Abraham et al, 

2015, pp. 19–25). 
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• DL_POLY: A highly parallel molecular dynamics simulation program provides a 

highly efficient range of methods and algorithms. It is accessible at no charge to 

academic scientists performing non-commercial research, supporting GPU (Todorov et 

al, 2006, p.  1911). 

• NAMD: Or Nanoscale Molecular Dynamics, a parallel molecular dynamics 

application crafted for high-performance simulations of very large biological objects 

using CPU and GPU architectures, was the first fully featured MD kit to take advantage 

of GPU acceleration. It was also an early adopter of GPU-accelerated clusters. It utilizes 

CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields (Phillips et al, 

2020, p. 044130). NAMD is Based on Charm++ parallel objects and can scale to 

hundreds of cores for standard simulations and further than 500,000 cores for the most 

complex simulations. (Acun et al,2018, pp. 4:1-4:9). 

v. Force fields used in molecular dynamics simulations: MD simulations are 

created according by elucidating Newton's equations of motion using molecular 

mechanics or empirical force field (FF) to obtain the necessary forces (Lin and 

MacKerell, 2019, pp. 21–54). The FF is a mathematical term that describes the 

relationship between a system's energy and its particle coordinates. It consists of a series 

of parameters that enter into an analytical form of the interatomic potential energy, U. 

Gavezzotti provides a historical account of the progress of FFs in relation to molecular 

mechanics (González, 2011, pp. 169–200). For different types of molecules, several 

forces fields have been developed (Table 7.4) (Salo-Ahen et al, 2020, pp. 71). 
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Table 7.4   Generally used FF in MD simulations (Salo-Ahen et al, 2020, pp. 71). 

 

 
Molecule 

 

 
FF 

 

Proteins 

 
AMBER 

CHARMM 
GROMOS 
OPLS-AA 

GAFF 
CGenFF 

 

 
Small organic molecules 

 

 
CGenFF) 
MMFF 
OPLS3 

GROMOS96 
 

 
 

Lipids 

 
GROMOS (45A3, 53A6, 54A7/8) 

Berger lipid FF 
CHARMM (C36 lipid FF C36-UA) 

Slipids FF 
AMBER (LIPID14 FF) 
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8.      MATERIALS AND METHODS 

8.1. Target Identification and Validation 

The first critical phases in the drug discovery pipeline are target classification and 

validation. Drug target validation could be highly beneficial for potential drug discovery 

and development and increase the knowledge of the pathophysiology of target-related 

disorders. The protein database (http://www.rcsb.org/) is frequently used to obtain the 

macromolecular structure. The most widely employed structures for drug design are 

those found by X-ray diffraction data, though solution structures produced by NMR 

methods and homology models can also be beneficial (Anderson, 2011, pp. 359–366). A 

good target must be efficient, nontoxic, satisfy clinical and commercial requirements, 

and, above all else, be ‘druggable.' A druggable target is available to the potential drug 

molecule, whether it is a small molecule or a larger biological structure, and when 

bound induces a biological response which can be quantified In vitro and In vivo 

(Hughes et al, 2011, pp. 1239–1249). 

 

Because NO is a free radical that is usually assumed to lead to oxidative stress and the 

damage of molecules and tissues, it is interesting that it has so many critical 

physiological benefits. Apart from some pathological states where extra NO is released, 

the cell is defended from NO's negative impacts. Tissue damage and oxidative stress 

can occur in this circumstance, resulting in many maladies such as rheumatoid arthritis, 

AD, PD, and others. It has been demonstrated in many cases that targeting NOS has a 

beneficial effect and regulates NO rate. One hundred forty-three crystal structures of 

NOS were collected from the Research Collaborators for Structural Bioinformatics 

Protein Data Bank (RCBS PDB). The website (https://www.rcsb.org/) can be simply 

checked for 3-D protein structures using different search possibilities such as authors, 

macromolecules, sequence, and ligand (Parasuraman, 2012, pp. 351–352). 
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8.1.1.     Sequence alignment and structural superimposition 

Superposition is a popular procedure for measuring the spatial resemblance of 

3D objects in fields such as computer vision, image science, and molecular biology. 

Superposition is used in molecular biology and structural bioinformatics to facilitate a 

wide variety of objectives (Lu et al, 2016, p. 18). Sequence alignment viewers are a 

handy technique for visualizing similarities and differences in the amino acid sequences 

of related proteins. In certain situations, the simple one-letter amino acid codes are 

supplemented with colors to represent a unique identity of each residue, like 

hydrophobicity, or recognized properties, such as the presence of post-translational 

changes. This concept has been expanded to analyze the folded protein's residue 

structure or microenvironment (Pitt, Montalvão and Blundell, 2014, p. 324). 

 

For the sequence alignment and structural superimposition of NOS, we randomly 

selected three human NOS isoforms hnNOS: 5VV5, heNOS: 5VVB, and hiNOS: 3E7G, 

to measure the sequence and structure similarity between the three NOS isoforms within 

the same species. To evaluate the sequence and structure similarity of the neuronal NOS 

isoform of different species, we selected the following enzymes human neuronal NOS: 

5VV5, and rat neuronal NOS: 6NHE (Table 8.1). 

 

For that purpose, we used BIOVIA Discovery Studio (DS) “Align Sequences” tool kit 

(https://www.3ds.com/); BIOVIA DS is a sophisticated tools package for studying and 

modeling molecular structures sequences and other information of interest to life 

scientists. The program contains data viewing and editing capabilities, as well as tools 

for performing fundamental data analysis.  
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Table 8.1   NOS isoforms used for Sequence alignment and structural superimposition. 

 

PDB ID Type Structure 

5VV5 Human nNOS 

 

5VVB Human eNOS 

 

3E7G Human iNOS 

 

6NHE Rat nNOS 

 
 



 

 80 

8.1.2.     Structure-based phylogenetic analysis 

 
Johnson and colleagues were the first to use 3-D structures to construct phylogenetic 

trees for a range of protein families. It compares evolutionary relationships between 

homologous protein families determined simply from amino acid sequences to those 

derived purely from 3-D structures (Balaji and Srinivasan, 2007, pp. 83–96). 

 

The phylogenetic tree was produced and visualized via the webserver: 

www.phylogeny.fr/simple_phylogeny.cgi (Dereeper et al, 2010, p. 8), to see if the three 

NOS isoforms form one related group or that different groups could be notable. The 

following NOS isoforms were picked randomly and used in this step: 

 

• Human neuronal NOS: PDB ID 5VV5 

• Human endothelial NOS: PDB ID 5VVB 

• Human inducible NOS: PDB ID 3E7G 

• Rat neuronal NOS : PDB ID 6NHE 

8.1.3.     Molecular docking with known inhibitors 

 
To reproduce experimental crystallographic poses ’re-docking’ method was employed, 

where the native ligands were docked to the binding site in a target (NOS isoforms). 

The docking programs' accuracy differs significantly between software and structures in 

the validation data when predicting the complex's crystallographic pose. We used the 

crystal structures of NOS isoforms containing co-crystallized small molecules obtained 

from the Protein Data Bank and mentioned above. The known inhibitors available were 

scored using AutoDock Tools (ADT) (Morris, Huey and Olson, 2008). 
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i. Requirements: In order to perform molecular docking, we used the software 

shown in Table 8.2. 

Table 8.2   The software used for molecular docking. 

MGL tools 
 

www.mgltools.scripps.edu/downloads 
 

Cygwin 
 

http://www.cygwin.com/install.html 
 

DS Visualizer 
 

www.accelrys.com/products/discovery-
studio/visualization-download.php 

 
Binary files 

 
www.autodock.scripps.edu 

 

ii. AutoDock and AutoDock tools: AutoDock and AutoDock Tools have been free 

tools since 1990, which were widely cited in the previous works as an indispensable 

tool in structure-based drug discovery. (El-Hachem et al, 2017, pp. 391–403). The 

graphical user interface for AutoDock is found on http://autodock.scripps.edu/. 

AutoDock is a C program suite that estimates the binding conformations of a small, 

flexible compound to the specific target. The method integrates simulated annealing for 

conformation searches with a fast grid-based energy performance measure (Goodsell, 

Morris and Olson, 1996, pp. 1–5).  

The scoring function in AutoDock is the calculated docking energy of the ligand to the 

target. The ideal docking is the one that uses the minimum energy. AutoDock adopts a 

grid-based technique to accelerate the measurement of the energy function. Initially, the 

protein is pre-processed by a tool called AutoGrid, which adds probe atoms and charges 

at grid points mostly around protein and determines and records the energy function for 

further usage. Following that, AutoDock employs trilinear interpolation between grid 

points to calculate energy terms individually for each atom of the ligand. After that, it 

combines them to determine the amount of energy of the conformation (Rizvi, Shakil 

and Haneef, 2013, pp. 831–857). To evaluate a specific docking task, AutoDock 

provides several search algorithms. Monte Carlo Simulated Annealing (SA), a Genetic 
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Algorithm (GA), and a hybrid local search GA, also referred to as the Lamarckian 

Genetic Algorithm (LGA), are among them. The LGA outperforms the SA, GA, and 

LGA in determining the system's lowest energy (Dupanloup, Schneider and Excoffier, 

2002, pp. 2571–2581). Generally, the initial step is to obtain the desired Ligand.pdb and 

Target.pdb files from relevant databases. Step two is to use AutoDock to prepare 

PDBQT format files for Target and Ligand (Target.pdbqt, Ligand.pdbqt) as well as Grid 

and Docking parameter files (System.gpf and system.dpf). The third step is to use 

Cygwin to execute MD, and then the outputs are evaluated (Forli et al, 2016, pp. 905–

919). 

iii.  Targets and ligands preparation and optimization process: First, we separated 

the native ligands or the inhibitors from the complexes selected above, and we deleted 

water and Zinc molecules and kept just Chain A (Because NOS is a homo-dimer 

enzyme, for that reason, one chain is enough to work with) with Heme and H4B as 

cofactors in each enzyme using BIOVIA DS. After that, we Refined the target structure 

(or Chain A), including adjusting the side chain orientations, adding missing residues, 

adding hydrogens because hydrogens are usually absent from the 3D structures 

determined with data at resolutions lower than 1 Å or for other reasons. Then we picked 

the appropriate protonation states. This step can be done using the AutoDock tool 1.5.6 

(ADT) or BIOVIA DS. In the end, the targets were saved in pdb format for later. To 

prepare the ligand, we used BIOVIA DS ‘Sketch and edit molecule’ tool to draw the 

structure of the ligands like the native ligands deleted from the complexes earlier. In 

addition, we added hydrogen and fixed the chirality and the valence if needed. Finally, 

we used the ‘Clean geometry’ tool and saved the ligands in pdb format.  

iv.  Re-docking: The coordinates x, y, and z of each native ligand were identified 

using BIOVIA DS to perform the molecular docking using AutoDock. The gpf outputs 

were prepared with  603 Å grid points selected for three-dimension of the grid box to 

make sure that it covered the whole ligand as well as the binding site, ‘Center on 

macromolecule’ option was selected to move the ligands to the target binding site 

during the docking, docking space was kept by default at 0.375 Å, Population size 150,  

the maximum number of “evals” depending on the number rotatable bonds, and the 
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number of  Genetic Algorithms GA Runs were 20. We added polar HB and Gasteiger 

charges, as well as the necessary number of torsional trees. Last, we used the 

Lamarckian Genetic Algorithm (LGA) to simulate the docking. 

The following Windows and Unix commands were utilized for molecular docking: 

 

Step 1: 

Windows:  

.\autogrid4.exe -p system.gpf -l system.glg  

Unix:  

autogrid4 -p system.gpf -l system.glg 

 

Step 2:  

Windows:  

.\autodock4.exe -p system.dpf -l system.dlg  

Unix:  

autodock4 -p system.dpf -l system.dlg 

8.1.4.   Pearson correlation coefficient calculation 

Correlation, in its widest sense, is a calculation of the strength of a connection between 

variables. Thus, a modification in the scale of one variable relates to a modification in 

the scale of another variable, in the same ((+) correlation) or reverse manner ((-) 

correlation) in linked data (Schober, Boer and Schwarte, 2018, pp. 1763–1768). 

 

To measure the relationship between the experimental results from literature and the 

calculated docking results of the known inhibitors, we employed a primary method 

which is Pearson correlation coefficient calculation, to compare the correlation between 

the results and also to validate the docking tool ‘AutoDock’ and to select the candidates 

from the list of targets re-docked to use them for the next stage of the research. 
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 For bilaterally normal distributions, the Pearson correlation coefficient is often adopted 

(data that follow a bivariate normal distribution) (Schober, Boer and Schwarte, 2018, 

pp. 1763–1768). 

 

The Pearson correlation coefficient formula used is: 

 
The scale r ± 1 means an excellent positive correlation, and a perfect negative 

correlation. 

8.2.  Structure-Based VS 

The use of f speedy and economical computational algorithms to discover potentially 

active compounds using virtual databases is known as virtual screening (Dos Santos, 

Ferreira and Andricopulo, 2018, pp. 31–50). VS is becoming more popular in research. 

It is seen as a complementary technique to experimental screening (HTS); however, 

when combined with structural biology, it guarantees to improve the number of projects 

in the lead identification stage of the discovery phase while also improving their 

effectiveness (Lyne, 2002, pp.1047–1055). VS can be divided into 2 types: LBVS and 

RBVS. The ligand-based technique approach exploits data supplied by a ligand or group 

of ligands known to bind to the required target to detect additional compounds in the 

databases with similarities (Gimeno et al, 2019, p. 1375). 

 

In our research, the target protein's structure is known. Therefore, receptor-based 

computational approaches were used. Protein-ligand docking was deployed for SBVS. 
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The protein's crystal structures (NOS) were used to estimate how the ligands in the VS 

library could interact with the binding pocket of different isoforms.  

The SBVS method used involves the following steps: 

• Molecular target identification and minimization. 

• Compound database collection 

• MD 

• Finding’s analysis 

8.2.1.     Characterization of the macromolecular target 

The targets were selected from the last step of redocking and validation, the X-ray 

structures of NOS isoforms were nominated to be used in the following stages.  

5VV0, 4CX7, and 6AV7 were retrieved from the PDB (http://www.rcsb.org). The 

targets were optimized by BIOVIA DS tools; only chain A with co-factors (Heme and 

BH4) were kept, and the native ligands, the water, and zinc molecules were deleted. We 

added charges, checked the ionizations, and assigned the tautomers, and minimized the 

energies (Table 8.3). 

Table 8.3   The enzymes used for the docking process. 
 

PDB 
ID Isoform Resolution 

(Å) Organism Chains 
 

Sequence 
Length Details 

5VV0 nNOS 1.8 

Homo 
sapiens 

 
 

A, B 421 
 

EC: 1.14.13
.39 

6AV7 eNOS 1.92 

Homo 
sapiens 

 
 

A, B, C, 
D 
 

440 
 

EC: 1.14.13
.39 

4CX7 iNOS 3.16 

Homo 
sapiens 

 
 

A, B, C, 
D 
 

431 
 

EC: 1.14.13
.39 

 



 

 86 

8.2.2.     Ramachandran plots and other structure’s evaluation 

Sasisekharan established the use of torsion angles to characterize polypeptide and 

protein conformation while studying the structure of collagen chains as a doctoral 

student in G.N. Ramachandran's research team. The effectiveness of this strategy was 

immediately apparent, and its application spread swiftly. Given the new definitions, this 

so-called Ramachandran plot aka, ϕ, ψ-plot has been essentially unaltered over the last 

50 years, a vital technique for protein structure research (Hollingsworth and Karplus, 

2010, pp. 271–283).  

 

The Ramachandran plot is a two-dimensional visualization of the protein backbone's φ-

ψ torsion angles. It offers a fundamental perspective of a protein's structure. In the 

Ramachandran plot, the φ-ψ angles cluster into several zones, each corresponding to a 

unique secondary structure. Ramachandran plots are organized into four categories 

based on the stereochemistry of the AA: generic (it refers to the 18 non-glycine non-

proline amino acids), glycine, proline, and pre-proline (which relates to residues 

preceding a proline) (Ho and Brasseur, 2005, p. 14). The Ramachandran plots and other 

evaluations of NOSs’s structures were accomplished via the online server: 

https://saves.mbi.ucla.edu/. 

8.2.3.      Binding site prediction 

In a structure-based drug discovery method, identifying druggable cavities or pockets on 

a target molecule is critical for developing novel techniques. Binding sites (BSs), 

whether with or without ligand, are typically referred to as cavities on the protein 

surface and come in a wide range of different shapes and sizes (Harigua-Souiai et al, 

2015, p. 93). Potential H-bond donors and acceptors, unique hydrophobic surfaces, and 

molecular surface size are binding site properties that are critical for the ligand binding 

(Andersson, Chen and Linusson, 2010, pp. 1408–1422). 

 
The binding sites and the binding residues involved were generated using the webserver 

GalaxyWEB (http://galaxy.seoklab.org/). The GalaxyWEB server uses template-based 

modeling to predict protein structure from sequence and structure-based modeling to 
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optimize loop or terminal regions. This web server is based on the technology known as 

‘Seok-server,' which was evaluated as one of the best ranked template-based modeling 

platforms in CASP9 (9th Critical Assessment of Techniques for Protein Structure 

Prediction) (Ko et al, 2012, pp. W294–W297). 

8.2.4.      Grid generation 

The size of a search space used to find minimum energy binding poses of drug 

candidates is among the essential factor for ligand docking. Many of the currently 

accessible docking programs include a default approach for estimating box size; but 

several of these approaches have not been well validated. 

 

Molecular docking is usually done with the default grid box size, which is determined 

based on the coordinates of the native ligand binding to the target protein in the 

experimental structure. Furthermore, unlike their chemical structures, the coordinates of 

bound ligands are not usually available. Moreover, the radius of gyration, Rg, a 

commonly used scale of a molecule's dimensions and mass distribution, can efficiently 

represent its size (Feinstein and Brylinski, 2015,p. 18). 

 

In this study, the targets grid were generated around the binding site residues identified 

using AutoDock according to the literature review and confirmed by BIOVIA  

discovery studio and  HotSpot Wizard 3.0 webserver 

(https://loschmidt.chemi.muni.cz/hotspotwizard/), which is used generally in semi-

rational protein design for the automated discovery of hotspots to optimize protein 

stability, catalytic activity, substrate specificity, and enantioselectivity (Sumbalova et al, 

2018, pp. W356–W362). 
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8.2.5.      Database’s collection 

It is well known that a compound library's content and structure quality have significant 

implications for the success of a DBVS project. The databases frequently contain lots of 

small-molecule compounds, ranging from tens of thousands to millions. Therefore, 

designing a specialized library for specific purposes may be a more object-oriented and 

efficient method. (Cheng et al, 2012, pp. 133–141). It is imperative to have an easy-

access database of purchasable compounds. Databases are classified into four types: a) 

generic virtual high throughput (vHTS) databases, which comprise massive amounts of 

ligands; b) diversity-oriented databases that contain highly chemically diverse 

compounds; c) target-oriented databases that are constructed with a precise, clear 

aim; d) molecular property diversity databases, that are constructed with particular 

molecular property statuses (namely solubility, lipophilicity, etc.), and e) natural 

product databases (Lionta et al, 2014, pp. 1923–1938) (Table 8.4). 

• ZINC15 Database: ZINC gives access to high-value molecules such as 

metabolites, drugs, natural products, and annotated compounds from the research. 

Compounds can be obtained through the genes for which they are annotated and 

through the major and minor target classes to which those genes relate. Thus, it provides 

new analytic tools that are simple for non-specialists. ZINC preserves its original three-

dimensional basis; all molecules are accessible in biologically relevant, prepared 

formats. ZINC is accessible for free at http://zinc15.docking.org (Sterling and Irwin, 

2015, pp. 2324–2337). 

• Otava Chemicals Database: It is a universal science-based chemical firm that 

operates in researching and manufacturing specialized chemicals, bio-chemicals, and 

bioanalytical reagents. They provide over 200,000 compounds for high-throughput 

screening (HTS), comprising more than 200 target-focused libraries (PK, Proteases, 

GPCRs, Ion Channels, Epigenetic receptors, and others), as well as libraries of 

Fragments, Lead-like, Drug-like, and CNS compounds. Additionally, special library 

design is available if needed (https://www.otavachemicals.com/). 

• PubChem Bioassay Database: Provides unique, validated chemical structures 

(small molecules) that may be found by searching for names, synonyms, or keywords. If 

multiple depositors provided the same structure, the compound data might be associated 
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with more than one PubChem Substance data. All Compound entries provide approved 

chemical representation information that has been supplied to characterize compounds 

in PubChem Substance. PubChem Compounds structures are pre-clustered and cross-

referenced by identity and similarity categories.  Furthermore, calculated characteristics 

and descriptors can be used to find and filter chemical structures 

(https://pubchem.ncbi.nlm.nih.gov/). 

• ChEMBL Database: ChEMBL is a freely accessible, manually maintained 

library of bioactive molecules having drug-like characteristics. The database is 

exceptional in its concentration on all elements of drug discovery as well as its size, 

with data on over 1.5 million compounds and over 10 million data on their impacts on 

biological systems (https://www.ebi.ac.uk/training/online/courses/chembl-quick-

tour/what-is-chembl/). 

• Drug Bank: Drug Bank (www.drugbank.ca) is a web-based database that 

contains detailed molecular data about drugs, their functions, interactions, and receptors. 

Includes data on the effects of hundreds of drugs on metabolite levels (Pharmaco-

metabolomics), gene expression levels (pharmaco-transcriptomics), and protein 

expression levels (pharmaco-transcriptomics) (Pharmaco-proteomics) (Wishart et al, 

2018, pp. D1074–D1082). Drug Bank has been extensively implemented to facilitate the 

discovery of In silico drug targets, drug design, drug docking or screening, drug 

metabolism prediction, drug interaction prediction (Wishart et al, 2008, pp. D901–

D906). 

 

 

 

 

 

 

 

 

 

 



 

 90 

Table 8.4  The databases used for the SBVS. 

 

8.2.6.      Databases preparation for SBVS 

Because there is no "perfect" chemical database, we must expend considerable effort in 

cleaning up the Collection, regardless of whether it contains Virtuals, Reals, or 

Tangibles (Bologa and Oprea, 2012, pp. 125–143). 

Database Compounds 
retrieved Website 

ZINC15 230 000000 www.zinc15.docking.org/ 

Otava 
chemicals 

270000 
 www.otavachemicals.com/ 

Protein-protein 
interactions 

(PPI-lib) 
500000 www.asinex.com/ppi/ 

PubChem 
Database 3574650 www.pubchem.ncbi.nlm.nih.gov/ 

Food library 26941 www.foodb.ca/ 

ChEMBL 1961462 www.ebi.ac.uk/chembl/ 

Natural 
product 

compound 
collection (NP-

lib) 

380,000 www.lifechemicals.com/screening-
libraries/natural-product-like-compound-library 

Drug Bank 9591 www.drugbank.ca/ 

SuperDrug2 3992 www.cheminfo.charite.de/superdrug2/index.html 

SMMDB 6509 www.bsbe.iiti.ac.in/bsbe/smmdb/ 
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 Many chemical suppliers offer their specific approach to this issue. FILTER is our 

preferred option. Despite the technique, we made specific fundamental changes to the 

collection's "make-up." One apparent solution is to eliminate "unwanted" compounds. 

 

Furthermore, compounds are typically derived from databases in some form of one-

dimensional (1D) format (SMILES, InChI, fingerprints, etc.), and many in-silico 

procedures are mandated to transform each of them to a proper 3D structure in order to 

conduct molecular docking, especially if all relevant enantiomers and tautomers at 

physiological pH are to be regarded (Radusky et al, 2017, pp. 1741–1746). In this study, 

BIOVIA DS was used to adjust the geometry by minimizing the energy with correct 

chiralities of ligands, and the missed hydrogens were added, and the duplicated 

compounds were deleted. 

8.2.7.     Screening using AutoDock Vina 

AutoDock Vina, an original MD and VS software, was developed in the same research 

facility as the well-known AutoDock 4 (Jaghoori, Bleijlevens and Olabarriaga, 2016, 

pp. 237–249).  Compared to earlier molecular docking tools (AutoDock 4), AutoDock 

Vina achieves a two-order-of-magnitude performance improvement. Autodock vina is 

free for academics, available from http://vina.scripps.edu/download.html. Vina's own 

optimization process employs a great gradient optimization algorithm. The gradient 

computation effectively gives the optimization algorithm with a "sense of direction" 

from one evaluation. Vina can accelerate calculating by employing multithreading 

multiple CPUs or CPU cores (Trott and Olson, 2010, pp. 455–461).  

 

When starting the docking experiments, the maximum number of concurrent threads can 

be specified (by the command-line option CPU). Vina attempts to produce as many 

threads as the number of possible cores by default (Jaghoori, Bleijlevens and 

Olabarriaga, 2016, pp. 237–249). Because of the randomized seeding of the 

computations, performing the same execution on the same ligand-protein can result in 

different binding modes. However, Vina enables us to manually select an initial 

randomization seed to recreate the docking outcomes (Jaghoori, Bleijlevens and 
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Olabarriaga, 2016, pp. 237–249). Running Vina on a multi-core processor is the 

simplest approach to screen a ligand database, although this is only appropriate for 

smaller databases. Several studies utilized freely available scripts to consecutively 

evaluate all the compounds in the database (Abreu et al, 2010, p. 10). AutoDock Vina 

employs an evolutionary search and a powerful hybrid scoring function (empirical and 

knowledge-based) to find the lowest-energy docking conformations (Hassan et al, 2017, 

p. 15451). In our study, the exhaustiveness, or time invested in the analysis, was already 

intuitively adjusted based on the number of atoms and flexibility. The parameters used 

in the docking process via Vina are mentioned in the following table (Table 8.5).  

 

Table 8.5   Grid mapping parameters used for virtual screening docking against 

respective enzymes. 

 

Center (Å) x y z 

5VV0 (h nNOS) 121.76 248.52 357.46 

4CX7 (h iNOS) 120.02 

 

245.95 

 

360.55 

 

6AV7 (h eNOS) 63.11 

 

29.13 

 

-184.71 

 

Size x y z 

 22 22 22 

Exhaustiveness  8  

 

The following process and command lines were used to do SBVS using vina on Ubuntu: 

• Autodock vina (www.vina.scripps.edu/download.html) 

• Python (https://www.python.org/downloads/) 

• Pymol (https://pymol.org/2/) 

• Openbabel (openbabel.org/wiki/Main_Page) 
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a. Receptor’s preparation 

We used these command lines to convert pdb files to pdbqt : 

for i in `ls receptor*pdb`;do echo $i;grep ATOM $i | cut -c-66 > `basename 
$i .pdb`.pdbqt;done 

 Or 

obabel receptor.pdb -xr -O receptor.pdbqt 

 

Or by running AutoDock.py script (https://github.com/sarisabban): 

python3 AutoDock.py -r receptor.pdb 

b. Ligand’s preparation 

We downloaded the ligands from previously mentioned databases and combined them: 

python3 AutoDock.py -d FILENAME.wget 

  

The next step was splitting the ligands file for virtual screening into multiples files; each 

one contains 24 ligands to facilitates the docking: 

python3 AutoDock.py -s FILENAME.pdbqt  24 

 

c. Searching for the space center (x.y.z) and size (x.y.z) using autodock or 

pymol 

In the PyMOL software command terminal, we typed Box (0,0,0,1,1,1), then we 

adjusted numbers, to get the search box. We deleted the Box and Position objects before 

adjusting the numbers. After that, we entered the next command line in the vina 

terminal: 

pymol AutoDock.py -b FILENAME.pdb 
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d. Docking 

We used this command line for each target and adjusted it according to the target’s 

coordinates: 

for file in ./Ligands/*/*; do tmp=${file%.pdbqt}; name="${tmp##*/}"; 
./vina --receptor receptor.pdbqt --ligand "$file" --out $name_out.pdbqt --log 
$name.log --exhaustiveness 8 --center_x 0 --center_y 0 --center_z 10 --
size_x 60 --size_y 60 --size_z 60; awk '/^[-+]+$/{getline;print 
FILENAME,$0}' $name.log >> temp; done; sort temp -nk 3 > Results; rm 
temp; mkdir logs; mv *.log *.out logs 

 

For example: x,y,z center (0.0.10) and size (60*60*60)the exhaustiveness 8. This 

command generates the log file and result file with just the docking best poses; we 

could modify it by deleting this part: (awk '/^[-+]+$/{getline;print FILENAME,$0}' 

$name.log >> temp; done ) part in case of error message. 

 

At the end of the AutoDock script, there is PBS script to run Autodock vina using a 

high-performance computer (Optional). 

 

In PBS generation command, we replaced Exhaustiveness by 8, false for output,1 for 

CPU and 3 for array and our email to get notification when the run finished): 

python3 AutoDock.py -j Center_X Center_Y Center_Z Size_X Size_Y 
Size_Z Seed Exhaustiveness  Output  CPUs  your Email 

8.2.8.     ADMET and drug-likeness evaluation 

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) property 

prediction could be thought to have started in 1863 with a research on the effect of 

aqueous solubility on toxicity, in 1884 with a QSPR for melting point, or in 1968 with a 

QSPR for aqueous solubility as a function of the octanol – water partition coefficient, P 

(Kow ) (Dearden, 2007, pp. 635–639). 

 

To reduce failures in the drug discovery process, ADMET evaluation is considered 

necessary. ADME identifies the pharmacokinetic concerns that determine if the drug 

molecule reaches the target receptor in the human body and how far does it last in the 
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bloodstream. Simultaneous calculation of drug candidates' efficiency and 

biopharmaceutical features has been established, and extensive investigations of 

ADMET approaches are now frequently conducted at a preliminary phase of drug 

development (Dong et al, 2018, p. 29). 

 

Using the free web server SwissADME: www.swissadme.ch/index.php (Daina, 

Michielin, and Zoete, 2017, p. 42717), important ADMET properties were calculated, 

SwissADME gives free access to a groop of rapid but rigorous calculations for 

physicochemical characteristics, pharmacokinetics, drug-likeness, and medicinal 

chemistry compatibility, including in-house approaches such as the BOILED-Egg, 

iLOGP, and Bioavailability Radar. A user-friendly interface ensures fast and 

straightforward input and interpretation. The input zone includes a molecular sketcher 

constructed on ChemAxon's Marvin JS (www.chemaxon.com), which allows the user to 

import (from a file or an external database), draw, and modify a 2D chemical structure 

before transferring it to a list of molecules (Daina, Michielin, and Zoete, 2017, p. 

42717; Daina, Michielin, and Zoete, 2014, pp. 3284–3301). In addition, the polar 

surface area (PSA) has been evaluated and used as a molecular descriptor in the study of 

ligands transport properties like intestinal absorption and BBB penetration (Prasanna 

and Doerksen, 2009, pp. 21–41). 

8.2.9.      Lipinski's rule  

The 'rule-of-five' RO5 (also referred to as 'Lipinski's rule of drug-likeness') is a highly 

effective approach for designing orally bioavailable small-molecule drugs (Zhang and 

Wilkinson, 2007, pp. 478–488) and based on the physicochemical properties of phase II 

drugs (Lipinski, 2016, pp. 34–41). The Lipinski rule of five helps in differentiating 

between drug-like and non-drug-like compounds. It suggests a great likelihood of 

accomplishment or failure caused by drug likeness for compounds that meet 2 or more 

of the following rules (Benet et al, 2016).  
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The Rule of 5 indicates that low absorption or permeation is more possible in the drug 

discovery context when there are more than 5 H-bond donors, 10 H-bond acceptors, the 

molecular weight is higher than 500 Da, and the calculated Log P (CLog P) is larger 

than 5 (Benet et al, 2016). When two or more of these conditions are violated, a 

molecule is predicted to be a non-orally bioavailable drug (Lipinski, 2016, pp. 34–41). 

 

Furthermore, the “Rule of Three” is a fragment-specific extension of the Rule of Five 

(MW <300, logP <3, number of HD and HA <3, number of rotatable bonds< 3) (Lionta 

et al, 2014, pp. 1923–1938). The evaluation of drug likeness compounds in our research 

has been done using BIOVIA DS and the SwissADME web server. 

8.2.10. Docking validation with AutoDock 

The best poses selected from docking vina were subject to docking using another 

docking software (Autodock 4.2) validated in the last part of the study when we 

compared the experimental results with the calculated ones by docking the known 

inhibitors with their proteins. 

 

A hundred complexes were docked by Autodock 4.2. The LGA search was used to 

create docked poses, and a semi-empirical FF-based scoring function was used to 

determine the free energy of binding. The graphical user interface (Autodock Tools 

(ADT) 1.5.6) was used to integrate non-polar hydrogens by assigning rotatable bonds to 

each constituent atom of the ligand and the enzyme before docking. To accelerate the 

interaction energy calculation during the conformational analysis, AutoGrid was utilized 

to produce grid maps for each atom type in the docked compounds that hold grids of 

interaction energy used as a reference table (sampling stage). For AutoGrid settings, the 

default values were employed. The maps were centered on the macromolecules and 

used a grid map with 603 points and a default grid spacing. The docking mechanism is 

semi-flexible, permitting the ligands to explore their structural space while maintaining 

the macromolecules rigid. The number of GA evaluations was set at 250000. 
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8.2.11. Docking analysis 

In bioinformatics, computational docking is a critical approach. The evaluation and 

interpretation of docking results are also crucial. There is a variety of software provided 

for docking result analysis that can provide high-quality images. We used Pymol, a 

simple bioinformatics tool for visualizing macromolecules and interaction with ligands. It is 

simple to make high-quality images at various resolutions (90, 150, and 300 dpi). The better 

the dpi value, the higher the quality of the image. Also, we used Discovery Studio (DS) 

Visualizer, so we could easily visualize interactions between the receptor and the ligand. 

The label and font colors, as well as background and receptor colors, are easily 

customizable. We could also observe the receptor surface in several ways, such as 

aromatic, H-bond, charge, ionizability, and solvent accessibility (SAS). We could 

quickly generate a 2D interaction diagram and save it in PNG format. We could even 

save the entire session to restart later. We employed Autodock tools, in addition to 

docking and files’s preparation, for the visualization of macromolecular structures and the 

production of images. It may also open the Vina docking output files, which we could 

simply analyze. 

 

In addition, UCSF Chimera was a beneficial software for interactive molecular 

visualization and analysis, Chimera can scan molecular structures and supporting data in 

a variety of formats, visualizing the structures in a range of representations, and 

generating good quality images. 

8.3. Molecular Dynamics Simulation 

Molecular simulation is a tremendously important tool in current molecular modeling, 

allowing us to monitor and comprehend structure and dynamics in detail where 

individual atoms' motion can be traced (Lindahl E, 2008, pp. 3–23). 

 

For MD studies of biomolecules, numerous software and force fields were created. MD 

analysis has revealed a variety of biological pathways that function at the atomic and 

molecular levels (protein folding and unfolding, protein-ligand interactions, protein-
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protein interactions, DNA and RNA-protein interactions, proteins integrated into 

membranes, lipid-lipid interactions, drug transfer, and so on). (Kumari et al, 2017, 

pp.1163–1179). 

 

To analyse the structural dynamics and steadiness of NOS-ligand complexes, either free 

nosS and their complexes with the best compounds discovered by VS were addressed to 

MD simulations using NAMD software (Phillips et al, 2005, pp. 1781–1802). All files 

were generated using CHARMM-GUI (A graphical tool that provides a Web-based 

approach to preparing files for use with CHARMM techniques. The platform assists in 

identifying any problem through visual inspection, which may then be readily solved 

with the help of the GUI) (Jo et al, 2014, pp. 235–265). 

 

The targets 3D structures (PDB ID: 5VV0, 6AV7, 4CX7) were refined, including 

adjusting the side chain orientations, adding Hydrogens, and determining the best 

protonation states. The complexes and free NOSs were positioned in cubic boxes with 

explicit TIP3P water models with a thickness of 10.0 from protein surfaces. The 

systems were neutralized by providing counter ions, and a 0.15M NaCl salt solution was 

also employed to regulate the system's concentration. The Monte Carlo approach was 

utilized. We minimized the energy of the systems for 10000.  

 

Following a 2 ns of equilibration run with a stable number of particles, volume, and 

temperature (NVT) ensemble, 100 ns-production-MD simulations were done for each 

system at a stable T (310.15 K) and pressure (NPT) ensemble. After the simulations of 

the free targets were completed, the protein-ligand complexes were thoroughly 

investigated with selected inhibitors using MD simulations. 

 

 

 

 

 

 

 



 

 99 

8.3.1.      Selected ligands for MD simulations  

The following ligands (Figure 8.1) where optimized and prepared to be used in MD 

simulations according to the protocol. 

 
 

Figure 8.1  The 2D structure of the compounds used for MD simulation and retrieved 

from the virtual screening’s best results. 
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8.3.2.      Input files for NAMD  

The following input files are important to run NAMD simulation (source: 

https://www.ks.uiuc.edu): 

 

• PDB file: Provides the atomic coordinates of whole atoms in the molecular 

system. The angstrom unit is the default for pdb files. 

• PSF file: Includes structural information about a molecular system. 

• Topology file: (. top,.rtf) file provide the kind, mass, and partial charges of 

each atom for every residue, as well as bonding data needed to convert a list of residues 

to accomplish PSF files. 

• Parameter file: (. prm,.str) file include all of the quantitative variables required to 

calculate forces and energy. Topology files for biological systems, including lipid 

membranes, proteins, carbohydrates, and nucleic acids in the CHARMM force field, are 

available online. 

• Configuration file: NAMD defines configuration files with the Tcl Scripting 

language.  A configuration input (also known as a.conf file,.inp file, or.namd file) is a 

display setting that provides a collection of parameters and settings for running the 

simulation. The parameters and values given in the configuration file govern NAMD's 

specific actions, such as whether functions are active or inactive, how long the 

simulation should run, etc. It is order-independent, and the entire file is evaluated before 

any data or computations are performed. 

8.3.3.      The output files generated by NAMD  

(Source : https://www.ks.uiuc.edu) 

• Log file: It contains the log for the entire simulation run. As well as this, it carries 

a massive amount of data like temperature, pressure, volume, and energy, among other 

things. In addition, it evaluates the simulation's benchmark time, which is utilized for 

performance optimization. 

• Trajectory (.dcd) File: This file provides original atomic coordinates saved 

during simulation for all frames. When importing a .dcd file in VMD, we can see how 
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the system moves during the simulation. The frequency with which coordinates are 

saved for simulation runs is determined by the “dcd-freq” number specified in the 

NAMD config file. 

• *.xst File: It keeps track of periodic cell parameters and prolonged system 

variables as they change during the simulation. The frequency with which this 

information is recorded can be specified in the NAMD configuration file using the 

“xstfreq” parameter. 

• Output *.coor, *.vel and *.xsc Files: *.coor and *.vel files: Include the 

coordinates and velocities of whole atoms in the complex at the final step of a 

simulation, but *.xsc holds the system's periodic cell dimension and associated time 

step. 

• *. restart files: Using the “restartfreq” command in the NAMD configuration file, 

NAMD can additionally generate the following restart files throughout the simulation 

run: 

*.restart.coord (with the atomic coordinates) 

*.restart.vel file (with the atom velocities) 

*.restart.xsc file (with the system's periodic cell dimensions and time step). 

8.3.4.       Analysis of molecular dynamics simulations 

VMD (Visual Molecular Dynamics) is a molecular graphics tool designed to present 

and analyze molecular assemblies, namely biopolymers like proteins and DNA/RNA. 

VMD includes a graphical user interface for software control and a text interface that 

utilizes the Tcl extensible syntax to support complex scripts. VMD has also explicitly 

been built to illustrate MD simulation trajectories retrieved from the outputs or the 

positive correlation to a running MD simulation (Humphrey, Dalke, and Schulten, 1996, 

pp. 33–38). 

• The Root Mean Square Deviation (RMSD): The most popular quantitative 

measure of the connection between the two superimposed atomic coordinates is the root 

mean square deviation (RMSD).  
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The RMSD measurements are in Å and were determined using the following equation: 

 

Where: The estimation is done over n pairs of equivalent atoms, and di is the distance 

between the 2 atoms in the i-th pair (Kufareva and Abagyan, 2012). 

 

Via VMD TkConsole (Extensions → Tk Console in the VMD Main window), we used 

the following command: 

source rmsd.tcl 

 

To generate rmsd.dat file that contained the measure of the RMSD of the protein 

backbone against time by running the following script: 

 

set outfile [open rmsd.dat w];                                              
set nf [molinfo top get numframes] 
set frame0 [atomselect top "protein" frame 0] 
set sel [atomselect top "protein"] 
# rmsd calculation loop 
for { set i 0 } {$i < $nf } { incr i } { 
    $sel frame $i 
    $sel move [measure fit $sel $frame0] 
    puts $outfile "[measure rmsd $sel $frame0]" 
} 
close $outfile 

• RMSF (Root-Mean-Square Fluctuations): The RMSF is a calculation of the 

fluctuation between particle i's position and an initial position: 

                                    
Where:  

T is the period of time over which the mean should be derived. 

riref is the initial position of particle i 

 



 

 103 

The variation between RMSD and RMSF is that the latter is estimated across period and 

offers a score for each particle, whilst the former does not. The RMSD, on the other 

hand, is estimated over the atoms and delivers time-specific information (Sneha and 

George Priya Doss, 2016, pp. 181–224). 

 

Via VMD TkConsole (Extensions → Tk Console in the VMD Main window), we used 

the following command: 

source rmsf.tcl 

In order to generate rmsf.dat file that contained the value of the RMSF by running the 

following script: 

set outfile [open rmsf.dat w] 
set sel [atomselect top "name CA"] 
set rmsf "[measure rmsf $sel first 0 last -1 step 1]" 
for {set i 0} {$i < [$sel num]} {incr i} { 
puts $outfile "[expr {$i+1}] [lindex $rmsf $i]" 
} 
close $outfile 

• The radius of gyration (Rg): The radius of gyration (Rg) is described as the 

dispersion of its atoms around its axis. Rg is the length that reflects the distance between 

the point while it is rotating and the place where the energy transfer has the greatest 

effect. This idea particularly aids in detecting diverse polymer kinds, such as in the case 

of proteins. The computation of Rg and distance measurements are the two most 

important markers that are extensively utilized in estimating a macromolecule's 

structural activity. Determining the Rg also contributes to the prediction of drug and 

protein compactness and binding characteristics. (Sneha and George Priya Doss, 2016, 

pp. 181–224.). Rg is calculated according to: 

 
Where:  

mi : the MW of atom I  

ri : the location of  i concerning the center of mass of the molecule. 
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Via VMD TkConsole (Extensions → Tk Console in the VMD Main window), we used 

the following command: 

source rg.tcl 

 

In order to generate rg.dat file that contained the value of the Rg by running the 

following script: 

set mol [molinfo top]   
set out [open rg.dat w] 
set sel [atomselect top " (protein and resid 339) and backbone "] 
# set sel [atomselect top " (same residue as within 4 of resname 18F) 
 and    backbone "] 
 set frames [molinfo $mol get numframes] 
 for {set i 0} {$i < $frames} {incr i} { 
 $sel frame $i 
 $sel update 
 puts $out "$i [measure rgyr $sel]"  
 } 
 $sel delete 

• Hydrogen bond: One of the essential biological mechanisms is hydrogen 

bonding. It is essential to the structure and function of many important molecules. It is 

usually needed for the stability of the receptor-ligand complexes. The H-bonding 

network is necessary in enzymatic activity because it allows NOS substrates or 

inhibitors to be positioned over the heme. Hydrogen bonds were generated in this study 

using the VMD plugin. 
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9. RESULTS AND DISCUSSION 

9.1. Target Identification and Validation 

• Sequence alignment and structural superimposition: 

The sequence alignment and structural superimposition of the three human NOS 

isoforms: The amino acid sequences of hnNOS (PDB ID: 5VV5), heNOS (PDB 

ID:5VVB), and hiNOS (PDB ID: 3E7G) were aligned using BIOVIA DS software. 

Their corresponding three-dimensional (3D) structures were superimposed to calculate 

the sequence and structure similarity between the three NOS isoforms within the same 

species (Figure 9.1). The multiple sequence alignment of the the 3 hNOS isoforms 

listed above showed that the sequence identity was 52.6%, and the sequence similarity 

was 71.0%. Human nNOS has a structure that is quite like human iNOS and human 

eNOS, as predicted. (Figure 9.2). 

 
Figure 9.1   (A) Structural superimposition of hnNOS (PDB ID: 5VV5), heNOS (PDB 

ID:5VVB), and hiNOS (PDB ID: 3E7G). (B) Structural superimposition of the 

Cofactors (BH4 and heme) of hnNOS (PDB ID: 5VV5), heNOS (PDB ID:5VVB), and 

hiNOS (PDB ID: 3E7G) 
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The sequence and structure similarity of the neuronal NOS isoform of different 

species: The amino acid sequences of hnNOS (PDB ID: 5VV5) and Rat nNOS (PDB 

ID: 6NHE) were aligned using Biovia discovery studio software, and their 

corresponding three-dimensional (3D) structures were superimposed to calculate the 

sequence and structure similarity between neuronal NOS isoform of different species 

(Figure 9.3). 

The architectures of human and rat nNOS are nearly identical, with sequence identity as 

far as 95.1 % and sequence similarity as high as 97.0 % (Figure 9.4).  According to the 

literature, a large levels of freedom sequence of the Zn2+-binding site is the only 

exception. This sequence is frequently disrupted in rnNOS (Ser 339 – Asp3 47). This 

sequence is fully organized in 1 subunit of each dimer of the hnNOS structure, whereas 

residues Ser 344 – Asp 352 are still deficient in the other subunit. In hiNOS, the same 

sequence region (Lys 123 – Asp131) is often very organized (Li et al, 2014, p. 5272). 

 
Figure 9.3   Structural superimposition of hnNOS (PDB ID: 5VV5) and Rat nNOS 

(PDB ID: 6NHE). 
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• Structure-based phylogenetic analysis: The phylogenetic tree was created using 

various sequence alignments to explain the evolutionary connections between hnNOS 

(PDB ID: 5VV5), heNOS (PDB ID: 5VVB), hiNOS (PDB ID: 3E7G), and rat nNOS 

(PDB ID: 6NHE) (Figure 9.5). The phylogenetic tree indicated that hnNOS (PDB ID: 

5VV5) and rat nNOS (PDB ID: 6NHE) are closely related and share an ancestral origin 

with the other isoforms, which confirmed the result of the sequence alignment. 

 
 

Figure 9.5   The phylogenetic tree of NOS (Human neuronal NOS (PDB ID: 5VV5), 

Human endothelial NOS (PDB ID: 5VVB), Human inducible NOS, (PDB ID: 3E7G) 

and Rat neuronal NOS (PDB ID: 6NHE)). 

9.2. Re-Docking with Known Inhibitors 

Docking algorithms are concerned with predicting ligand structure and orientation 

inside the receptor's designated active region. The docking technique significantly 

evolved considerably over the years to accommodate target and compound side-chain 

flexibility (Ghosh et al, 2006, pp. 194–202). 

 

The co-crystallized ligands were removed from each protein structure. Employing 

Biovia Discovery Studio, missing loops were approximated, and hydrogen atoms were 

added according on the protonation state of the titratable residues at pH 7.4.  These 

native ligands were later docked using AutoDock again into their original crystal 

structures.  To validate the 3D structure of the targets and to select the average of Ki, 
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which will be used in the following steps as a reference, we compared the Ki 

experimental (nM) (or IC50) from the literature with the calculated resulting from 

AutoDock (Table 9.1). 

 

Table 9.1  Binding energy (ΔG) and inhibition constant (Ki) calculated results of 

known inhibitors docking using Autodock compared with the experimental Ki. 

 
PDB ∆G   

kcal/mol 

ki 

calculated 

(nM) 

ki Exp 

(nM) 

PDB ∆G   

kcal/mol 

ki 

calculated 

(nM) 

ki Exp 

(nM) 

6AV7 -10.88 10.52 83976 3E6L -8,21 962,32 720 

6AUS -9,55 99,23 252 3E7I -10,89 10,42 10 

6AUV -10,04 43,39 47 3E7M -8,27 867,41 350 

6AUW -10,19 34,14 57 3E 68 -9,7 77,89 120 

6AUX -8,94 281,4 44 3EAI -9,36 136,61 74 

6CID -10,24 31,12 110 3EBD -8,65 454,32 40 

5VUV -8,99 256,57 768 4UGZ -9,59 92,64 130 

5VUX -10,18 34,52 764 4UH0 -9,47 115,08 35 ± 2.0 

5VUY -10,23 31,5 274 4UH1 -10,54 18,92 17 ± 1.6 

5VUZ -10,95 9,34 108 4UH2 -9,37 134,8 67 ± 3.3 

5VV0 -10,97 9,17 130 4UH3 -11,01 8,56 34 ± 1.2 

5VV1 -11,04 8,15 73 4UH4 -10,84 11,24 24 ± 1.1 

5VV2 -10,63 16,25 164 4D2Y -9,41 127,24 40 

5VV3 -11,38 4,58 32 4D2Z -10,68 14,83 40 

5VV4 -11,52 3,57 20 4D30 -9,69 79,18 54 

5VV5 -11,89 1,92 30 4D31 -9,72 75,44 183 

5UO1 -11,43 4,19 36 4D33 -5,3 131350 40000 

5UO2 -10,77 12,72 125 4V3W -9,58 94,68 138 

5UO3 -12,06 1,45 31 4V3X -10,59 17,2 19 

5UO6 -12,19 1,15 65 4V3Z -9,97 49,59 56 

5UO7 -12,26 1,03 46 4CX7 -9,29 154.40 6629 
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• Pearson correlation coefficient analysis: We employed Pearson’s correlation 

coefficient to evaluate the statistical link, or association, between ki experimental values 

and ki calculated values. Correlation can be between -1 and 1. The direction of the 

relationship is represented by the sign of the link coefficient, while the magnitude of the 

correlation (how near it is to -1 or +1) reflects the intensity of the relationship. We 

found that Pearson Correlation Coefficient r = 0.6475, which means a moderate positive 

correlation between the calculated and the experimental Ki results (Figure 9.6). 

 

 

 
 

Figure 9.6  The scatterplot shows the correlation between the binding affinity (ki) of the 

experimental studies and the binding affinity of molecular docking. 

9.3. Structure-Based Virtual Screening 

In drug discovery, VS is a good strategy for obtaining new drug molecules. Its goal is to 

select highly efficient compounds from a big chemical library for subsequent medical 

research.  SBVS begins with a 3-D structure of a target receptor and a 3-D database of 

compounds, then employs virtual filtering, MD, and scoring to select credible lead 

candidates. Docking and scoring algorithms produce subgroups of a compound set with 
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increased affinity against a target by estimating their linking mode (through docking) 

and affinity (through scoring) and extracting those with the best scores (Ghosh et al, 

2006, pp. 194–202). 

• Characterization of the macromolecular target: We selected the following 

enzyme from the validation step to be used in the SBVS. The Chain A of each isoform 

was prepared and minimized (Table 9.2). 

Table 9.2  The NOSs used for the VS. 

 

PDB Isoform Organism 3D structure of chain A prepared 

 
 

5VV0 
 
 
 

 
 

nNOS 
 

 
 

Homo sapiens 
 
 
 

 

 
 
 

6AV7 

 
 

eNOS 

 
 

Homo sapiens 
 

 
 
 

4CX7 

 
 

iNOS 

 
 

Homo sapiens 
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• Structures evaluation and validation of NOSs: By evaluating the 

stereochemical quality of the target, errors in protein structures can be detected. The 

Ramachandran plot, which illustrates the phi (φ)and psi (ψ) backbone conformational 

angles for whole residue in a target, is a regularly used indication of protein quality 

(Figure 9.7), and further analysis results are represented in Table 9.3, Table 9.4, 

Figure 9.8, Figure 9.9, Figure 9.10, and Figure 9.11. 

 
 

Figure 9.7  Ramachandran plot of (a) hiNOS (PDB ID:4CX7), (b) hnNOS (PDB ID: 

5VV0), and (c) heNOS (PDB: 6AV7). 
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Table 9.3  Ramachandran plot results of the structure of hiNOS (PDB ID:4CX7), 

hnNOS (PDB ID: 5VV0), and heNOS (PDB: 6AV7). 

 

PDB ID 4CX7 5VV0 6AV7 
 

 
Highly 

Preferred 
observations 

 
389 (92.840%) 

 
398 (97.073%) 

 
340 (84.788%) 

 
Preferred 

observations 
 

 
19 (4.535%) 

 
7 (1.707%) 

 
39 (9.726%) 

Questionable 
observations 

11 (2.625%) 5 (1.220%) 
 

22 (5.486%) 

 

 

 

Table 9.4   Hydrogen bond estimation (DSSP) score of hiNOS (PDB ID: 4CX7), 

hnNOS (PDB ID: 5VV0), and heNOS (PDB ID 6AV7). 

 

 
PDB ID 

 

 
4CX7 

 

 
5VV0 

 
6AV7 

 
The residues % 

which have 
averaged 3D-1D 

score>= 0.2 
 

 
89.55 
Passed 

 
83.7 

Passed 

 
85.15 
Passed 
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Figure 9.8  Hydrogen bond estimation (DSSP) of (a) hiNOS (PDB ID: 4CX7), (b) 

hnNOS (PDB ID: 5VV0), and (c) heNOS (PDB ID 6AV7). 



 

 116 

 
 

Figure 9.9  Z-score of hiNOS (PDB ID:4CX7). 
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Figure 9.10  Z-score of hnNOS (PDB ID: 5VV0). 
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Figure 9.11  Z-score of heNOS (PDB ID 6AV7). 
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• Binding site prediction: The recognition and identification of functional regions 

on proteins are becoming increasingly important. Protein structures with indefinite 

functions and active sites are increasingly being discovered due to structural genomics 

investigations. Pocket detection pioneered binding site prediction because the binding 

site is generally observed in the biggest pocket (Laurie and Jackson, 2006, pp.395–406). 

According to the literature, In the active site pocket of all NOS isoforms (Figure 9.12), 

there is a conserved Glu (Glu592 in nNOS and Glu363 in eNOS) that serves to attach 

the natural substrate, L-arginine. The substrate's C α terminus is fixed in a second 

pocket containing Asp597 in nNOS and Asn368 in eNOS (Delker et al, 2010, pp. 5437–

5442) (Table 9.5). 

 

Table 9.5   Binding site residues prediction of hiNOS (PDB ID: 4CX7), hnNOS (PDB 

ID: 5VV0), and heNOS (PDB ID 6AV7). 

 
PDB ID 5VV0 4CX7 6AV7 

Binding residues 

414W 
419R 
420C 
421V 
422G 
429L 
462S 
575M 
589F 
590S 
591G 
592W 
594M 
597E 
683W 
709F 
711Y 

 
 

194W 
197A 
198P 
199R 
200C 
201I 
202G 
205Q 
209L 
242S 
355M 
369F 
370N 
371G 
372W 
377E 
463W 
489Y 
491Y 

178W 
182P 
183R 
184C 
185V 
193L 
226S 
339M 
353F 
354S 
355G 
356W 
358M 
361E 
447W 
473F 
475Y 
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Figure 9.12   Predicted binding pocket of (a) hiNOS (PDB ID: 4CX7), (b) hnNOS 

(PDB ID: 5VV0), and (c) heNOS (PDB ID 6AV7). 
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9.4. Virtual Screening and Binding Energy Analysis 

The virtual screening approach in drug design facilitates a rapid discovery of the bio-

active hit compounds. In this study, we used AutoDock Vina to estimate the binding 

energies (∆G) of different compounds from several databases (Table 9.6). 

 

 The top compounds were subject to re-scoring by AutoDock 4.2 to approve the results 

obtained using Autodock Vina, to have the inhibition constants values (Ki) (Table 9.7), 

and accordingly, to calculate the selectivity index (Table 9.8 ). 

 

We noticed that the docking results of many compounds showed a high binding affinity 

for nNOS but did not satisfy selectivity criteria even with repetitive docking runs. Some 

compounds were inhibitors for eNOS and (or) iNOS and had a low binding affinity with 

nNOS. Conferring to studies that confirm our findings, the active sites of NOS isoforms 

are highly conserved.  16 of the 18 residues in the pocket within 6 Å of the substrate are 

indistinguishable; also, nNOS has a significant active site (1000 Å3~1100 Å3) which 

prevents the inhibitors to contact the enzyme ideally to increase the potency of 

inhibition (Ji et al, 2009, pp. 209–217).  

 

Corresponding to the previous research, Asp597 and Glu592 are the two negatively 

charged side chains of nNOS that can electrostatically stabilize the inhibitor -amino 

group, and for better interaction, the inhibitor should curl, positioning the -amino group 

in the best possible place between Asp597 and Glu592 (Poulos and Li, 2017, pp. 68–

77). To reveal the precise interactions of these potential inhibitors docked poses, the 

selected top compounds from VS were analyzed using BIOVIA DS 4.5. 
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Table 9.6   The binding energies (∆G) of the top compounds predicted by Autodock 

vina. 
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Table 9.7   Calculated binding energies (∆G) and inhibition constants (Ki) of the top 

compounds predicted by AutoDock 4.2. 

 

Compound 

hnNOS 

(5VV0) 

∆G 

hnNOS 

(5VV0) Ki 

(nM) 

heNOS 

(6AV7) 

∆G 

heNOS  

(6AV7)  

Ki (nM) 

hiNOS 

(4CX7) 

∆G 

hiNOS 

(4CX7)  

Ki (nM) 
(kcal/mol) (kcal/mol) (kcal/mol) 

ZINC000003649911 -8.74 389.34 -8.38 722.14 -8.4 691.34 

ZINC000014928870 -9.31 150.39 -9.77 69.14 -9.34 142.27 

ZINC000018102655 -10.8  12.06 -9.98 48.57 -11.22 05.92 

ZINC000252477567 -8.21 954.1 -6.96 7890 -9.8 65.33 

ZINC000014824336 -8.63 475.45 -8.49 594.2 -9.41 126.38 

ZINC000018144039 -11.15 01.76 -10.37 24.89 -11.39 04.46 

ZINC000038140885 -10.07 41.47 -10.1 39.76 -9.79 66.54 

ZINC000070691657 -8.78 366.49 -11.0 8.06 -11.37 04.61 

ZINC000085576447 -7.18 5430 -7.58 2770 -8.44 645.51 

ZINC000252477564 -10.41 23.57 -10.62 16.41 -9.99 47.22 

ZINC000001433941 -10.77 12.67 -10.55 18.59 -10.58 17.45 

ZINC000085602366 -8.21 967.14 -9.0 251.57 -8.9 300.42 

ZINC000252517498 -9.31 150.9 -8.39 704.51 -7.6 2700 

ZINC000253388412 -8.02 1310 -7.6 2670 -5.4 110990 

ZINC000253497334 -7.69 2310 -7.61 2660 -7.5 3180 

ZINC000253501597 -9.21 178.08 -8.12 1110 -8.37 729.49 

ZINC000038563736 -8.06 1240 -10.55 18.58 -6.07 35510 

ZINC000038563738 -8.49 593.86 -10.42 23.21 -5.43 104000 

ZINC000252517497 -9.05 233.43 -1.12 151680000 -8.37 729.49 

ZINC000004612836 -7.85 1780 -7.91 1580 -6.64 13560 

ZINC000013302315 -7.13 5890 -7.87 1700 -8.14 1070 

ZINC000013311350 -6.15 31080 -6.77 10990 -6.93 8280 

ZINC000013485422 -9.47 114.06 -7.71 2220 -7.94 1510 

ZINC000013485423 -9.92 53.41 -8.46 628.02 -8.16 1050 

ZINC000018183294 -11.1 07.33 -10.12 38.34 -10.54 18.71 

ZINC000005132927 -7.33 4260 -8.08 1190 -5.54 86950 

ZINC000034045609 -6.95 8000 -7.29 4500 -4.01 1150000 

ZINC000038358415 -8.2 972.37 -9.71 76.81 -9.6 91.39 

ZINC000001872131 -8.64 467.31 -7.92 1560 -8.4 701.2 

ZINC000003881426 -9.36 137.17 -8.2 972.59 -9.67 81.81 

ZINC000229903602 -6.67 12930 -7.16 5680 -6.06 36110 

ZINC000000119434 -9.08 222.51 -6.65 13390 -5.36 118370 

ZINC000230017540 -8.92 290.74 -9.78 67.45 -8.27 874.01 

ZINC000004023303 -8.97 264.73 -10.05 42.73 -7.6 2680 
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Table 9.8   Selectivity of hnNOS against heNOS and hiNOS. 

 

  

Selectivity 

Index 
 

  

Selectivity 

Index   

Compound 
hnNOS/ 

heNOS 

hnNOS/ 

hi NOS 
Compound 

hnNOS/ 

heNOS 

hnNOS/ 

hi NOS 

ZINC000003649911 1.85 1.77 ZINC000252517497 649787.94 3.12 

ZINC000014928870 0.45 0.94 ZINC000004612836 0.88 7.61 

ZINC000018102655 4.02 0.49 ZINC000013302315 0.28 0.18 

ZINC000252477567 8.26 0.06 ZINC000013311350 0.35 0.26 

ZINC000014824336 1.24 0.26 ZINC000013485422 19.46 13.23 

ZINC000018144039 3.68 0.65 ZINC000013485423 11.75 19.65 

ZINC000038140885 0.95 1.60 ZINC000018183294 5.23 
 

2.55 

ZINC000070691657 0.02 0.01 ZINC000005132927 0.27 20.41 

ZINC000085576447 0.51 0.11 ZINC000038563738 0.03 175.12 

ZINC000252477564 0.69 2.00 ZINC000034045609 0.56 143.75 

ZINC000001433941 1.46 1.37 ZINC000038358415 0.07 0.09 

ZINC000085602366 0.26 0.31 ZINC000001872131 3.33 1.50 

ZINC000252517498 4.66 17.89 ZINC000003881426 7.09 0.59 

ZINC000253388412 2.03 84.72 ZINC000229903602 0.43 2.79 

ZINC000253497334 1.15 1.37 ZINC000000119434 60.17 531.97 

ZINC000253501597 6.23 4.09 ZINC000230017540 0.23 3.00 

ZINC000038563736 0.01 28.63 ZINC000004023303 0.16 10.01 

 

The best selective nNOS compounds were nominated for rendering their poses in the 

active sites of the enzyme. The 2D and 3D Ligand-protein (nNOS) binding modes 

representations after molecular docking of the designated compounds are illustrated in 

Figures 9.13, 9.14, and 9.15.  

 

For example, the compound ZINC000253501597 (Figure 9.13 (a)) is entirely 

submerged in the active site of nNOS forming many interactions comprising pi-alkyl, a 

hydrogen bond interaction; in the same way, the compound ZINC000013485423 

(Figure 9.15 (a)) established several pi-alkyl interactions in addition to pi-sulfur and pi-

cation interactions, which ingrained it in the active site of nNOS perfectly. The 

compound ZINC000013485422 (Figure 9.14 (b)) has dual van der Waals interactions, 

multiple alkyl interactions, and one pi-cation interaction formed with nNOS, which 

keep the molecule firmly attached to the target.  
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Figure 9.13  3D and 2D presentation of the chemical interactions after molecular 

docking of nNOS complexes ((a) 5VV0-ZINC000253501597, (b) 5VV0-

ZINC000001872131, (c) 5VV0-ZINC000000119434) are represented in the left and 

right panels, respectively. 
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Figure 9.14  3D and 2D presentation of the chemical interactions after molecular 

docking of nNOS complexes ((a) 5VV0-ZINC000003649911, (b) 5VV0-

ZINC000013485422, (c) 5VV0-ZINC000001433941) are represented in the left and 

right panels, respectively. 
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Figure 9.15  3D and 2D presentation of the chemical interactions after molecular 

docking of nNOS complexes ((a) 5VV0-ZINC000013485423, (b) 5VV0- 

ZINC000018183294, (c) 5VV0-ZINC000252517498) are represented in the left and 

right panels, respectively. 
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9.5. ADMET and Drug-Likeness Evaluation 

The inappropriate ADMET proprieties cause the failure of a clinical trial of drug 

candidates which leads to time and money wasting. To avoid that, it is crucial to 

recognize the potential ADMET problems during the early stages of drug design. Many 

computational tools were developed to estimate the fate of drugs in the organism and 

calculate the toxicity risk to minimize failures. Because of the BBB, the successful 

delivery of nNOS inhibitors into the human brain is one of the most difficult missions. 

 

18 of the 30 residues and cofactor side chains pointing toward the binding site of NOS 

are polar or charged, and clusters of acidic residues and cofactor side chains are 

detected, the heme propionate groups, as well as two low pKa polar side chains 

(residues Y562 and Y588), generate a very acidic local environment, as do residues 

E592 and D597, that is why the inhibitors must have positive charged electrostatic or 

HD groups, but unfortunately, their presence prevents the penetration via BBB (Ji et al, 

2009, pp. 209–217).  

 

Several findings aimed to solve this obstacle, for instance, by increasing the 

lipophilicity and rigidity of the inhibitors and adjusting the pKa of amino groups (Do et 

al, 2019, pp. 2690–2707). BIOVIA DS 4.5 and SwissADME were used in this study. 

Table 9.9 illustrates the drug-likeness and ADMET profiles of the top-ranked 

compounds, which are considered drug-like compounds, passed Lipinski’s rule of 5 and 

predicted to penetrate the BBB according to the calculations.  
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9.6. Molecular Dynamics Simulation Analysis 

MD simulations of 100 ns were used for the free enzymes and for the complexes to 

investigate the stability of the systems selected from virtual screening. To explore 

conformational changes in the enzymes's active site area, MD simulations of unbound 

nNOS, eNOS, and iNOS isoforms were done starting with the X-ray structures without 

the ligands (PDB ID: 5VV0, 4CX7, 6AV7)). We investigated the root mean square 

deviation (RMSD), root mean square fluctuation (RMSF), the radius of gyration (Rg), 

and hydrogen bond of the entire trajectories to evaluate the best candidates. 

• Root mean square deviation (RMSD): RMSD is a resemblance measurement 

often employed in studying macromolecular structures and dynamics (Sargsyan, 

Grauffel, and Lim, 2017, pp.1518–1524). We analyzed RMSD to know how structures 

change over time compared to the initial point (Figure 9.16). 

 The free nNOS was stable at 57.2 ns with an RMSD of 2.6 Å, but it increased at 60 ns 

to reach 3.25 Å, gaining stability after 75.3 ns until the simulation was done with a 

slight oscillation.  

 

The 5VV0-ZINC000253501597 complex became steady at 56.5 ns and reached the 

RMSD of 2.1 Å with a fluctuation at the end. For the 5VV0-ZINC000000119434 

complex, the RMSD was unstable, suggesting the occurrence of a tremendous 

conformational modification during 86 ns, then it decreased from 3.2 Å to 2.09 Å. In 

addition, the 5VV0-ZINC000013485423 complex reached the steady-state at 37 ns and 

preserved its equilibrium mode until the end of the simulation with an RMSD of 2.3 Å. 

However, the 5VV0-ZINC000252517498 complex attained structural steadiness around 

17 ns with the RMSD of 2.5 Å.  Furthermore, the 5VV0-ZINC000018183294 complex 

showed a modest equilibrium between 40 and 50 ns and increased at 64 ns to reach 2.7 

Å but dropped down then remained steady after that until the 100 ns. 

 

Moreover, the 5VV0-ZINC000003649911 complex remained in the plateau state at the 

early stage of the simulation with an average backbone RMSD of 2 Å, then uncreased at 
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65 ns to reach 3 Å at 73 ns and decreased slowly to achieve the structural stability and 

the equilibrium state after that until the end of 100 ns. The 5VV0-ZINC000013485422 

complex showed a plateau state between 30 ns and 100 ns.  

 

The 5VV0-ZINC000001872131 complex gained steadiness since the beginning of the 

simulation with an RMSD around 2 Å with a minor fluctuation at the end, suggesting 

that the complex maintained its initial conformation throughout the simulation 

mechanism. Whereas the RMSD of the 5VV0-ZINC000001433941 complex 

progressively raised to 2.3 Å at 28 ns and persisted steady, but we mentioned a slight 

variability by the 100 ns. 

 

The same compounds were subject to 100 ns duration MD simulations with iNOS and 

eNOS to investigate whether the structures were stable through the simulations.  The 

RMSD of the free iNOS fluctuated between 2.5 and 3.6 Å when the RMSD of the free 

eNOS was around 3.5 and 4.6 Å. However, most of the iNOS and eNOS complexes 

were unstable with high RMSD profiles or a significant fluctuation during the 

simulations. 
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(a) 

 
(b) 

 
(c)  

 
 

Figure 9.16  Root mean square derivation (RMSD) curves vs. simulation time (100 ns) 

for free NOSs and complexes. (a) hiNOS (PDB ID:4CX7), (b) hnNOS (PDB ID: 

5VV0), and (c) heNOS (PDB: 6AV7). 
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• Root mean square fluctuation (RMSF): RMSF (Pitera, 2014, pp. 6526–6530) is 

a numerical measurement comparable to RMSD, but rather than revealing positional 

changes across complete structures over time, it measures individual residue flexibility 

or how much a specific residue fluctuates throughout a simulation (Martínez, 2015, p. 

e0119264).  

RMSF is displayed vs. residue number and reveals which AA in the protein influence 

the most to molecular motion structurally. Greater flexibility during the simulations is 

shown by higher RMSF values and generally correspond to loops. The free nNOS was 

used as a control to demonstrate how the inhibitors affect the enzyme structure.  

 

The presence of the most flexible areas of nNOS is shown by the high RMSF values. 

We observed that the average RMSF showed a noticed attenuation for some complexes 

like the 5VV0-ZINC000001872131 complex compared with the free enzyme, 

suggesting that the compound's binding reduces the flexibility. In some areas, the 

RMSF curves were similar but not totally matching except in the rigid areas, indicating 

that the fluctuated zones belong to the active site where the compounds behave in 

different manners (Figure 9.17). 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 9.17  Root mean square fluctuation (RMSF) curves vs. Residue number for free 

NOSs and complexes. (a) hiNOS (PDB ID:4CX7), (b) hnNOS (PDB ID: 5VV0), and 

(c) heNOS (PDB: 6AV7). 
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• The radius of gyration (Rg): The mass-weighted root mean square distance of a 

group of atoms from their mutual center of mass is generally described as the Rg. This 

analysis provides the absolute dimensions of the target (Kumar et al, 2014, p. 502618). 

If the protein is folded stably, its Rg value will usually remain stable and diminished. 

When the compound binds to a protein, the radius of gyration changes due to a 

conformational modification.  

 

The folding frequency of a protein is directly related to its compactness, which may be 

tracked using the advanced computational approach for determining the radius of 

gyration. Each structure's Radius of gyration diagram was recorded during the 

simulation duration to analyze structural deformation changes.  

 

The average score of the free NOSs and the complexes were around 1.2 and 1.5 Å, and 

they persisted in the plateau state excluding the 5VV0-ZINC000013485423 complex, in 

which a sudden drop occurred at the last 10 ns, which suggests a structural 

transformation (Figure 9.18). 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 9.18   Radius of gyration (Rg) curves vs. simulation time for free NOSs and 

complexes. (a) hiNOS (PDB ID:4CX7), (b) hnNOS (PDB ID: 5VV0), and (c) heNOS 

(PDB: 6AV7). 
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• Hydrogen bond: One of the essential biological mechanisms is hydrogen 

bonding. It is indispensable to the structure and function of many important molecules 

and is usually needed for the protein-ligand complexe's stability. 

 The H-bonding network is required in enzymatic activity because it allows nNOS 

substrates or inhibitors to be positioned over the heme. We found that the complex 

5VV0-ZINC000252517498 demonstrated a decrease in the H-bond interaction, which 

correlates with the RMSD results. Some complexes expressed more stable H-bond 

interactions, such as the 5VV0-ZINC000001433941 complex. 

 

 However, the 5VV0-ZINC000253501597 complex showed the minimum H-bond 

interactions at 100 ns (Figure 9.19), so we confirmed that the fewer hydrogen bonds 

there are, the more variations could be noticed, which ensure the RMSD values (Figure 

9.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 138 

(a) 

 
(b) 

 
(c) 

 
 

Figure 9.19   Hydrogen bond curves vs. simulation time for free NOSs and complexes. 

(a) hiNOS (PDB ID:4CX7), (b) hnNOS (PDB ID: 5VV0), and (c) heNOS (PDB: 

6AV7). 
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• Interaction study after MD simulations: To investigate the interactions between 

the compounds and nNOS after performing 100 ns MD simulation, we loaded the 

trajectories on VMD software, and we retrieved the last frame from each simulation. 

The 3D and 2D presentations of the chemical interactions were generated using 

BIOVIA DS.  

The final structures of nNOS complexes after MD simulations are shown in Figures 

9.20, 9.21, and 9.22. The complex 5VV0-ZINC000013485422 formed several 

interactions with nNOS. including pi-alkyl interactions with TRP 414, PHE 589, and 

PHE 709; alkyl interactions with ALA 417, ARG 601; pi-sigma interaction, and 

hydrogen bond with ARG 601, which maintains ZINC000013485422 attached to nNOS 

and stable in the active site. 
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Figure 9.20  3D and 2D presentation of the chemical interactions after MD simulations 

of nNOS complexes ((a) 5VV0-ZINC000253501597, (b) 5VV0-ZINC000001872131, 

(c) 5VV0-ZINC000000119434) are represented in the left and right panels, respectively. 
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Figure 9.21  3D and 2D presentation of the chemical interactions after MD simulations 

of nNOS complexes ((a) 5VV0-ZINC000003649911, (b) 5VV0-ZINC000013485422, 

(c) 5VV0-ZINC000001433941) are represented in the left and right panels, respectively. 
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Figure 9.22  3D and 2D presentation of the chemical interactions after MD simulations 

of nNOS complexes ((a) 5VV0-ZINC000013485423, (b) 5VV0- ZINC000018183294, 

(c) 5VV0-ZINC000252517498) are represented in the left and right panels, respectively. 
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10. CONCLUSION 

Nitric oxide as a free radical can regulate many physiological and pathological 

mechanisms. NO roles depend on the simulation of NOS in the enzymatic pathway, 

which converts the substrate L-Arg to L-citrulline, and NO. NOS activity necessitates 

the dimerization of enzyme monomers in addition to some cofactors present in each 

monomer, including reduced NADPH, FAD, FMN, iron protoporphyrin IX, BH4, and 

CaM. There are 3 isoforms of NOS (nNOS, iNOS, and eNOS) which catalyze the same 

reaction and share a high structure and sequence identity (50-60%) but have different 

regulation mechanisms. 

 

In our research, we focused on the neuronal isoform (nNOS) inhibition; it is well known 

that the overexpression of nNOS is the leading cause of neurodegenerative disease, and 

due to the tremendous similarity of nNOS’s binding site with the two other isoforms, 

targeting nNOS has always been a tremendous challenge in the drug discovery.  

 

The vast number of people affected by neurodegenerative diseases would strain 

societies and their healthcare systems. There are over 600 NDs, according to the 

National Institute of Neurological Disorders and Stroke (NINDS), comprising AD, PD, 

HD, and ALS.  

 

In certain cases, a particular diagnosis can only be made after analyzing brain tissue 

after death. Since autopsies are often not performed, there are apparent issues when 

using mortality data like death reports whether the neurologic disorder is not identified 

as a primary or secondary cause of death.  

 

ND were found to contribute 12% of the total deaths globally conferring to the WHO 

Neurological disorders report, Chapter 2, 2015 (https://www.who.int/). AD is still the 

most common form of dementia affecting at least 27 million people and responsible for 

at least two-thirds of neurological disorders in the population aged 65 and above.  
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Unfortunately, there is almost no cure for NDs except for some symptomatic treatments. 

It is acknowledged that discovering a new drug is time-consuming and bringing a new 

drug to market is very expensive, and not all research leads to success; in fact, just one 

of 1000 drug candidates moves to phase 1 clinical trial, and only one of 5 drugs moves 

from phase 1 trials to the market.  CADD became a helpful tool in drug discovery, 

compensating for the disadvantage of the classical methodologies despite its limitations. 

In this study, we used SBDD strategies to develop a new inhibitor against nNOS. 

 

First, we started by the validation of NOS as a drug target. We compared the three 

isoform structures and sequence using BIOVIA DS and confirmed the similarity, which 

causes the difficulty to develop a new inhibitor against nNOS, which must be efficient 

and don’t interfere with iNOS and eNOS activities (selective). Also, we evaluated the 

binding affinities of the known inhibitors, which have been compared with the 

experimental binding affinities values to select the elite NOS structures that can be used 

in the following stages of the research. We exploited structure-based virtual screening 

technic to narrow the vast list of compounds retrieved from several databases. We 

employed AutoDock Vina, a fast molecular docking tool, to select the top compounds 

which were selective for nNOS over the other isoforms in addition to their high affinity. 

These probable lead compounds were subject to another docking method to confirm 

AutoDock Vina’s scores, so we got a new refined predictable lead compound list. 

 

The top-ranked probable lead compounds were analyzed using the ADMET prediction 

tool to evaluate their drug-likeness profile. It is known that lipophilicity and solubility 

are the two most important molecular qualities in medication absorption. Lipinski rule 

was used to estimate the oral bioavailability of the compounds, which depends on their 

physicochemical properties. We know that nNOS is predominantly localized in the 

CNS. Therefore, the inhibitors should be BBB+. The BBB consists of endothelial cells 

with tight connections that block external toxins from entering the brain that protect it 

and maintain its ideal physiological state. However, according to the analysis of the best 

compounds generated from docking results, we found that most of the compounds were 

BBB- which have been rejected.  
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Finally, the nine compounds that passed this filter were subject to 100 ns run MD 

simulation to evaluate the complexes' stability using NAMD software. The compound 

ZINC000013485422 demonstrated high binding mode stability with nNOS during the 

100 ns MD run with a good ADMET profile, which may be a promising lead 

compound. ZINC000013485422 can be optimized in silico and in vitro to reach the 

appropriate selectivity as well as the desired potency to get approval for the clinical 

trials and cure or delay neurodegeneration in the coming years. 
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APPENDIX A 

 
Script 1 ‘AutoDock.py’: The script used for Autodock vina (Source and authorization 

from: https://github.com/sarisabban). 

 
#!/usr/bin/python 
 
import os 
import sys 
import math 
#import numpy 
#import pymol 
import argparse 
import itertools 
#from pymol.cgo import * 
 
def Box(pX, pY, pZ, x, y, z): 
 ''' 
 Sets up the search box within the protein, which is 
 used in the docking protocol 
 ''' 
 pymol.cmd.pseudoatom('Position', pos=[pX, pY, pZ]) 
 ([X, Y, Z],[a, b, c]) = pymol.cmd.get_extent('Position') 
 pymol.cmd.show('spheres', 'Position') 
 minX = X+float(x) 
 minY = Y+float(y) 
 minZ = Z+float(z) 
 maxX = X-float(x) 
 maxY = Y-float(y) 
 maxZ = Z-float(z) 
 boundingBox = [BEGIN, LINES, 
  VERTEX, minX, minY, minZ, 
  VERTEX, minX, minY, maxZ, 
  END] 
 boxName = 'Box' 
 pymol.cmd.load_cgo(boundingBox, boxName) 
 return(boxName) 
 
def download(filename): 
 ''' 
 Download, unzip, combine, renumber ligands 
 ''' 
 with open(filename, 'r')as infile: 
  for line in infile: 
   try: 
    namegz = line.split()[-1] 
    name = line.split()[-1].split('gz')[0][:-1] 
    get = line.split()[1] 
    wget = 'wget {} -O {}'.format(get, namegz) 
    gunzip = 'gunzip {}'.format(namegz) 
    cat = 'cat {} >> temp'.format(name) 
    os.system(wget) 
    os.system(gunzip) 
    with open(name) as f: 
     first = f.readline() 
    if first.split()[0] == 'MODEL': 
     os.system(cat) 
    else: 
     os.system('echo "MODEL        1" >> temp') 
     os.system(cat) 
     os.system('echo "ENDMDL" >> temp') 
   except: 
    with open('error', 'a') as e: 
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     e.write(line) 
 count = 0 
 with open('temp', 'r') as infile: 
  with open('temp2', 'a') as outfile: 
   for line in infile: 
    if line.startswith('MODEL'): 
     count += 1 
     outfile.write('MODEL {:15}\n'.format(count)) 
    else: 
     outfile.write(line) 
 os.system('ls *.pdbqt | grep -v receptor.pdbqt | xargs rm') 
 os.remove('temp') 
 os.rename('temp2', 'ZINC15.pdbqt') 
 
def receptor(filename): 
 ''' 
 Prepares the receptor by first removing all the water molecules from 
 the protein's structure, then adds only the polar hydrogens, then 
 it exports the resulting structure and converts it to a .pdbqt file. 
 ''' 
 cmd.load(filename) 
 cmd.remove('resn HOH') 
 cmd.h_add(selection='acceptors or donors') 
 cmd.save('protein.pdb') 
 os.system('babel protein.pdb temp.pdbqt -xh') 
 os.system('grep ATOM temp.pdbqt > receptor.pdbqt') 
 os.remove('temp.pdbqt') 
 os.remove('protein.pdb') 
 
def split(filename, direct, prefix, limit): 
 ''' 
 Separates a .pdbqt file with multiple molecules into separate files with 
 singles molecules segmented over sub directories. 
 ''' 
 with open(filename) as infile: 
  count = 0 
  in_dir_count = 0 
  dircount = 0 
  for dircount in itertools.count(): 
   for line in infile: 
    if line.strip() == 'MODEL{:16}'.format(count+1): 
     directory = os.path.join(direct, '{}'.format(dircount+1)) 
     os.makedirs(directory, exist_ok=True) 
     name = '{}_{:09}.pdbqt'.format(prefix, count+1) 
     out = os.path.join(directory, name) 
     with open(out, 'w') as outfile: 
      for line in infile: 
       if line.strip() == 'ENDMDL': 
        break 
       if line.split()[0] == 'REMARK' and\ 
           line.split()[1] == 
'Name': 
        NewName = os.path.join(directory,\ 
          
 '{}.pdbqt'.format(line.split()[3])) 
       outfile.write(line) 
     os.rename(out, NewName) 
     count += 1 
     in_dir_count += 1 
     if in_dir_count >= limit: 
      in_dir_count = 0 
      print('[+] Finished directory {}'.format(directory)) 
      break 
   else: break 
 print('----------\n[+] Done') 
 
def PBS(pX, pY, pZ, x, y, z, seed, exhaust, out, CPU, array, email): 
 ''' 
 Write a PBS file for HPC virtual screening 
 ''' 
 if out == 'True' or out == 'true': 
  output = '"out_$n"' 
 elif out == 'False' or out == 'false': 
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  output = '/dev/null' 
 with open('dock.pbs', 'w') as dock: 
  dock.write('#!/bin/bash\n\n') 
  dock.write('#PBS -N Docking\n') 
  dock.write('#PBS -m e\n') 
  dock.write('#PBS -M {}\n'.format(email)) 
  dock.write('#PBS -q thin_1m\n') 
  dock.write('#PBS -l select=1:ncpus=24:ompthreads=24\n') 
  dock.write('#PBS -j oe\n') 
  dock.write('#PBS -J 1-{}\n\n'.format(array)) 
  dock.write('cd $PBS_O_WORKDIR\n\n') 
  dock.write('mkdir -p ../Ligands_Completed/${PBS_ARRAY_INDEX}\n') 
  dock.write('process() { local n=${1##*/}\n') 
  dock.write('\t./vina \\\n') 
  dock.write('\t\t--receptor receptor.pdbqt \\\n') 
  dock.write('\t\t--ligand "$1" \\\n') 
  dock.write('\t\t--out {} \\\n'.format(output)) 
  dock.write('\t\t--log "log_$n" \\\n') 
  dock.write('\t\t--exhaustiveness {} \\\n'.format(exhaust)) 
  dock.write('\t\t--cpu {} \\\n'.format(CPU)) 
  dock.write('\t\t--seed {} \\\n'.format(seed)) 
  dock.write('\t\t--center_x {} \\\n'.format(pX)) 
  dock.write('\t\t--center_y {} \\\n'.format(pY)) 
  dock.write('\t\t--center_z {} \\\n'.format(pZ)) 
  dock.write('\t\t--size_x {} \\\n'.format(x)) 
  dock.write('\t\t--size_y {} \\\n'.format(y)) 
  dock.write('\t\t--size_z {} \\\n'.format(z)) 
  dock.write('''\t\t| awk -v name="$n" '$1 == "1" {print name "\\t" $0;exit}' >> 
Docks_${PBS_ARRAY_INDEX} \\\n''') 
  dock.write('\t\t&& rm log_$n \\\n') 
  dock.write('\t\t&& mv "$1" ../Ligands_Completed/${PBS_ARRAY_INDEX}\n') 
  dock.write('}\n') 
  dock.write('export -f process\n') 
  dock.write('''find ../Ligands/${PBS_ARRAY_INDEX}/ -type f -print0 | xargs -0 -P 24 -I{} bash 
-c 'process "$1"' _ {}''') 
 
def Kd_to_dG(Kd): 
 Kd = float(Kd) 
 dG = 0.0019872036*298*numpy.log(Kd) 
 print('{} Kcal/mol'.format(round(dG, 2))) 
 
def dG_to_Kd(dG): 
 dG = float(dG) 
 Kd = math.e**(dG/(0.0019872036*298)) 
 print('{:0.2e} dG'.format(Kd)) 
 
parser = argparse.ArgumentParser(description='Prep ligands for AutoDock Vina') 
parser.add_argument('-r', 
     '--receptor', 
     nargs='+', 
     help='Prep and convert protein receptor from PDB to PDBQT') 
parser.add_argument('-b', 
     '--box', 
     nargs='+', 
     help='Draw search box') 
parser.add_argument('-d', 
     '--download', 
     nargs='+', 
     help='Download, unzip, renumber, combine ligands') 
parser.add_argument('-s', 
     '--split', 
     nargs='+', 
     help='Split a file with multiple models into single files\ 
       segmented into directories') 
parser.add_argument('-j', 
     '--job', 
     nargs='+', 
     help='Write the PBS file for HPC virtual screaning') 
parser.add_argument('-c', 
     '--combine', 
     nargs='+', 
     help='Sort and combine the docking results into a file') 
parser.add_argument('-Kd', 
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     '--Kd_to_dG', 
     nargs='+', 
     help='Convert Kd to delta G') 
parser.add_argument('-dG', 
     '--dG_to_Kd', 
     nargs='+', 
     help='Convert delta G to Kd') 
args = parser.parse_args() 
 
def main(): 
 if args.receptor: 
  receptor(sys.argv[2]) 
 elif args.box: 
  pymol.cmd.load(str(sys.argv[2])) 
  pymol.cmd.extend('Box', Box) 
 elif args.download: 
  download(sys.argv[2]) 
 elif args.split: 
  split(sys.argv[2], 'Ligands', 'model', int(sys.argv[3])) 
 elif args.job: 
  PBS(sys.argv[2], # pX 
   sys.argv[3], # pY 
   sys.argv[4], # pZ 
   sys.argv[5], # x 
   sys.argv[6], # y 
   sys.argv[7], # z 
   sys.argv[8], # Seed 
   sys.argv[9], # Exhaustiveness 
   sys.argv[10], # Output 
   sys.argv[11], # CPUs    
   sys.argv[12], # Array 
   sys.argv[13]) # Email 
 elif args.combine: 
  os.system('cat {}/Docks_* | sort -nk 3 > Result'.format(sys.argv[2])) 
 elif args.Kd_to_dG: 
  Kd_to_dG(sys.argv[2]) 
 elif args.dG_to_Kd: 
  dG_to_Kd(sys.argv[2]) 
 
if __name__ == '__main__': main() 
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