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ANALYSIS OF THE STOCHASTIC SKIVING STOCK PROBLEM

ABSTRACT

This study addresses the stochastic version of the one-dimensional skiving stock

problem (SSP), a rather recent combinatorial optimization challenge. The tradi-

tional SSP aims to determine the optimal structure that skives (combines) small

items of various sizes side-by-side to form as many large items (products) as possible

that satisfy a target width. This study considers a single-product and multi-product

cases for the stochastic SSP. First, two-stage stochastic programming model is pre-

sented to minimize the total cost for the single product stochastic SSP which is under

random demand. Integration of the Column Generation, Progressive Hedging Al-

gorithm, and Branch and Bound is proposed where Progressive Hedging Algorithm

is embedded in each node of the search tree to obtain the optimal integer solution.

Next, the single product stochastic model is extended to the multi-product, multi-

random variable model with the additional costs as a large size complex model.

To examine this large-sized stochastic NP-hard problem, a two-stage stochastic

programming approach is implemented. Moreover, as a solution methodology, this

problem is handled in two phases. In the first phase, the Dragonfly Algorithm

constructs minimal patterns as an input for the next phase. The second phase

executes a Sample Average Approximation method that provides solutions for the

stochastic production problem with large size scenarios. Results indicate that the

two-phase heuristic approach provides good feasible solutions under numerous sce-

narios without requiring excessive execution time. Finally, a multi-objective case for

the deterministic SSP is analyzed where the objectives are minimization of the trim

loss (waste), number of items in each product by considering the quality aspect,

and number of pattern changes as the set-up. Lexicographic method is preferred

for the multi-objective approach where preferences are ranked according to their

importance. Column generation and Integer programming are further used to solve

the multi-objective problem. In addition, a heuristic is proposed for the same multi-

objective problem.
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Keywords : Skiving Stock Problem, Stochastic Programming, Column

Generation, Progressive Hedging Algorithm, Dragonfly Algorithm, Multi-

objective, Sample Average Approximation.
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STOKASTİK STOK BİRLEŞTİRME PROBLEMİ ANALİZİ

ÖZET

Bu çalışma, kombinatoriyal olması nedeni ile en iyileme zorluğu içeren tek boyutlu

stok birleştirme probleminin (SBP) stokastik versiyonunu ele almaktadır. Geleneksel

SBP, hedeflenen bir genişliği karşılayan, mümkün olduğunca çok sayıda büyük öğe

(ürün) oluşturmak için çeşitli boyutlardaki küçük öğeleri yan yana birleştiren opti-

mal bir yapıyı (planı) bulmayı amaçlar. Bu çalışma, stokastik SBP için tek ürünlü

ve çok ürünlü durumları ele almaktadır. İlk olarak, rastgele talep altındaki tek

ürünlü stokastik SBP için iki aşamalı stokastik programlama modeli sunulmuştur.

Çözüm yöntemi olarak, kolon üretimi (Column Generation), aşamalı sınırlama (Pro-

gressive Hedging) ve dal sınır algoritmaları entegrasyonu önerilmiştir. Bu önerilen

yöntemde kolon üretimi ile minimal bir birleştirme şablonu kümesi elde edilmiş

olup, bu set kullanılarak, en iyi tamsayılı çözüm elde etmek için dal sınır algorit-

ması arama ağacının her düğümünde, aşamalı sınırlama algoritması çalıştırılmıştır.

Çalışmanın bir sonraki bölümünde, tek ürünlü stokastik model, çok ürünlü, çoklu

rasgele değişken içeren ve ek maliyetler ihtiva eden büyük boyutlu karmaşık bir

model haline getirilmiştir. Bu büyük boyutlu stokastik zor karmaşıklık sınıfındaki

(NP hard) problem için iki aşamalı bir stokastik programlama yaklaşımı uygu-

lanmıştır. Ayrıca bir çözüm yöntemi olarak bu sorun iki aşamada ele alınmaktadır.

İlk aşamada, Yusufçuk Algoritması bir sonraki aşama için girdi olarak minimal

birleştirme şablonları oluşturur. İkinci aşama, çok sayıda senaryo içeren stokastik

probleme, aday çözümler sunan örneklem ortalaması yaklaşımı yöntemini yürütür.

Sonuçlar, iki aşamalı sezgisel yaklaşımın, çok sayıda senaryo altında, aşırı uygulama

süresi gerekmeksizin iyi çözümler sağladığını göstermektedir. Son olarak, deter-

ministik stok birleştirme problemi için çoklu amaçlı bir örnek olay ele alınmıştır;

bu amaçlar, fire en küçüklenmesi, birleştirme sebebi ile ürünlerde oluşan kaynak

sayısının en küçüklenmesi ve üretim esnasında toplam kullanılan şablon sayısının

en küçüklenmesi olarak belirlenmiştir. Bu çok amaçlı problem için tercihlerin önem
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derecesine göre sıralandığı, sıralama (Lexicographic) yöntemi tercih edilmiştir. Bu

çok amaçlı problemin çözümünde, kolon üretme ve tamsayı programlama kombi-

nasyonunun yanı sıra bir de sezgisel yöntem önerilmiş ve bu iki yöntemin sonuçları

karşılaştırılmıştır.

Anahtar Sözcükler: Stok Birleştirme Problemi, Stokastik Programlama,

Kolon Üretme, Aşamalı Sınırlama Algoritması, Yusufçuk Algoritması,

Çok Amaçlı Yaklaşım, Örneklem Ortalaması Yaklaşımı
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1. INTRODUCTION

The Skiving Stock Problem (SSP) has been denoted as a derivative of the Cutting

Stock Problem (CSP) by Zak [Zak, 2003] in terms of having similar inputs and

solution approaches. The skiving process is a relatively recent technology that joins

small items (auxiliary rolls) by combining, gluing, welding, or sewing to produce

large items (products) that satisfy a minimum threshold width (Fig. 1.1). It aims,

at large, to obtain as many large items as possible [Zak, 2003]. There are several

real-life applications of the skiving process, such as the paper industry in which

several narrow rolls are combined to form wider rolls [Zak, 2003]. In gear belt

production, small rectangular leftover pieces forming after the cutting process are

sewn to fabricate large rectangles [Arbib et al., 2002]. Other examples include

pipe production, construction of firefighting systems [Ágoston, 2019], and spectrum

aggregations in cognitive radio networks [Martinovic et al., 2016] in an SSP structure.

The skiving process is especially applicable in industries with a high raw material

waste rate [Arbib et al., 2002].

Figure 1.1: Illustration of Skiving Process

The primary purpose of the pure SSP is to construct the set of optimal pattern

combinations that maximizes the amount of the desired output under availability

1



constraints for small items. If a product allows being produced through skiving,

it is possible to minimize the waste of leftovers and raw materials. Due to its

NP-hard structure, enumerating all possible minimal skiving patterns is difficult,

especially for large-sized problems. The related literature offers a variety of solution

approaches such as pattern-based models [Zak, 2003], arc flow models based on graph

theory [Martinovic et al., 2020], or assignment models [Martinovic et al., 2016]. In

terms of the methodology, the integration of Column Generation (CG) and Branch

and Bound (B&B) is the most common approach for the Integer Programming

(IP) structure of pure SSP’s mathematical model [Zak, 2003]. Due to the excessive

execution time required to reach an optimal solution for large-sized problems and

the curse of dimensionality, the majority of the proposed solution methods involve

heuristics. These heuristic methods for the SSP aid in obtaining integer solutions

after solving the linear relaxation [Wang et al., 2020] and constructing the minimal

pattern sets as an input for the mathematical model [Chen et al., 2019]. While

metaheuristic optimization methodologies are highly successful in similar problems

such as the CSP, their performance on the SSP remains considerably unexplored in

the literature.

The SSP literature overwhelmingly solves the deterministic SSP, assuming that the

decision-maker has perfect information on all parameters. This assumption leads

to unrealistic results as real-world problems involve a great deal of uncertainty in

various parameters such as the demand for products, resource availability levels,

yields, set-up and processing times, or costs. The deterministic planning by the

sole consideration of expected values fails to provide an adaptive decision that can

minimize the risk caused by the volatility of these parameters. While many studies

have investigated the stochastic version of CSP where the demand [Beraldi et al.,

2009; Alem et al., 2010] or the yield [Kazemi Zanjani et al., 2013] are random

variables, the literature considerably lacks the stochastic solution approaches for

the SSP.

First, in chapter 5, in order to explore the stochastic version of the SSP which has

2



not been explored before in the literature, the pure SSP is extended by including

the production cost driven by the patterns used in the skiving process and the

random demand. A cost minimization model for the stochastic SSP is formulated,

and a new solution methodology is implemented for this unexplored stochastic SSP.

We employ a two-stage stochastic programming (SP) with a recourse model [Birge

and Louveaux, 2011; Kall et al., 1994; Shapiro et al., 2014] to the problem. In

this two-stage approach, skiving process (production) decisions are made before

the demand occurs. This approach is called “here-and-now” in the literature as

opposed to “wait-and-see” or ”scenario analyses” where decisions are made after

the values of random values are revealed [Alem et al., 2010; Beraldi et al., 2009;

Birge and Louveaux, 2011; Wets, 2002]. Replications of minimal skiving patterns

are the scenario-independent first-stage decision variables, as these decisions are

made before any scenario occurs. The underproduction and overproduction amounts

constitute the scenario-dependent decision variables at the second stage. These

variables represent the recourse action that ultimately must be taken when any

possible scenario takes place.

The proposed solution methodology for the stochastic SSP includes the integra-

tion of Column Generation Algorithm (CG) [Gilmore and Gomory, 1961], Pro-

gressive Hedging Algorithm (PHA) [Rockafellar and Wets, 1991], and Branch and

Bound(B&B) [Scheithauer, 2017]. In the solution methodology, the stochastic prob-

lem is decomposed into deterministic subproblems according to the number of sce-

narios. For each deterministic subproblem, the CG is used to obtain the minimal

pattern set with minimum trim loss. In other words, the minimal pattern set having

the minimum production cost is obtained for each deterministic subproblem. Given

these patterns, the PHA obtains the solution for the LP relaxation of the stochastic

SSP. Finally, this solution is discretized using B&B, where PHA solves the stochastic

model at every node. Finally, the results of the proposed solution methodology for

the stochastic SSP are presented.

Next, in chapter 6 the stochastic SSP presented in chapter 5 is extended in sev-

3



eral dimensions by including i) the set-up cost for each pattern change, ii) the

raw material costs of the required small items, iii) the required quantities of small

items to skive. Furthermore, we implement a heuristic solution methodology for

the multi-product SSP under a stochastic environment. We propose a new mathe-

matical model for weakly heterogeneous large items under stochastic demand and

stochastic waste rate, and employ a two-stage stochastic programming (SP) with a

recourse model [Birge and Louveaux, 2011; Kall et al., 1994; Shapiro et al., 2014]

for this stochastic version of the SSP problem. In the two-stage stochastic program-

ming approach, skiving process (production) decisions are made before the demand

occurs. Another independent random variable at this stage is the waste rate for

overall production. Raw material quantities and replication of each skiving pattern

are the scenario-independent first-stage decision variables. The underproduction

and overproduction amounts constitute the scenario-dependent decision variables at

the second stage. These variables represent the recourse action that must be taken

after any possible scenario takes place. Moreover, we develop a two-phase solution

methodology where the first phase generates the minimal skiving pattern set, and

the second phase aims to minimize production costs. This two-phase procedure

runs recursively until a certain calculated target production amount can be pro-

duced. The first phase implements the Dragonfly Algorithm (DA) [Mirjalili, 2016]

and generates minimal skiving patterns. The output of this first phase serves as an

input for the second phase, where we implement numerous scenarios for the ran-

dom variable combinations and employ the Sample Average Approximation (SAA)

method for the two-stage stochastic programming model to obtain a solution for the

stochastic SSP [Shapiro et al., 2014; Shapiro and Homem-de Mello, 1998].

It should be emphasized that we do not mention the terms ”two-phase” and ”two-

stage” interchangeably. The term ”two-phase” belongs to the overall solution pro-

cedure. The first phase corresponds to the DA that generates the skiving patterns.

The second phase indicates the two-stage stochastic programming with a recourse

action model that minimizes production costs. The first stage of the stochastic

programming model makes the production decision before any demand occurs, and

4



the second stage of the stochastic programming penalizes the overproduction and

underproduction amounts after the demand occurs.

While this study is a single-objective analysis that minimizes total production costs,

it also aims to maintain an acceptable trim loss level as the objective of the DA in

the first phase.

A multi-objective version of the SSP has not been investigated in the literature

yet. However it is important to explore a multi-objective version of the SSP where

there are several competing objectives for the paper production industry. Therefore,

we extend pure SSP to a multi-objective problem where we minimize the total

trim loss (waste), number of items used in a product, and total number of set-ups

simultaneously, while satisfying product demand. Trim loss can be explained as

the unused part (waste part) between the pattern width used in the production and

threshold width of the product. It is important to use the minimum number of items

in a product, because the number of welds in a pattern which is used to produce a

product, effects the quality of the product. Briefly, if the number of welds (number

of items) in a product increases, the quality of the product becomes poor. Finally,

set-up can be explained as the pattern change in the skiving process. We used

lexicographic method [Marler and Arora, 2004] to find efficient (Pareto optimal)

solutions to this multi-objective problem. Since raw material is very expensive in

the paper production or printing industry, the order of importance of the objectives

can be denoted as the total trim loss >> number of items >> total set-up number

according to decision makers. CG and IP are used together in a lexicographic method

to solve the multi-objective problem. In addition, we propose a heuristic to obtain

a feasible solution for the multi-objective problem where the Dragonfly Algorithm

(DA) [Mirjalili, 2016] is integrated with a type of constructive heuristic. DA finds

the minimal patterns with the minimum trim loss and the minimum number of

items, and then constructive heuristic [Poldi and Arenales, 2009] replicates efficient

patterns which satisfy the demand while minimizing the number of set-ups.
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The organization of this dissertation is as follows: Chapter 2 elaborates the rele-

vant literature, and chapter 3 overviews the standard definition and mathematical

formulation for the pure SSP. In chapter 4, a general formulation of the two-stage

stochastic programming with recourse action is presented. Integration of the Col-

umn generation, Progressive Hedging Algorithm, and Branch and Bound for the

stochastic SSP is demonstrated in chapter 5. A two-phase pattern generation and

production planning procedure is proposed for the extended version of the stochastic

SSP in chapter 6, followed by lexicographic method for the multi-objective version

of the SSP for which CG and IP are used to solve in chapter 7. Moreover, a heuristic

approach and the application of lexicographic method are proposed for the multi-

objective version of the SSP in chapter 7. Finally, conclusions are given in chapter 8.
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2. LITERATURE REVIEW

The SSP was first introduced by Johnson et al. [Johnson et al., 1997] as an in-

tegral part of the CSP. They combined the CSP and the SSP into one problem

as the cutting-and-skiving stock problem (CSSP), in which a two-stage process is

used to model the cutting of large items and reusing of leftovers. They proposed a

pattern-based mathematical formulation and a commercial software (MAJIQTRIM)

in which heuristics and linear programming are utilized to solve the CSSP. The SSP

was not recognized as a stand-alone problem until Zak [Zak, 2003] conducted a

theoretical analysis comparing the SSP and the CSP models. Zak’s study was the

first to prove that the SSP was not the dual form of CSP. According to Zak [Zak,

2003], the SSP shares some input data similarities with the CSP in terms of item

widths, the customer demand, and the scalar knapsack capacity. However, the SSP

and the CSP have different pattern matrices because of having different structures.

The CSP follows the structure of a set packing problem, whereas the SSP follows

the structure of a set covering problem [Wäscher et al., 2007]. In the light of these

findings, Zak [Zak, 2003] reported that the SSP is not the dual form of the CSP

and introduced the SSP as an independent challenge in Combinatorial Optimization

[Zak, 2003; Martinovic and Scheithauer, 2018]. Martinovic and Scheithauer [Mar-

tinovic and Scheithauer, 2019, 2016a,b] denoted that the SSP is structurally closer

to the Dual Bin Packing Problem (DBPP), also known as a special type of the Bin

Covering Problem (BCP). Nonetheless, the SSP has differences with DBPP both in

formulation and solution approaches [Zak, 2003]. Martinovic et al. [Martinovic and

Scheithauer, 2016a] pointed these differences as the heterogeneity level of small-item

sizes and their availabilities based on the study by Wäscher et al. [Wäscher et al.,

2007]. According to this study [Wäscher et al., 2007], the SSP can be associated with

having weakly heterogeneous small items, while the DBBP includes strongly het-

erogeneous small items. Additionally, the DBPP formulation considers each type
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of small item’s availability as equal to 1 [Assmann et al., 1984]. Zak [Zak, 2003]

extended this problem by incorporating higher availability values for small items.

The mathematical formulations and solution approaches of the DBPP are based on

item-oriented models and heuristics.

Similar to the CSP, one challenge in the SSP is obtaining integer solutions for large

problems. As a result, two-phase approaches are common where the first-phase

solves a linear relaxation of the problem and the second-phase discretizes the so-

lution. Arbib and Marinelli [Arbib et al., 2002] solved the CSSP with trim loss

minimization in gear-belt production with a Column Generation (CG) [Gilmore

and Gomory, 1963] and a Branch-and-Bound (B&B) algorithm. They extended

the single-period CSSP model proposed in [Arbib et al., 2002] into a multi-period

problem in which a B&B algorithm is used to solve a small-sized CSSP [Arbib and

Marinelli, 2005]. Similar to this study, Zak [Zak, 2003] proposed CG [Gilmore and

Gomory, 1961] for the linear relaxation of the problem and a B&B algorithm to

obtain integer solutions for SSP. In the meantime, the pattern-based model and

column generation (CG) proposed by Gilmore and Gomory [Gilmore and Gomory,

1961, 1963] for large-scale CSP are also suitable for the SSP [Zak, 2003]. Besides,

the pure SSP can be categorized as an output maximization problem with the per-

spective of the study by Wäscher et al. [Wäscher et al., 2007].

Recently, Ágoston [Ágoston, 2019] investigated 1D-CSP with a skiving option in

which single-sized pipes are cut into smaller-sized pipes, and residual parts can be

welded together using the skiving process to obtain extended pipes to aid in the fire

fighting system. For safety reasons, there should be at most one welding procedure

on the pipe. Ágoston further modeled the CSP as a Mixed Integer Programming

(MIP) model, including sequential cutting and welding patterns, and proposed a

three-stage algorithm that is used to minimize the stock level and different pattern

costs.

While metaheuristics are not an explored field in the SSP realm, they have been
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widely implemented for similar combinatorial problems such as the CSP. Well-known

metaheuristics in this area are Tabu Search [Álvarez-Valdés et al., 2002], Simulated

Annealing (SA) [Chen et al., 1996; Lai and Chan, 1997; Jahromi et al., 2012], Ant

Colony Optimization (ACO) [Ducatelle and Levine, 2001], and its variants or hy-

bridizations [Levine and Ducatelle, 2004], Genetic Algorithm [Hinterding and Khan,

1993; Leung et al., 2001; Lu et al., 2013], Genetic Symbiotic Algorithm [Golfeto et al.,

2009], Evolutionary Programming (EP) [Liang et al., 2002], and Hybrid Chemical

Reaction Optimization (CRO) [Yang et al., 2017].

The studies mentioned above involve numerical implementations and real-world ap-

plications of the SSP. Nevertheless, the literature also includes theoretical analy-

sis. Martinovic is one of the most important pioneers of theoretical analysis of the

SSP literature [Martinovic and Scheithauer, 2016a,b; Martinovic et al., 2016; Mar-

tinovic and Scheithauer, 2017, 2018, 2019; Martinovic et al., 2020]. In addition to

the pattern-based SSP model, Martinovic and Scheithauer [Martinovic and Schei-

thauer, 2016a] presented a graph theory-based arc flow model for the SSP. They

further investigated continuous relaxations of this model to prove equivalences with

the pattern-based, assignment, and one-stick models. In a latter study, Martinovic

and Scheithauer [Martinovic and Scheithauer, 2016b] formalized the gap between

the continuous relaxation value and the optimal objective function value. They also

proposed a modified version of the best-fit algorithm to improve the upperbound

of the optimality gap for the divisible case. Moreover, they investigated the proper

relaxation concept using the proper pattern set which gives tighter bounds than

continuous relaxation [Martinovic and Scheithauer, 2016b]. They analyzed inte-

ger round-down property (IRDP), modified integer round-down property (MIRDP),

and non-integer round-down property (non-IRDP) in discretizing the obtained so-

lutions [Martinovic and Scheithauer, 2016b]. Furthermore, Martinovic et al. [Mar-

tinovic et al., 2020] improved the standard arc flow model, which was previously

presented in [Martinovic and Scheithauer, 2016a] by incorporating reversed loss arcs

and minimizing the number of arcs, which dramatically reduced the execution time.

They presented a new theoretical approach based on hypergraph matching to develop
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a relaxation by evaluating the proper gap for skiving stock instances. They benefited

from the polyhedral theory to characterize IRDP instances for the SSP [Martinovic

and Scheithauer, 2018].

In addition to theoretical analysis, Martinovic et al. [Martinovic et al., 2016] focused

on the spectrum aggregation problem in cognitive radio networks, as a real-world

application of the SSP. This problem involves allocating spectrum resources of radio

networks where primary licensed users occupy predetermined parts of a frequency

band. The available bandwidths, spectrum holes, were too small to meet the band-

width requirements of secondary users. They investigated the aggregation of empty

spectrum holes to obtain a large-enough bandwidth for secondary users under hard-

ware limitations [Martinovic et al., 2016]. They compared the results and computa-

tional complexities of Zak’s standard pattern-based SSP model, an arc flow model,

and an assignment model. According to numerical computations, the assignment

model remarkably reduced the computational complexity.

The stochastic SSP literature is not thoroughly investigated, and it might be possible

to use solution methods that have previously been employed on the CSP. Therefore,

we also elaborate on the stochastic CSP literature in this section. CG is the most

commonly applied method to retrieve an initial, non-integer solution [Alem et al.,

2010; Demirci et al., 2008; Jin et al., 2012] for the CSP. Alem et al. [Alem et al.,

2010] implemented a CG for a two-stage stochastic programming model where the

demand was random in CSP. Jin et al. [Jin et al., 2012] developed a two-stage

stochastic integer programming model for the CSP that makes inventory replen-

ishment decisions in the first stage and the cutting decisions in the second stage.

Moreover, CG is used for the LP relaxation of the cutting stock problem, and resid-

ual heuristic is used to obtain integer solutions. Another solution methodology for

the stochastic CSP by Demirci et al. [Demirci et al., 2008] proposed the combination

of the CG and the L-shaped algorithm. In the study of Chauhan et al. [Chauhan

et al., 2008] CG and B&B algorithms was accompanied by both fast pricing heuristic

and marginal cost heuristic in a stochastic problem where the demand is random.
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As an alternative method to CG, Beraldi et al. [Beraldi et al., 2009] suggested a

two-stage stochastic programming model with Lagrangian decomposition and B&B

to decompose the problem into subproblems. These subproblems are fed into a

proposed heuristic in the second stage. Moreover, Sculli [Sculli, 1981] considered

defects as random variables due to the winding process in the CSP. Alem and Moru-

bito [José Alem and Morabito, 2012] employed stochastic demand and set-up times

for cutting patterns in furniture production. Kazemi-Zanjani et al. [Kazemi Zanjani

et al., 2013] presented a two-stage stochastic Linear Programming (LP) approach

for the CSP a random variable with discrete probability distribution. They used

the Sample Average Approximation (SAA) scheme to approximate the problem to

avoid high computational time caused by a large number of scenarios in stochastic

programming.

In the first part of this study, Zak’s standard pattern-based SSP output maximiza-

tion model [Zak, 2003] is extended to the single product stochastic cost minimization

SSP model by using two-stage stochastic programming paradigm in which demand

is random. Furthermore, as a solution methodology, CG, PHA, and B&B algo-

rithms are integrated to solve the stochastic problem. Moreover, in the second

part of this study, we extend the pure SSP model by including production, set-up,

and raw material costs. Including the quantity of each raw material as a decision

variable converts the model into an assortment problem, as well. Moreover, as a

contribution, the multi-product version is adapted to the standard pattern-based

SSP model [Zak, 2003; Martinovic et al., 2016]. Another important contribution of

our study is to handle different sources of uncertainty, that are, the product demand

and the waste rate. As a main contribution, two-phase algorithm is proposed as a

solution methodology. At the first phase, the DA produces skiving patterns. At

the second phase, stochastic multi-product SSP is solved by a two-stage Stochastic

Program in which we implement an SAA [Shapiro et al., 2014] approach to cope

with a large number of scenarios. Finally, a recursive solution procedure between

the DA and the SAA is developed for the extended large-sized Stochastic SSP. At

the end, a multi-objective case which is not considered for the SSP in the literature
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is analyzed. Three competing objective functions which are the minimization of the

total trim loss, the number of items in each product, and the total set-up number

are considered in the multi-objective approach. Lexicographic method is applied in

which CG and IP are used to solve the multi-objective version of the SSP.
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3. STANDARD DEFINITION AND MATHEMATICAL

FORMULATION FOR THE PURE SSP

In this section, we present fundamental definitions and the formulation for the pure

SSP [Martinovic et al., 2016; Martinovic and Scheithauer, 2016a,b, 2018]. Let E :=

(m, l, L, b) denote an instance of the SSP, where m is the number of small item

types. l is an m-element vector denoting the width of each small item type, and

it is comprised of li’s where i ∈ I and |I| = m. L is the width for the large

item [Martinovic et al., 2016; Martinovic and Scheithauer, 2016a,b, 2018]. The

skiving process should produce large items with the minimum width of L. Finally,

b is an m-element vector that denotes the availability of each small item type i, and

it is comprised of bi’s [Martinovic et al., 2016; Martinovic and Scheithauer, 2016a,b,

2018]. For the sake of comprehensibility and standardization of terms, we will refer

to small items as items, and to large items as products. All input data is assumed

to be positive integers (Z+) and satisfy L > l1 > ... > lm as an ordered set. Any

feasible arrangement of items to form a product with the minimum width L is called

a feasible pattern of instance E. Any feasible pattern can be represented by a non-

negative vector a = (a1, ..., ai, ..., am)
T ∈ Zm

+ , and ai ∈ Z+ represents the number

(recurrence) of ith item in a pattern. Finally, P (E) := {a ∈ Zm
+ | lTa ⩾ L} represents

a feasible pattern set [Martinovic et al., 2016; Martinovic and Scheithauer, 2016a,b,

2018].

A minimal pattern is the feasible pattern in which the width of the product be-

comes smaller than the threshold L, when any item were to be removed from the

pattern. As a clear representation here, any pattern ã ∈ P (E) such that ã ≤ a

holds component-wise (ãi ≤ ai). A minimal pattern set is represented with P ∗(E).

Moreover, a pattern a ∈ P (E) is an exact pattern, if lTa = L. Thus, every exact

pattern is a minimal pattern. xj is the decision variable representing the frequency
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of minimal patterns aj = (a1j, . . . , amJ)
T where a ∈ Zm

+ and j ∈ J∗ = 1, . . . , J is

the index of the minimal pattern set P ∗(E). Eventually, the objective function of

the pure SSP is formulated as [Martinovic et al., 2016; Martinovic and Scheithauer,

2016a,b, 2018]:

z∗(E) = max

{∑
j∈J∗

xj|
∑
j∈J∗

aijxj ≤ bi, i ∈ I, xj ∈ Z+, j ∈ J∗
}
. (3.1)

In addition, a minimal pattern aj ∈ P ∗(E) that satisfies aij ≤ bi,∀i, j is called

a minimal proper pattern. In other words, a minimal proper pattern also satisfies

the item availability constraints. Otherwise, it is called a non-proper minimal pat-

tern [Martinovic et al., 2016; Martinovic and Scheithauer, 2016a,b, 2018]. We extend

and define the propriety for the pattern set, as well. A proper minimal pattern set

is defined as P ∗
P (E|xj) := {a : aj ∈ P ∗(E),

∑
j∈J∗ aijxj ≤ bi, i ∈ I}, that is, the

patterns in P ∗
P (E) can produce a predetermined production amount with available

items.

Furthermore, without loss of generality, E := (m, l, L, b) is extended by including

multiple products of various widths, defined as the multi-product case as E :=

(m,K, l, L, b) where K denotes the number of product types. k is the index of

product type k ∈ K := 1, . . . , K. L is no longer a constant but a vector of widths.

xjk refers to the amount of pattern j used to produce product k, then formulation

is extended as:

z∗(E) = max

{∑
j∈J∗

∑
k∈K

xjk|
∑
j∈J∗

∑
k∈K

aijkxjk ≤ bi, i ∈ I, xjk ∈ Z+, j ∈ J∗, k ∈ K
}
.

(3.2)
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4. GENERAL FOLMULATION OF THE TWO-STAGE

STOCHASTIC PROGRAMMING WITH RECOURSE

ACTION (SP)

Assume that ξ is a vector of random variables. Decisions taken before the realization

of the ξ are called first-stage decision variables and are represented by the vector

x. After receiving the values of ξ, information concerning random variables is ob-

tained. Decisions taken after the realization of the ξ form the second-stage decision

variables. They are also called the recourse action and denoted by vector y. Re-

course action depends on both the first-stage decision variables and the outcomes of

random variables. A two-stage stochastic programming model with recourse action

formulation is presented by [Birge and Louveaux, 2011] as follows:

min
x

CTx+ EξQ(x, ξ) (4.1)

s.t. Ax = b, (4.2)

x ≥ 0, (4.3)

where Q(x, ξ) = min{cT q|Wq = h − Tx, q ≥ 0}. ξ is the random vector formed

by the cT , hT , T components and Eξ is the expectation according to ξ where T is

the technology matrix, h is the right hand side, W is the recourse matrix, and cT

is the penalty cost vector of recourse decisions [Birge and Louveaux, 2011]. From

the general formulation of two-stage stochastic programming Eq. 4.1, the value for

random variable ξ corresponds to the scenario s ∈ S := 1, . . . , S with the probability

Ps, and Eq. 4.1 can be also written as follows [Birge and Louveaux, 2011]:

min
x

CTx+
∑
s∈S

PsQ
s(x, ξ) (4.4)
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where Qs(·) refers to the value of the Q(x, ξ) under scenario s.
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5. INTEGRATION OF THE COLUMN GENERATION,

PROGRESSIVE HEDGING ALGORITHM AND

BRANCH AND BOUND ALGORITHM FOR THE

STOCHASTIC SKIVING STOCK PROBLEM

5.1 Two-Stage SP formulation of Stochastic SSP

Nomenclature for the Stochastic SSP Model

Indices

i index of (small) item types , i ∈ I := {1, ...,m};
j index of minimal patterns, j ∈ J∗ := {1, ..., J};
s index of scenarios, s ∈ S := {1, ..., S}.
Parameters

aij the number of item type i in pattern j, (being generated by CG);

bi the available amount of item type i;

c cost for unit width (i.e. 1 Euro/mm);

CB the cost of underproduction;

CH the cost of overproduction;

CPr
j the production cost which depends on the width of pattern j, CPr

j =

c ∗
∑

i∈I liaij,∀j ∈ J;
ds the demand in scenario s;

L the threshold (lower bound) width of product;

li the width of each item type i;

Ps the probability of scenario s.

First-stage decision variables

xj the frequency (replication) of pattern j;

Second-stage decision variables (recourse actions)

q+s the overproduction amount in scenario s;

q−s the underproduction amount in scenario s.
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We present the nomenclature of our formulation for two-stage stochastic SSP model;

it should be kept in mind that different phases in the solution methodology will

also have their own notations. The pure SSP is extended to the cost minimization

problem, including production, overproduction, and underproduction costs. Fur-

thermore, the demand (D) is assumed to be a random variable. Each possible value

for the demand is a scenario s ∈ S := 1, . . . , S with probability Ps such that Ps ≥ 0

and
∑

s∈S Ps = 1. D(s) = (d1, . . . , ds) represents scenario realizations. As a result,

the model is constructed as a two-stage stochastic recourse model.

We split the decision variables of the two-stage stochastic programming SSP model

into two groups, the first stage decision variables and the second stage decision

variables. The frequency of each pattern for the product xj is the first stage decision

variable. The values of aij are obtained before solving SP as coefficients of the

”column” being generated by CG, and used in the first stage of the SP as parameters.

The overproduction amount q+s and the underproduction amount q−s are the second

stage decision variables. Their values depend on the scenarios and the first stage

decisions. We can then construct the first stage of the objective function as:

min
∑
j∈J∗

CPr
j xj (5.1)

and s ∈ S, Qs function in Eq.4.4 is defined as:

Qs(x, ξ) = min (CHq+s + CBq−s ) (5.2)

Finally, given Eq.s (5.1, 5.2) and the nomenclature, the deterministic equivalent of

the stochastic SSP model with the instance of E := (m, l, L, b) is given through

Eq.s 5.3-5.8:

min zSP =
∑
j∈J∗

CPr
j xj +

∑
s∈S

Ps(C
Hq+s + CBq−s ) (5.3)

s.t.
∑
j∈J∗

aijxj ≤ bi, ∀i ∈ I (5.4)

q+s − q−s =
∑
j∈J∗

xj − ds, ∀s ∈ S, (5.5)

xj ∈ Z+, ∀j ∈ J∗ (5.6)
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aij ∈ Z+, ∀i ∈ I, j ∈ J∗ (5.7)

q+s , q
−
s ≥ 0, ∀s ∈ S, (5.8)

The objective function (zSP ) minimizes both the first stage and the second stage

costs. The first stage cost is the production cost determined according to each

pattern type used for the skiving process to form the product. The second stage

costs include the overproduction and the underproduction costs. Some examples

of these costs are lost sales, overtime production costs, or product supplies from

other sellers to meet the demand. Constraint (5.4) balances the quantity of each

small item type by multiplying the total replications of patterns and the number of

items in each pattern. This constraint imposes the availability of small items in the

warehouse or the supplier. In other words, it controls the supply limitation of small

items. Constraint (5.5) balances the overproduction amount or underproduction

amount at the second stage according to each scenario and the production quantity

at the first stage.

5.2 The Proposed Solution Methodology for the Stochastic SSP

The column generation algorithm (CG), the Progressive hedging algorithm (PHA),

and Branch and Bound (B&B) are integrated to solve the stochastic integer problem

(SIP). CG provides the minimal pattern set with the minimum trim loss. PHA is

run in the B&B procedure iteratively to obtain the integer optimal solution of each

node. The following subsections explain the solution methodology in detail.

5.2.1 Column Generation Algorithm for the SSP

Column Generation is a simplex-based algorithm for large-sized linear programming

models [Gilmore and Gomory, 1961]. It aims to derive a subset of valuable variables,

avoid nonbasic ones. The CG splits the problem into two subproblems, the master

LP problem (MP) (Eq. 5.9) and minimum knapsack subproblem (KP) (Eq. 5.10).

For the pure SSP whose objective function is output maximization, these two sub-
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problems are solved iteratively by providing interaction between two problems.

(MP ) : zk = max{
∑
j∈Jk

xj|
∑
j∈Jk

ajxj ≤ b, xj ≥ 0, j ∈ Jk} (5.9)

where xj is the decision for frequency of pattern j , aj represents the vector of

pattern j, and b represents the availability vector for small items.

(KP ) : c̄ = min{uTaτ |lTaτ ≥ L, τ ∈ J} (5.10)

Zak [Zak, 2003] proved that CG is also a valuable method for SSP. This output

1 START ;

2 Determine parameters E := (m, l, L, b);

3 Set k := 0, Run CG;

4 Choose a subset (aj : j ∈ J0) of the columns such that;

zk = max{
∑

j∈Jk xj |
∑

j∈Jk a
jxj ≤ b, xj ≥ 0, j ∈ Jk} master problem (MP) is

solvable;

5 while c̄ < 1 do

6 Solve the MP (zk); x
k := argmax(zk) is solution and uk is the vector of simplex

multipliers.

7 Solve the subproblem; c̄ = min{uTaτ |lTaτ ≥ L,for some τ ∈ J};

8 Set k : k + 1, Jk := Jk−1
⋃
{τ}

9 end

10 STOP;

Algorithm 1: Column Generation for SSP

maximization problem is solved as the master LP and and, the dual solution is fed

to the minimum knapsack subproblem as a coefficient for the objective function of

the knapsack problem as given in Eq. 5.10. Next, the minimum knapsack problem is

solved to obtain the primal solution, and this primal solution is converted to a new

column for the master LP. The CG algorithm continues until the optimal solution is

obtained. For the SSP, we generate minimal patterns by using every single item as

an initial minimal pattern set. Moreover, the minimum knapsack problem is used to

generate candidate columns for the MP. When the optimal solution value is greater

than or equal to 1.0 for the KP, the algorithm stops with z∗ssp = zk, x∗
ssp = xk and
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J∗ := Jk [Zak, 2003]. The pseudocode is presented in Alg.1, where u is a vector of a

dual variables obtained from MP and then used as a coefficient vector for KP. aτ is

a vector of decision variables of KP; in other words, it is a new column that has the

potential to improve the objective function value of MP. L is threshold width, and

l represents the vector of small item widths [Zak, 2003].

5.2.2 Progressive Hedging Algorithm

Progressive Hedging Algorithm (PHA) is a decomposition-based algorithm proposed

by Rockafellar and Wets [Rockafellar and Wets, 1991]. Even if other stochastic pro-

gramming solvers fail to attain a solution due to a large number of scenarios and

variables, the PHA still attains the solution. PHA does not guarantee convergence

to the optimal solution if the model involves discrete variables. Therefore, for the

stochastic IP and MIP models, the PHA is implemented as a heuristic method [Ay-

din, 2012]. PHA splits the problem into subproblems according to each scenario to

relax the non-anticipativity constraints, which means the first stage decision vari-

ables should be equal in all scenarios. Then, the solutions of the subproblems are

forced to converge to be equal while solving each subproblem with a quadratic model

re-defined by including penalty terms [Aydin, 2012].

There are several applications of PHA for stochastic IP and MIP models. For

example, Lokketangen and Woodruff [Lokketangen and Woodruff, 1996] proposed a

Tabu Search and PHA combination for the stochastic multistage MIP (0-1) problem.

The Tabu Search algorithm is used to obtain solutions of subproblems, and the PHA

is applied to coordinate and blend the solutions of subproblems for the convergence.

Moreover, the PHA is used in the metaheuristic framework where subproblems are

solved heuristically for the multistage stochastic lot-sizing problem [Haugen et al.,

2001]. A B&B procedure is used with PHA for a stochastic MIP model where the

subproblems are modified in each node [Atakan and Sen, 2018]. Pseudocode of the

PHA [Rockafellar and Wets, 1991] is as follows (Alg. 2):

Here, ϵ is the stopping criteria, ρ is the penalty constant, k represents the index
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1 START ;

2 Determine ϵ, ρ;

3 Set k := 0 as iteration number ;

4 ∀s ∈ S, xks := argminx,ys(cx+ fys) : (x, ys) ∈ Q(x, ξ): xks ≥ 0 and ys ≥ 0, ∀s ∈ S in

each iteration ;

5 x̄k:=
∑

s∈S Psx
k
s ;

6 ∀s ∈ S, ωk
s := ρ(xks − x̄k);

7 while πk ≥ ϵ do

8 k =: k + 1;

9 ∀s ∈ S, xks := argminx,ys(cx+ ωk−1x+ ρ
2∥x− x̄k−1∥2 + fys) : (x, ys) ∈ Q(x, ξ);

10 x̄k:=
∑

s∈S Psx
k
s ;

11 ∀s ∈ S, ωk
s := ωk−1

s + ρ(xks − x̄k);

12 πk :=
∑

s∈S Ps∥xks − x̄k∥;

13 end

14 STOP;

Algorithm 2: Progressive Hedging Algorithm

of iteration number, and πk represents the Euclidean distance in iteration k. The

vector xk
s represents decision variables for each scenario in iteration k, and x̄k is

the average of decision variables in iteration k. The f represents the penalty cost

vector of recourse decisions, and ys is the vector of second stage decision variables

in scenario s ∈ S. ωk
s is the dual multiplier for each scenario in iteration k. The

algorithm stops with the solution xPHA = x̄k. If decision variables are continuous,

the solution converges to x̄ in linear time [Rockafellar and Wets, 1991].

5.2.3 Branch and Bound Procedure

Scheithauer [Scheithauer, 2017] emphasizes that the classical B&B procedure is a

common method for the one-dimensional cutting stock problem (1D-CSP) to obtain

integer optimal solutions. We integrate the B&B algorithm to our solution method-

ology to obtain an integer solution from the LP relaxations of the stochastic integer

programming (SIP) model. Since we use the PHA algorithm to solve the stochastic
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program, we run PHA in each node of the B&B search tree until an integer solution

is obtained. Let the stochastic version of SSP has an instance E := (m, l, L, b) with

the random demand D and aj, j ∈ J∗ represents the minimal pattern. All active

subproblems in the solution process form the set of Π, including πk. Π contains the

initial problem, π0: z0:=zsp.

1 START ;

2 Determine parameters;

3 Initialize Π := π0 and z∗ := ∞

4 while Π ̸= ∅ do

5 Select a sub problem πk ∈ Π and set Π := Π \ {πk}

6 Compute xk of the LP relaxation for πk with zk

7 If zk ≥ z∗, then go to (5)

8 If xk ∈ Z+ then x∗ := xk, z∗ := zk and go to (4)

9 Determine jk Eq. 5.11

10 Determine successor problems πk,1, πk,2, Eq.s. 5.12-5.13

11 Π := Π ∪ {πk,1, πk,2}, go to (4)

12 end

13 STOP;

Algorithm 3: Branch and Bound Algorithm

In the branching process, the active subproblem is divided into two successor prob-

lems by determining two index sets J≤, J≥. These two index sets demonstrate

the patterns which require a replication number in the LP solution in which ”at

least” or ”at most” as bounds of the replication numbers are determined. xk is the

solution vector of the LP relaxation of the kth subproblem πk ∈ Π, and k is the num-

ber of subproblem. The pseudocode of B&B which is inspired from Scheithauer’s

study[Scheithauer, 2017] is adapted to the SSP problem (Alg. 3).

jk := argmax { xk
j : x

k
j /∈ Z+, j ∈ J∗} (5.11)
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ujk := ⌈xjk⌉ then two successor problems are defined as;

(πk,1) := (πk) ∧ (xjk ≥ ujk), (j
≥ := j≥ ∪ {jk}) (5.12)

(πk,2) := (πk) ∧ (xjk ≤ ujk − 1), (j≤ := j≤ ∪ {jk}) (5.13)

Then, by using the branching strategy, each subproblem becomes as follows:

(πk) : zk := min{zsp : xjk ≥ ujk , j ∈ j≥, xjk ≤ ujk − 1, j ∈ j≤, xj ∈ Z+, j ∈ J∗}

(5.14)

5.2.4 Integration of CG, PHA, and Branch and Bound Algorithm

We propose the integration of CG, PHA, and B&B for the solution of the stochastic

SSP. Initially, the stochastic problem (Fig 5.1.a) is decomposed into S subprob-

lems. In this step, each of the subproblems is denoted as the deterministic cost

minimization problem which must satisfy the scenario demand (Fig 5.1.b). Next,

Figure 5.1: CG and PHA integration

CG is applied to each subproblem to obtain the most efficient pattern set of each

subproblem; in other words, the obtained matrix As can minimize the total cost of

subproblem s. On the other hand, CG for the pure SSP presented in section 5.2.1 is

used to obtain the maximum output, and demand is not taken into consideration.

Since subproblems are cost minimization problems including demand constraints, it
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is important to find the most efficient pattern set for each subproblem which can

minimize the total cost. Therefore, an auxiliary constraint lTaτ ≤ W, τ ∈ J where W

represents the target width is added to the minimum knapsack problem (Eq. 5.10)

to control the width of the generated pattern. Since the production cost for the

product strictly depends on the width of used patterns, the cost of the pattern can

be controlled and restricted by controlling W. Then, CG is applied to the subprob-

lem iteratively which is inspired from the dynamic programming approach. At the

beginning of iterations, W is set as the threshold width of product (W = L). In each

iteration, W is increased by 1 unit. It means that the width of patterns generated

by the minimum knapsack problem of CG is increased by 1 unit until the demand of

the subproblem is satisfied (Fig 5.2). By using CG, the cost of the patterns obtained

Figure 5.2: Use of Column Generation in the Algorithm

to satisfy the demand and demand fulfilment are controlled at the same time. In

this way, the obtained pattern set or matrix As which is the combination of the

patterns Ak
s for each iteration of CG, such that As = A1

s ∪ A2
s ∪ . . . , where k is the

iteration number k = {1, 2, . . . }, can provide the minimum objective function value

(minimum cost) for each subproblem when the LP is applied to each subproblem.

It must be emphasised that the upperbound for the width W can be denoted as

the sum of the threshold width and the width of the largest item type. As the

nature of the two-stage stochastic programming, all matrices of subproblems are

combined to form a common matrix A as a parameter where the common pattern

matrix can be denoted as A =
⋃

s∈S As. LP is applied to each subproblem to obtain
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the optimal solution of each subproblem in the PHA by using the given matrix A

(Fig 5.1.c). Until the decision variable vectors of each subproblem are equal to each

other (X1 = X2 = X3 = X4 = X5), differences of decision variables are penalized

by PHA (Fig 5.1.d). PHA algorithm provides relaxation solution and the objective

function value of the stochastic SSP model (Eq. 5.3-5.8). Furthermore, we run the

B&B to obtain the integer solution of the stochastic SSP (Eq. 5.3-5.8) in which the

PHA is run at each node of the B&B tree to solve the B&B subproblems (it must

not be confused with PHA subproblems) as in (Alg. 4).

1 START ;

2 Determine parameters, scenarios E := (m, l, l, b) and;

3 while s ̸= S do

4 set W = L;

5 while zssp ≤ ds do

6 W = W + 1;

7 Run CG to solve zssp Eq.3.1 ;

8 Ak
s := akij , k is the iteration number k := {1, 2, . . . } ;

9 end

10 As = A1
s ∪A2

s ∪A3
s . . . ;

11 end

12 A =
⋃

s∈SAs;

13 while xPHA /∈ Z+ do

14 Apply BB algorithm to run PHA in each node

15 end

16 STOP

Algorithm 4: CG, PHA, B&B Combination

5.3 Numerical Illustration

In this section, we present a small instance of E := (m, l, L, b) of a stochastic version

of the SSP as an illustrative example. In this example, E:=(6, (25, 35, 45, 60, 75,

85), 100, (250, 200, 300, 100, 100, 100)) where D ∼ Pois(150) is the random
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variable representing the demand of the product. CPr
j =

∑
i∈I liaij,∀j ∈ J∗ is the

variable production cost for each product according to used pattern type. Moreover,

let CH = 320 and CB = 800. Five scenarios are determined for the illustrative

example. For the PHA parameters, the penalty constant and stopping criterion are

defined as ρ = 2 and ϵ = 10−5, respectively. Finally, we present the computations in

each step of the illustrative example to explain the solution methodology in detail.

1. Stochastic problem is decomposed into S deterministic subproblems. To sim-

plify the illustration, the number of scenarios is determined as S = 5. There-

fore, 5 deterministic subproblems are considered.

2. The CG is run for the deterministic subproblem s to obtain the most efficient

minimal pattern set, matrix As,∀s ∈ S that can satisfy the demand of each

deterministic subproblem. The matrix A is presented below. Each column of

matrix A represents a pattern, and each row represents an item type. Each

value of aij indicates the amount of item i used in pattern j. The obtained

pattern sets (matrices, As) for subproblems are presented below.

A1 =



4 1

0 0

0 0

0 0

0 1

0 0


, A2 =



4 1

0 0

0 0

0 0

0 1

0 0


, A3 =



4 1 0 0 1

0 0 0 3 1

0 0 1 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0


, A4 =



4 1 0 0 1

0 0 0 3 1

0 0 1 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0


,

A5 =



4 1 0 0 1

0 0 0 3 1

0 0 1 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0


,

Then, all matrices are combined in the master matrix A =
⋃

s∈SAs;
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A =



4 1 0 0 1

0 0 0 3 1

0 0 1 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0


,

Moreover, variable production cost vector according to each pattern is pre-

sented as:

CPr =
[
100 100 105 105 105

]
3. PHA is run in the first node of B&B search tree in order to obtain a solution

for LP relaxation of the stochastic SSP (Eq.s 5.3-5.8) by using A obtained by

CG. Initial objective function value and solution are obtained as:

zSP = 17874 and xSP =
[
37.5 100 4.25 4.25 0

]
;

Figure 5.3: Branch and Bound search

4. Since the solution set includes continuous variables, the B&B procedure con-

tinues, and the PHA is applied in each node to solve the new subproblem

(Eq. 5.3-5.8). The algorithm continues until an integer solution is obtained.

The results for each node and search tree are demonstrated in Fig 5.3.
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5.4 Numerical Results

The CG, PHA, and B&B are coded and integrated with GAMS 34.2.0, and CPLEX

is used as a solver for the RMIP, MIP, and LP. Antigone is used as a solver for

the quadratic model to obtain the optimal solution. Moreover, GAMS stochastic

library is used for the scenario generation. The overall algorithm is executed on a

computer with Intel Core i5-3230M, 2.60 GHz CPU, 4 GB RAM. Experiments have

been carried out for the problem presented in Section 5.3 for a number of scenarios

as shown in Table 5.1. In each experiment, scenarios are generated from the discrete

probability distributionD ∼ Pois(150) by using the Monte Carlo sampling method.

To illustrate the computational complexity for the deterministic equivalent of the

model for each experiment, we can calculate the number of variables and constraint

as [(m∗J)+J +(2∗S)] and [(m∗J)+ (3∗S)+ (2∗J)+ i], respectively. To analyze

the performance of the solution methodology, we present the number of scenarios,

the run-time (sec), the number of decision variables, the number of constraints, and

the expected total cost for each experiment; moreover, to analyze the quality of

the solution methodology, we apply SP to the problem by using CPLEX solver and

present the results in Table 5.1. Also, the expected value solution for the problem is

Table 5.1: Experiments and results for different number of scenarios

Number of Scenarios Variables Constraints CPU time (sec) Expected total cost (PHA) CPLEX Solver (SP)

5 31 45 2152 17877 17877

10 41 60 3601 19987 19987

20 61 90 13119 19434 19434

50 121 180 38659 21188 21188

100 221 330 46085 19996 19996

200 421 630 57659 20250 20250

found as 15065, and the difference between stochastic objective function value and

expected value is 17877-15065=2812 (VSS). Moreover, we can see that while the

objective function value converges to the optimal solution by increasing the scenario

number, CPU time increases linearly. The quality of the solution seems good for

this example.
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6. A TWO-PHASE PATTERN GENERATION AND

PRODUCTION PLANNING PROCEDURE FOR THE

STOCHASTIC SKIVING STOCK PROBLEM

6.1 Two-Stage SP formulation of the Multi-product SSP

We primarily provide the nomenclature for the mathematical model in Table 6.1

on the next page. This nomenclature includes the notation for the stochastic SSP

model only, and it should be kept in mind that different phases in the solution

methodology will also have their own notations in Section 6.2.

We transform the original SSP into a cost-minimization problem by including the

production, raw material, set-up, overproduction, and underproduction costs. Fur-

thermore, the demand Dk and the approved product rate Υk are the random vari-

ables for each product k = 1, . . . , K. Υk, also known as the yield efficiency, is the

rate of approved products after discarding the production waste. In this study, we

will assume the same random yield efficiency for all products, which reduces Υk to

Υ, resulting in a total of K + 1 random variables. Each combination of the values

for Dk and Υ corresponds to a scenario indexed by s ∈ S := 1, . . . , S with the prob-

ability Ps such that Ps ≥ 0 and
∑

s∈S Ps = 1. Finally, each scenario realization for

every random variable is represented as D(s) = (ds1, . . . , dsK) and Υ(s) = υs. Both

random variables constitute the base for the mathematical model in the two-stage

stochastic programming with recourse.

We partition the decision variables of the stochastic model into two parts as the

first-stage and second-stage decision variables. The frequency of each pattern for

each product, denoted by the matrix X, is a first-stage decision variable composed

of xjk’s. Another first-stage decision variable is the amount of raw material needed,

30



Table 6.1: Nomenclature for Multi-product Stochastic SSP

Symbol Abbreviation

Indices

i index of (small) item types , i ∈ I := {1, ...,m};

j index of minimal patterns, j ∈ J∗ := {1, ..., J};

k index of product (large item) types, k ∈ K := {1, ...,K};

s index of scenarios, s ∈ S := {1, ..., S};

Parameters

aij the number of item type i in pattern j;

δjk a binary parameter that indicates if pattern j can be used for product k or not;

Lk threshold (lower bound) width of product type k;

li width of item type i;

dsk the demand of product type k in scenario s;

υs the approved product rate (1-waste rate) in scenario s;

CPr the fixed production cost for product rolls with fixed length (i.e 3000 meters);

CR
i the cost of the item type i;

CO the set up cost for pattern change (set up costs are assumed to be the same);

CH
k the overproduction cost for product type k;

CB
k the underproduction cost for product type k;

Ps the probability of scenario s;

Mk a large number for product type k such that Mk >> max{dsk, ∀s ∈ S};

bi the available amount of item type i;

Decision variables

yj a binary variable that indicates whether a pattern j is used or not;

xjk the frequency of pattern j for product type k;

ri amount of raw material i used;

q+sk the overproduction amount for product type k in scenario s;

q−sk the underproduction amount for product type k in scenario s;

denoted by the vector r, and composed of ri’s. Finally, the last first-stage decision

variable is the vector y, denoting the set-up change decision yj, ∀j. Matrix a having

values of aij and matrix ∆ having δjk values are obtained by using the Dragonfly

Algorithm (DA) before solving the SP. These values are fed into the first stage of

the SP as parameters. The overproduction and the underproduction amounts (q+sk
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, q−sk) are the second-stage decision variables, and they depend on the scenario and

the first-stage decisions. Then, we can construct the first-stage objective function

as:

min
∑
i∈I

CR
i ri +

∑
k∈K

∑
j∈J∗

(COyj + CPrxjk), (6.1)

and, s ∈ S, Qs the Q(·) function provided in Eq. 4.4 for scenario s and is defined as:

Qs(x, ξ) = min
∑
k∈K

(CH
k q+sk + CB

k q
−
sk) (6.2)

Finally, by using Eq.s (6.1) and (6.2), and the nomenclature, the deterministic

equivalent of the stochastic SSP model with the instance of E := (m,K, l, L, b) is

given through Eq.s(6.3)-(6.12).

min zSP =
∑
i∈I

CR
i ri +

∑
k∈K

∑
j∈J∗

(COyj + CPrxjk) +
∑
s∈S

Ps

∑
k∈K

(CH
k q+sk + CB

k q
−
sk)

(6.3)

s.t.
∑
k∈K

∑
j∈J∗

aijxjk = ri ≤ bi, ∀i ∈ I (6.4)

q+sk − q−sk = υs
∑
j∈J∗

xjk − dsk, ∀s ∈ S, k ∈ K (6.5)

xjk ≤ Mkyjδjk, ∀j ∈ J∗, k ∈ K (6.6)

xjk ∈ Z+, ∀j ∈ J∗, k ∈ K (6.7)

aij ∈ Z+, ∀i ∈ I, j ∈ J∗ (6.8)

ri ∈ Z+, ∀i ∈ I (6.9)

q+sk, q
−
sk ≥ 0, ∀s ∈ S, k ∈ K (6.10)

yj ∈ {0, 1}, ∀j ∈ J∗ (6.11)

δjk ∈ {0, 1}, ∀j ∈ J∗, k ∈ K, (6.12)

The objective function given in Eq. 6.3 (zSP ) minimizes both the first-stage and the

second-stage costs. The first-stage costs are composed of the following components:
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(i) Raw material cost: The cost of items that must be used to form products

involves the cost of generating leftovers or purchasing raw materials.

(ii) Set-up cost: If a pattern is used in the skiving process, the set-up cost for that

specific pattern is incurred. However, since recent skiving machines are fully-

automated, the differences between set-up times of each pattern are assumed

trivial. Therefore, we assume that the set-up cost is fixed and does not change

with a specific pattern.

(iii) Production cost: An item roll naturally has two dimensions: width and length.

We consider a variable width and a fixed length for each item, resulting in the

1D-SSP. Therefore, the production time and the production cost for the skiving

process to form every product are assumed to be fixed.

The second-stage costs include the costs for the overproduction and the underpro-

duction, that is, lost sales or overtime production costs, as well as the costs for

procuring products from other sellers to meet the demand. Constraint (6.4) ensures

that the available items are sufficient for the produced amount by multiplying the

number of pattern replications and the number of items required in each pattern.

Constraint (6.5) balances the overproduction or underproduction amount at the sec-

ond stage as a result of the first-stage production decisions and the scenarios. The

set-up constraint given in Eq. (6.6) states if a pattern is used, then the set-up cost

incurs related to this pattern. Mk is an upperbound for the number of replications

of pattern j in product k. However, the waste rate might require extra production.

Therefore, a reasonably greater value than the maximum demand must be used for

Mk.

The set-up cost is incurred for every pattern change. As aforementioned, if multiple

products can be produced using the same pattern, we can avoid excessive set-up

costs by setting this pattern once and producing all products at once. In this way,

we do not need to change patterns, and we pay the set-up cost for once. For this

purpose, we construct a pattern pool that unites all patterns used in all products.

An auxiliary and dependent binary variable δ which is generated by using DA and
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used as a parameter in the model, controls the assignment of patterns to products.

Constraints (6.7), (6.8), (6.9), (6.10) are integrality and non-negativity constraints,

and constraint (6.11) imposes that yj is the binary variable. We determine the values

of the decision variables aij in constraint (6.4) and δjk in constraint (6.6) in the first

phase. Since the values of both variables are determined in the first phase, we feed

them as parameters for the second phase. Therefore, the final model becomes a

stochastic mixed-integer programming (SMIP) model.

6.1.1 Deterministic Counterpart of the First-Stage Model

Throughout the procedure, we need to check the propriety of PP (E). In other words,

whenever we make a production decision, we need to check if we can produce this

amount with the patterns on hand. If not, we can either opt for underproduction

or search new patterns in order to not lose sales.

For this checkpoint, we implement the deterministic counterpart of the SSP with a

small modification. Without loss of generality, the deterministic counterpart of the

SMIP model given in Eq.s 6.3-6.12 can be rewritten using the first-stage variables

and costs. This model minimizes the first-stage cost at a given production amount

as follows:

min zdet =
∑
i∈I

CR
i r

+
i

∑
k∈K

∑
j∈J∗

(COyj + CPrxjk +Ψkq
−
k ) (6.13)

s.t
∑
j∈J∗

∑
k∈K

aijxjk = ri ≤ bi,∀i ∈ I (6.14)

∑
j∈J∗

xjk + q−k ≥ upperBoundk,∀k ∈ K (6.15)

xjk ≤ Mkδjkyj,∀j ∈ J∗, k ∈ K (6.16)

ri,∀i ∈ I (6.17)

yj ∈ {0, 1}, ∀j ∈ J∗ (6.18)

xjk, q
−
k ∈ Z+, ∀j ∈ J∗, k ∈ K (6.19)
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In this deterministic model (Eq.s 6.13-6.19), the indices, the first-stage variables,

and the first-stage costs are almost the same with the original stochastic problem

given throughout Eq.s 6.3-6.12. The main difference with the stochastic counter-

part is the introduction of the production upperbound for each product denoted by

upperBoundk in Eq. (6.15). This upperbound represents a target production amount

(usually dependent on the demand). The variable q−k tracks the lack of each product,

and a penalty cost, Ψk that represents a large number such as Ψk = CB
k ∗M, ∀k ∈ K,

forces q−k to be zero. In other words, minimizing this objective function forces the

total production of each product to be equal to the upperbound. This deterministic

model is used iteratively in the algorithm to check whether the minimal pattern

set generated by the DA can satisfy a given target production amount. If not, the

algorithm recursively triggers the DA to generate additional minimal patterns until

the target production amount (upperbound) is satisfied.

6.2 The Proposed Solution Methodology for the Stochastic Multi-product

SSP

In this section, we develop an iterative two-phase solution methodology for the

stochastic SSP. An overview of the solution methodology is presented in Fig. 6.1.

In the first phase of the algorithm, we implement the Dragonfly Algorithm (DA)

Figure 6.1: Recursive two-phase algorithm for the stochastic SSP

proposed in [Mirjalili, 2016] to produce the minimal pattern set P ∗(E). This minimal

pattern set P ∗(E) is then fed into the second phase. In the second phase, the SMIP

presented in Section 6.1 is solved by the SAA method [Shapiro et al., 2014]. This

process provides candidate solutions and an upperbound for the production amount.
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We first present each module separately, and later define the two-phase methodology

that integrates these algorithms. The inclusion of the DA results in the proposed

methodology to produce a heuristic solution.

6.2.1 Dragonfly Algorithm

Dragonfly Algorithm (DA) is a Swarm Intelligence-based method that implements

non-linear Lévy flights in the search space. It is motivated by improving the mech-

anism of the Particle Swarm Optimization (PSO) and Cuckoo Search (CS) algo-

rithms. The PSO has a linear search direction that does not provide a thorough

search structure and does not conduct enough exploration and CS has an expo-

nential search pattern that can jump over optimal points. DA attempts to improve

these algorithms by introducing various concepts. While the dragonflies are moving,

they obey three rules. First rule is alignment, which states that they fly together

and their positions are close. The second rule, separation, states that while they are

close, they do not collide. The last rule, cohesion necessitates that their velocities

should be also close to be able to fly together. Similarly, the dragonflies want to

be close to a food source (the best solution found) and away from an enemy or a

predator, that is, the worst solution found. These components are adjusted linearly.

If there is no dragonflies nearby, they approach each other with a nonlinear Lévy

flight, which promotes exploration.

The applications of the DA in the literature involve the Traveling Salesman Prob-

lem (TSP) [Hammouri et al., 2018], optimal dynamic scheduling of tasks [Shirani

and Safi-Esfahani, 2020], optimization of path planning for mobile robots, moreover,

solving 0-1 knapsack problems [Abdel-Basset et al., 2017], feature selection prob-

lems [Mafarja et al., 2017], graph coloring problems [Baiche et al., 2019], as well

as optimization of wind-solar–hydro power scheduling by using multi-objective ver-

sion [Li et al., 2019]. Its performance on discrete problems is found to be superior to

PSO and GA [Mirjalili, 2016]. This study implements the DA for pattern generation

for each product separately using the following steps.
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Pre-processing of patterns: This process uses width of small items.

Step 1: Unavailable or out-of-stock items are removed from the item set I.

Step 2: The amount of each item i required to construct a product k, (nik) is

calculated such that

nik =

⌈
Lk

li

⌉
. (6.20)

Step 3: The item set is augmented by repeating each item (nik−1) times to obtain

the extended and ordered item set I+, so that there are nik of each small item.

Figure 6.2 shows the structure of the extended item set.

Figure 6.2: Extended and ordered item set

Let I+ = |I+|, that is, the cardinality of the extended item set. Furthermore,

clh =
∑h

i=1 li. In other words, clh indicates the cumulative length of the items from

the first to the hth location.

After these steps, the extended set of items, I+, is fed into the following steps of the

main Dragonfly Algorithm:

Initialize: Algorithm parameters are initiated. The position change (∆pos) matrix

is initialized as zero matrix with dimensions NoD and I+, i.e. 0NoD,I+ where NoD

represents the number of dragonflies. The number of maximum iterations (MaxIt)

is determined.

Step 1: Each dragonfly has a dimension of I+, and each value of the dragonfly is a

randomly generated number uniformly distributed between 0 and 1. We will specify

this matrix as posNoD,I+ . Each row of posNoD,I+ indicates a solution or a dragonfly.

Step 2: The objective function value, the trim loss, of each dragonfly is calculated.
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Let b indicate the index of the bth dragonfly. The objective function of the bth

dragonfly is calculated as follows:

1. The bth row of the posNoD,I+ matrix is sorted in a decreasing order.

2. The index vector for the sorted values is obtained. We will denote that order

by ⃗[h].

3. The cl[h] values are added until Lk is reached such that cl[h−1] < Lk and

cl[h] ≥ Lk. In other words, the items are skived until the desired length for

product k is reached.

4. The trim loss is calculated such that
∑h′

h=1 cl[h] − Lk. The excess width is

calculated as the trim loss.

Otherwise stated, we sort the indices of the values of the dragonfly in a descending

order. Next, we start skiving items in that order until the product length is reached.

As an illustrative example, let the initial item set be {6, 5, 3}, the extended and

ordered item set I+ = {6, 6, 5, 5, 3, 3, 3}, and width of the product Lk = 9. Assume

that a dragonfly has the value vector [0.35, 0.45, 0.21, 0.76, 0.87, 0.98, 0.07]. Then the

ordered index vector is ⃗[h] = [6, 5, 4, 2, 1, 3, 7], meaning that the sixth dimension of

the dragonfly is the largest, the fifth dimension of the dragonfly is the second largest,

and so on. Hence, cl[1] = l6 = 3, i.e. meaning that if the item in the first order is

used, the length of the final product would be 3 units, which is smaller than Lk;

therefore, the skiving process continues with the item in the second order. When

the next item is skived, we obtain cl[2] = l[1]+ l[2] = l6+ l5 = 3+3 = 6. The obtained

length is still less than the desired product length, and the skiving is continued with

cl[3] = l[1]+l[2]+l[3] = l6+l5+l4 = 3+3+5 = 11. These three skived items satisfy the

desired product length of Lk. Therefore, we stop the skiving process. As a result, a

dragonfly, comprised of the vector [0.35, 0.45, 0.21, 0.76, 0.87, 0.98, 0.07], indicates a

product composed of two of the item with length 3, and an item of length 5, resulting

in a product of length 11. The trim loss of this product is cl[3] − Lk = 11 − 9 = 2.

An important reminder is to keep the positions of the dragonflies between 0 and 1

throughout the algorithm so that extreme position values are prevented.
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After decoding each dragonfly in the swarm, the trim loss of each dragonfly is cal-

culated, and the objective function value vector, f⃗NoD is obtained. Each value of

the vector indicates the objective function of a dragonfly.

Step 3: The food source and the enemy are updated as:

food = {posb,∗ : fd = min
b′

f⃗ , b′ = 1, . . . , NoD}, (6.21)

and

enemy = {posb,∗ : fd = max
b′

f⃗ , b′ = 1, . . . , NoD}. (6.22)

Step 4: Assume that the current iteration is t. The neighborhood range is updated

as t/MaxIt. For each dragonfly, if the neighborhood does not have any dragonflies,

a Lévy flight is employed as given below [Mirjalili, 2016]:

∆posb,∗(t) = posb,∗ · 0.01
r1A

r
1/B
2

, (6.23)

where r1 and r2 are random values between 0 and 1, and where B is a user-defined

parameter, and A is calculated as:

A =

[
Γ(a+B) sin (πB/2)

Γ[(1 +B)/2]B2(B−1)/2

]1/B
. (6.24)

If there is at least one dragonfly in the neighborhood, then weighted compound

vector of separation, alignment, cohesion, food source approach, and enemy escape

is calculated, and the position change of the dragonfly is as follows:

∆posb,∗(t) = αSepb+βAlnb+γCohb+η(food−posb,∗)+ϵ(enemy+posb,∗)+ω∆posb,∗(t−1)

(6.25)

where α, β, γ, η, ϵ are predetermined and tuned coefficients, ω is the inertia rate.

food and enemy are the positions of the dragonfly with the best and the worst

objective function values, respectively. Assume that Λb is the set of dragonflies in the

neighborhood of the bth dragonfly, and λb is the number of neighboring dragonflies.

39



The separation component (Sepb) avoids collision of the dragonflies, the alignment

(Alnb) and the cohesion (Cohb) components enable dragonflies to exploit the search

space with similar velocities and positions (Figure 6.3). The calculations of these

components follow the formulae below [Mirjalili, 2016]:

Sepb =
∑
b′∈Λb

posb,∗ − posb′,∗, (6.26)

Alnb =

∑
b′∈Λb

∆posb′,∗(t− 1)

λb

, (6.27)

Cohb =

∑
b′∈Λb

posb′,∗
λb

− posb,∗. (6.28)

Figure 6.3: Behavior of Swarms [Mirjalili, 2016]

Step 5: The position change is updated using the velocity and the inertia on the

position change such that

posb,∗(t) = posb,∗(t− 1) + ∆posb,∗ (6.29)

We keep the dragonfly positions between 0 and 1; therefore, if a dragonfly position

value in any dimension exceeds these values, the position is re-adjusted in a way to

be equal to the nearest boundary.

Step 6: Steps 2-5 are repeated until the maximum number of iterations is reached.
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The outcome of the algorithm is the dragonfly with the minimum trim loss, but it

will yield an extended and ordered version of the items. Any dragonflies with the

same objective function value represent a pattern.

Post-processing: This process breaks down the pattern and calculates the amounts

of items in each pattern. Assume that the dragonfly given in the illustrative example

is the best dragonfly and the outcome of the algorithm. This pattern uses two items

with width 3 and one item with width 5. Given the initial item set with lengths

{6, 5, 3}, the best dragonfly is decoded as [0, 1, 2]T .

It should be kept in mind that different extended dragonflies can result in the same

pattern. For example, let another dragonfly be [0.15, 0.25, 0.11, 0.56, 0.77, 0.08, 0.89].

This dragonfly also uses two items with length 3 and one item with length 5.

The DA creates a minimal pattern pool to be used as a parameter in the SP model

Eq.s 6.3-6.12. The produced minimal pattern pool is not necessarily proper. The

propriety of the pattern pool is determined as a result of the second phase, that is,

the Sample Average Approximation (SAA) algorithm.

6.2.2 Sample Average Approximation (SAA)

The SAA is implemented for large-size stochastic problems which cannot be solved

easily by using exact solution methods because of the large number of scenarios.

SAA approximates the objective function by using generated samples of scenarios.

The SAA generated N realizations of (n = 1, 2, . . . , N) of the random vector ξ.

These realizations are denoted by ξ1, . . . , ξN . Then, the expectation EξQ(x, ξ) is

approximated by the sample average function N−1
∑N

n=1 Q(x, ξn) . Finally, the

original problem (6.3) - (6.12) is approximated by the SAA problem [Kazemi Zanjani

et al., 2013], [Shapiro and Homem-de Mello, 1998], [Aydin, 2012], where Q(x, ξ)

is the objective function involving decision variables x and random variables ξ.

According to Shapiro [Shapiro, 2005], the SAA provides good convergence and robust

statistical inferences including an analysis of error, stopping rules validation, and it
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is easy to implement with a commercial software. The steps of the SAA are given

as follows [Aydin, 2012]:

Initialize: Generate G, (g = 1, 2, . . . , G), random samples from the distribution of

random variable ξ , each of them is independent and identically distributed, and has

a sample size N where |Ng| = N . Also generate sufficiently large reference sample

where N ′ >> N .

Step 1: Solve the problem (6.30) and optimal objective function value vg and

candidate solution xg for each g.

min
x

CTx+
1

|Ng|

N∑
n=1

Q(x, ξn) (6.30)

Step 2: Compute v̄G average (6.31) which is the unbiased estimator of the objective

function of the original problem v∗ and variance σ̂2
vG (6.32) of the objective function

values obtained in the first step.

v̄G :=
1

G

G∑
g=1

vg (6.31)

σ̂2
vG :=

1

G(G− 1)

G∑
g=1

(vg − v̄G)2 (6.32)

Step 3: Solve the problem g times with sample size N ′ (6.33) by using each candi-

date solution x̄g of each g in order to find v̂g for each g. And calculate σ̂2
v̂g (6.34).

v̂g := min
x

CT x̄g +
1

|N ′|

N ′∑
n=1

Q( x̄g, ξn) (6.33)

σ̂2
v̂g :=

1

N ′(N ′ − 1)

N ′∑
n=1

(CT x̄g +Q( x̄g, ξn) − v̂g) (6.34)
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Step 4: Compute the estimation of optimality gap for the candidate solution

gapg(x̄
g) (6.35) and the variance of the optimality gap σ̂2

gapg (6.36) in order to analyze

the quality of the candidate solution.

gapg(x̄
g) = v̂g − v̄G (6.35)

σ̂2
gapg = σ̂2

v̂g + σ̂2
vG (6.36)

Step 5: Select the xg as an approximate solution of the SAA problem (xSAA) that

provides best v̂g i.e xSAA = argmin vSAA where vSAA = min
g=1,...,G

v̂g.

According to Ahmed and Shapiro [Ahmed and Shapiro, 2002], the lower bound for v∗

is provided by v̄G, and the upperbound for v∗ is obtained by v̂g. The optimal objec-

tive function value of the SAA problem converges to the optimal objective function

value of the original problem given in Eq. (4.1) with probability 1.00 as sample size

N goes to infinity (N → ∞) [Shapiro, 2003]. A larger sample size ensures a stricter

approximation. However, it also increases the computational complexity [Shapiro,

2005]. Therefore, instead of using a large sample size, using small independent and

identically distributed (i.i.d) samples is more efficient. The SAA algorithm is based

on this principle. The complexity increases exponentially as the sample size in-

creases, especially for the integer problems [Kleywegt et al., 2002]. This increase in

complexity eventually causes a trade-off between quality of the approximation and

computational complexity.

6.2.3 The Two-Phase Solution Methodology

As shown in Fig. 6.1, we implement an iterative approach in two phases: i) the

DA, and ii) the SAA algorithm. In a nutshell, the DA initially uses the information

of items and products to return a set of patterns. This set of patterns is called a

minimal pattern set. This pattern set is fed into the SAA to obtain the upperbounds
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of production amounts, as shown in Fig. 6.4. This upperbound also serves as a

reference for the highest production amount. If the patterns found cannot satisfy

this upperbound due to the availability constraints, then, the pattern set cannot be

deemed proper. To obtain a proper minimal pattern set, the DA is rerun to produce

new patterns. These new patterns are, again, fed into the SAA. This recursion

continues until convergence is obtained. We define convergence as no further change

in two aspects: i) the minimal pattern set, and ii) the upperbound of production.

Figure 6.4: The recursion between the DA and the SAA

The pseudocode of the methodology is given in Algorithm 5. Below, we define the

parameters and variables used in the pseudocode:

zSP : The objective function value of the stochastic model given through Eq.s 6.3-

6.12.;

xg
jk : the candidate solution xjk (the amount of pattern j in product k) of sample

g, obtained by solving for zSP , g = 1, . . . , G;

prodLevelgk: the total production amount for product k ∈ K obtained by
∑

j∈J x
g
jk

for sample g, g = 1, . . . , G;

maxProdLevelsk: the maximum total production for product k ∈ K among all

samples maxg=1,...,G prodlevelgk = maxg=1,...,G

∑
j∈J x

g
jk;

stepsizek: the expansion amount in the search space for product k ∈ K;

upperBoundk: the extended maximum production amount for product k ∈ K cal-

culated by summing stepsizek and maxProdLevelsk;
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zdet: the objective function of deterministic counterpart model Eq.s 6.13-6.19;

outputk: the total production for product k ∈ K obtained through the optimal

solution
∑

j∈J x
∗
jk of zdet Eq.s 6.13-6.19. And finally, t is the iteration number.

We explain the detailed steps of the proposed approach as follows:

1. Generation of the initial minimal pattern set

In the proposed approach, the DA initially obtains a pattern set P ∗
k (E) for

product k, k ∈ K. It searches the patterns with the minimal trim loss, the extra

width of the product that exceeds the width threshold, Lk, for each product. A

pattern can be minimal for at least one product; some patterns can be common

among multiple products. Using one pattern for multiple products can decrease

the set-up cost for each pattern change during production. Therefore, we

aggregate all patterns for all products into a minimal pattern set pool, P ∗(E) =⋃
k∈K P ∗

k (E). Additionally, we generate a binary pattern-product matrix, ∆,

to tabulate the matches between patterns and products. δjk = 1 if pattern

j is a minimal pattern for product k, and 0 otherwise. The outputs of DA

are P ∗(E) and ∆. Both outputs of this phase serve as input parameters for

the second phase. Due to the wordiness of the term and in the interest of

simplification, we will refer to a “minimal pattern set” as simply a “pattern

set” further on.

2. Obtaining the initial production amounts

As aforementioned, the mathematical model receives P ∗(E) and ∆ as param-

eters. If we run the SAA algorithm with this pattern set, we reach the optimal

solution for only this pattern set. A different pattern set could return a differ-

ent result that is optimal for this particular set. Therefore, the initial pattern

set does not provide direct answers to the following questions:

(a) Does the pattern set involve the pattern combinations that produce the

products at a global optimal cost?

(b) How does the global optimal solution compare to the optimal solution of

this pattern set?
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1 START ;

2 Determine parameters;

3 Set b′i = bi, bi = ∞, ∀i, iteration(t) = 0 ;

4 Run the DA to generate the pattern set P ∗(E) that has a minimum trim loss ;

5 Run the SAA submodule;

6 while maxProdLevelsk(t) > maxProdLevelsk(t− 1) do

7 while ∀k, upperBoundk > outputk do

8 Run the DA to generate the additional pattern set P ′(E) that has a

minimum trim loss;

9 P ∗(E) := P ∗(E)
⋃
P ′(E);

10 solve deterministic min SSP using P ∗(E); xjk := argmin(zdet) Eq.s 6.13-6.19 ;

11 Compute ∀k, outputk =
∑

j∈J xjk

12 end

13 Set minimal proper pattern pool P ∗
p (E) := P ∗(E) ;

14 bi = bi
′,∀i , t = t+ 1;

15 Run the SAA submodule (Section 6.2.2);

16 end

17 STOP;

18 SAA Submodule

1 Run the SAA (Section 6.2.2), xgjk := argmin
g=1,...,G

(zSP ), Eq. 6.30, using P ∗(E) or if

available, P ∗
p (E) ;

2 Obtain candidate production amounts for each sample;∀g,

prodLevelgk(t) =
∑

j∈J x
g
jk;

3 Select maximum production amount for each product; ∀k

maxProdLevelsk(t) = max(prodLevelgk(t));

4 Compute upperBound(t) vector using step size; ∀k,

upperBoundk(t) = maxProdLevelsk(t) + stepsizek;

5 Solve deterministic min SSP using P ∗(E); xjk := argmin(zdet) ;

6 Compute ∀k, outputk =
∑

j∈J xjk ;

7 end

Algorithm 5: The two-phase solution methodology
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(c) Are the item availabilities enough to produce optimal amount?

Therefore, the quality and the sufficiency of this initial pattern set are un-

known. For this purpose, we first calculate a sufficiently high reference pro-

duction amount for all products. As the iterations go on, we observe the

changes in the production amounts and the growth in the pattern set. Based

on these changes, we can clarify the answers to the questions above throughout

iterations.

Recalling the definition, for a pattern set to be proper, the patterns in a set

should have sufficient availability to produce given target production amounts.

A non-proper pattern set indicates that the patterns from the DA are insuffi-

cient, and we should generate more patterns to produce the target production

amount. Therefore, it is not possible to comment on P ∗(E) being proper

without any target production amount.

To this end, the first recursion of the SAA (Eq.s 6.3-6.12) solves a relaxed

model with no availability constraints (by ignoring the constraint given in

Eq. 6.4) to obtain initial reference production amounts for each sample as

presented in Fig. 6.4. The results reflect the optimal production amounts, given

the pattern set on hand. The main purpose of ignoring the item availability

constraint given in Eq. (6.4) is two-folds: i) to observe the optimal production

amounts if there were an unlimited supply of items, and ii) later to check

if these amounts can be produced with the available items. We generate G

number of samples, each with a sample size N to apply the SAA approach

that solves the SMIP presented in Section 6.1. Each sample may result in a

different solution (i.e. varying optimal production amount). Consequently, we

may have different production amounts (candidate solutions) for each sample

denoted by prodLevelgk. P ∗(E) being proper (i.e. identical to P ∗
p (E)) means

that it constitutes a proper pattern set for all scenarios and samples. If P ∗(E)

can produce the highest production amount (maxProdLevelsk), then it can

produce all candidate solutions. Therefore, as the initial reference level, we

calculatemaxProdLevelsk = max{g:g=1....,G}prodLevels
g
k. Fig. 6.6a shows such

production levels for two products. Fig. 6.6a displays the maximum production
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levels for two products.

3. Calculation of the upperbounds using the step size The previous step calcu-

lates an optimal production amount for each product based on the pattern

set on hand. Three possibilities exist regarding the quality of this solution:

i) the items cannot produce the optimal amount for this pattern set due to

their availabilities; new patterns may or may not improve the solution, ii) the

available items can produce the optimal amounts, but the solution could be

improved if there were more patterns available, or ii) the available items can

produce the optimal amounts, and it is indeed the optimal solution, and there-

fore, any pattern changes would not affect the solution. In either possibility,

new patterns must be generated to observe which case the solution fits. We

construct a trigger for new pattern generation to understand if the skiving

process requires more patterns than we have on hand.

This trigger entails increasing the maximum production amounts by a step

size parameter. The step size works as a preventative measure, especially

when the availabilities are sufficient to produce the upperbounds. Producing

the upperbounds indicates that more patterns could extend the search space

and find a better solution with less cost than the current one. (Fig. 6.6b) for

Figure 6.5: The expansion of the search space at each iteration
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a snapshot of the production amount and the upperbound, and Fig. 6.5 for

changes between two consecutive iterations.)

Figure 6.6: Step-by-step search space extension to trigger the generation of new patterns.

4. Checking for propriety of the pattern set (The inner while loop in Alg. 5)

In the next step, we include the item availability constraint in Eq. (6.4) to

check whether the pattern set on hand can produce this upperbound. In other

words, the propriety of P ∗(E) is checked for each upperbound by using the de-

terministic model Eq.s 6.13-6.19 presented in section 6.1.1. The deterministic

model, itself, is not used to solve the original stochastic problem, but it aids

in deciding whether producing the upperbound is feasible.
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There are two possible outcomes; the items can or cannot produce the upper-

bound. If the available items cannot produce the upperbound, the DA is rerun

to produce more patterns. In Fig. 6.5c, the item availabilities cannot produce

the upperbounds, and the availabilities lead to another solution.

While generating additional patterns, denoted by the set P ′(E), the new pat-

terns should not involve any unavailable items. Similarly, the DA should not

reproduce any already-existing patterns. For this reason, we eliminate any

information regarding unavailable items from the inputs and only present in-

formation related to items that are still available. This adjustment contributes

to the generation of different pattern configurations. The DA produces the pat-

tern set P ′(E) for every product, and the new minimal pattern set is joined to

the pool as P ∗(E) := P ∗(E) ∪ P ′(E). Similarly, the pattern-product matrix

∆ is updated by adding the new patterns. The pattern generation recursion

continues until either one of the following conditions is satisfied:

• The DA has produced numerous patterns, but the production of upper-

bound is infeasible. The total width of the remaining items is less than

the product width, so the pattern set is already exhaustive.

• The most recent P ∗(E) can produce the upperbounds, and the minimal

pattern set becomes proper. In this case, we move on to the next step.

In either case, we pass on to the next stage, which is solving the original

problem with SAA. However, if the upperbound is infeasible, we run the SAA

once to obtain the final results, knowing that we cannot generate any more

patterns. If P ∗(E) is proper, we continue with the recursions.

In Fig. 6.6c, the items cannot produce the upperbounds or the optimal amount,

per se. Therefore, the initial pattern set is not proper. We rerun the DA until

the upperbounds can be produced. Fig. 6.6d shows such a case.

5. Solving the two-stage stochastic programming with recourse (The outer while

loop in Alg. 5)

The SAA is run with the most recent pattern set on the original problem

with availability constraints given through Eq.s 6.3-6.12 as mentioned in Sec-

tion 6.2.3. This recursion analyzes whether the newly-added patterns change
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the previous optimal solution and the upperbound. If the upperbounds are

different from the previous iterations, the new minimal pattern set enables dif-

ferent pattern-product configurations than previous iterations. Fig. 6.6e shows

the new solution with the most recent pattern set and the item availabilities.

Based on this solution, Fig. 6.6f finds the new upperbounds. The upperbounds

are different from the ones found in Fig. 6.6b; hence, the recursion starts.

6. Recursion until convergence

The recursion between the pattern generation (Step 4) and the SAA (Step 5)

continues until i) no further patterns can be obtained, or ii) the production

amounts and the upperbounds remain the same between two consecutive iter-

ations in which the original problem (problem with availability constraint) is

solved in each iteration. If there is no further change in these outputs, the pat-

tern set is sufficient to produce the optimal amounts, and the optimal solution

is obtained.

In Fig. 6.6g, we check if the new upperbounds can be produced with the

pattern set from the previous iteration. If not, the DA produces new patterns

as mentioned in Step 4. However, Fig. 6.6g shows the augmented set that can

solve the upperbounds. When P ∗(E) is proper (P ∗
P (E)), the SAA is rerun to

find the optimal solution with the addition of new patterns as in Fig. 6.6h. The

solution found in Fig. 6.6h is the same as in the previous iteration (given in

Fig. 6.6e. The addition of new patterns has not changed the optimal solution.

The production amounts and the upperbounds have converged. Therefore, we

stop the algorithm and accept the final solution as in Fig. 6.6i.

With these recursions, the boundaries of the search space are dynamically updated

through iterations by using step size (see Fig. 6.6). P ∗
p (E) is obtained for each

production amount of each sample by checking if P ∗(E) can produce the upper-

bounds. Finally, we obtain a solution of the original stochastic problem [Shapiro

and Homem-de Mello, 1998] as the SAA output. The recursive structure is also

visualized in Fig. 6.4.
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6.3 An Illustrative Example

In this section, we present a small instance of E := (m,K, l, L, b) as a stochastic

and multi-product version of the SSP. In this example, E:=(3, 2, (500, 400, 300),

(1000, 1500), (45, 65, 85)). The demand random variables are D1 ∼ Pois(10) and

D2 ∼ Pois(20), respectively. The standard deviations for the demand is, therefore,

σ1 ≈ 3.16 and σ2 ≈ 4.47. Let dsk denote the value of the demand for product

k ∈ K under scenario s ∈ S. Furthermore, assume that the random approved

product rate is Υ ∼ N (0.95, 0.0001). CPr = 100 Euros per product, CO = 60 Euros

per pattern change, CR = [ 75 60 45] Euros for each item, i ∈ I. Moreover, let

CH = [ 320 480] and CB = [ 800 1200] Euros. Initially, we will assume the step

size for each product arbitrarily as 2σ1 and 3σ2 and then explain the impact of the

step size on the solution quality. The following illustrate the methodology based on

this example:

Iteration t= 0:

1. The DA is run to generate the minimal pattern set P ∗(E). Matrices a and

∆ are presented below. Each column of a represents a pattern and each row

represents an item. Consequently, each cell aij indicates the amount of item i

used in pattern j.

a =


0 0 1 2 3

1 3 1 0 0

2 1 2 0 0

 , ∆ =

1 0 0 1 0

0 1 1 0 1

T

2. The SAA is applied to the relaxed problem (without the item availability con-

straint given in Eq. 6.4) withG = 10. Initial reference values for prodLevelsgk(t)

and maxProdLevelsgk(t) for all k in all g are as follows:
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prodLevels(t) =



10 21

10 20

10 21

10 22

11 21

10 21

10 20

10 20

10 21

10 20



=⇒ maxProdLevels(t) =
[
11 22

]
.

3. Upperbounds for each product (upperBoundk) are computed such that

upperBound(t) =
[
11 + 2σ1 22 + 3σ2,

]
making upperBound1(t) = 17 and upperBound2(t) = 33.

4. The deterministic SSP model in Eq.s 6.13-6.19 is used to check whether the

minimal pattern set on hand satisfies the upperbound Eq. 6.15. If not, the DA

would have to generate an additional minimal pattern set until the upperbound

can be produced. In that case, the proper minimal pattern set is produced.

In our example, the output (solution) of the deterministic SSP indicates that

P ∗
p (E) was obtained as follows.

a =


0 0 1 2 3

1 3 1 0 0

2 1 2 0 0

 , ∆ =

1 0 0 1 0

0 1 1 0 1

T

,

and by using P ∗(E) the total production amount for each product is obtained.

x =

10 0 0 7 0

0 2 31 0 0

T

=⇒ output =
[
17 33

]
, then since

output =
[
17 33

]
≥ upperBound =

[
17 33

]
, P ∗

p (E)=P ∗(E) is obtained.

Iteration t=1:

Since the minimal pattern set is proper, we move on to generate the SAA re-

sult and observe if there is any change in the upperbounds.
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5. The SAA is applied to the original problem (with the availability constraint

Eq. 6.4). ProdLevels(t), maxProdLevels(t), and upperBound(t) are com-

puted.

prodLevels(t) =



10 21

10 20

10 21

10 22

11 21

10 21

10 20

10 20

10 21

10 20



=⇒ maxProdLevels(t) =
[
11 22

]
=⇒

upperBound(t) =
[
17 33

]
.

6. We continued the computations, and in iteration t=2, the results of the SAA

has not changed, and maxProdLevelsk(1) = maxProdLevelsk(2),∀k, then we

stop the algorithm.

maxProdLevels(1) =
[
11 22

]
≥ maxProdLevels(2) =

[
11 22

]
.

Recall from Section 6.2.2, the SAA approach searches for the solution of Ng in-

stances having N scenarios each given in the model presented in Eq.s (6.3)-(6.12).

The candidate solutions are evaluated by solving the SAA algorithm with each so-

lution obtained from Ng instances in the reference sample N ′. In this illustrative

example, the number of samples (G), the sample size for each sample (N), and the

reference sample size (N ′), the candidate solutions, and the summary statistics for

the objective function values are presented in Table 6.2. Monte Carlo sampling is

used [Shapiro and Homem-de Mello, 1998] in which the sampling takes place before

the solution procedure.

The DA is coded in Matlab R2017b, and the SAA is implemented in GAMS 34.2.0.
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Table 6.2: SAA illustrative example with Monte Carlo Sampling N=100, N ′=400, G=10

g X11 X32 vg v̂g σ̂2
v̂g gapg(x̄

g) σ̂2
gapg

1 10 21 13662 14047 28934 318 36376

2 10 20 14075 14159 35391 430 42833

3 10 21 13681 14047 28934 318 36376

4 10 22 13657 14085 23186 356 30628

5 11 21 13982 14063 26975 334 34417

6 10 21 13546 14047 28934 318 36376

7 10 20 13279 14159 35391 430 42833

8 10 20 13691 14159 35391 430 42833

9 10 21 14176 14047 28934 318 36376

10 10 20 13537 14159 35391 430 42833

v̄G=13729

σ̂2
vG=7442

CPLEX is used as the solver in GAMS. The algorithm is executed on a computer

with Intel core i5-3230M, 2.60 GHz CPU, 4 GB RAM. The candidate solutions

and statistical computations of objective function values are presented in Table 6.2.

According to this table, the first, third, sixth, and ninth samples have the smallest

expected total costs as shown in Table 6.2. Moreover, the convergence seems more

robust in these samples than the others since they have smaller optimality gaps

and smaller variances for the optimality gap than the other samples. Therefore,

the results of the first, third, sixth, and ninth samples can be denoted as the best

candidate solutions. According to these results, the production amounts are x1 = 10

and x2 = 20 or 21. G, N , N
′
can be increased to obtain a closer convergence.

Nonetheless, in response to increasing sample sizes, the increase in the computational

complexity should not be overlooked.

An important point is that the SAA method solves the SMIP problem to optimality

under the pattern set generated by the DA. Hence, different pattern sets may lead to

different optimal solutions. Because the DA performance directly affects the solution
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quality, parameter tuning becomes an important aspect for the DA.

6.4 Numerical Example and Results

6.4.1 Numerical Example and Discussions

In this section, a large-sized multi-product stochastic SSP and its results are pre-

sented. The instance SSP E := (m,K, l, L, b) is E := (50, 2, l, (1200, 1300), b) where

D1 ∼ Pois(150), D2 ∼ Pois(200) and σ1 ≈ 12.24σ2 ≈ 14.44 for each product.

The random approved product rate is Υ ∼ N (0.95, 0.0001). CPr = 100 Euros per

product, CO = 60 Euros per pattern change, the cost of each small item is computed

as CR
i = ((li/1000)*3000 m)*(0.05 Euros / m2), respectively for i ∈ I. The width

of small items and products are denoted in millimeters. Moreover, CH=[320 480]

Euros per product and CB=[800 1200] Euros per product. l and b vectors are

presented as:

lT=[197 195 194 191 185 173 171 168 164 160 156 155 153 152 138 133 131 130 128

120 116 115 114 105 101 99 98 96 91 89 86 76 75 66 64 60 56 49 39 36 31 30 23 19

14 13 12 11 9 6];

bT=[200 300 300 300 300 300 300 300 300 300 300 300 300 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100];

The parameters of the SAA are G=30, N=100, and N ′=400. Similarly, the parame-

ters of the DA are B = 0.05, α = 0.5, β = 0.03, γ = 0.07, η = 0.05, ϵ = 0.05, ω=0.05.

Finally, the step sizes are 0.6σ1 and 0.75σ2.

We run the algorithm three times with different Λ′
b=(20,50,70) andMaxIt=(10,20,30)

values in order to capture the behavior of the SAA for different P ∗
p (E). The statistics
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for the computational complexity of the SAA and their deterministic equivalents,

and trial results are presented in Table 6.3.

Table 6.3: The computational complexity and results for N=100, N ′=400, G=30

Trial V ariables Constraints g v̂best σ̂2
v̂best

gapbest(x̄
g) σ̂2

gapbest
CPU time (sec.)

1 1510 2000 8 121562 241086 203 296115 53.6916

2 2888 3430 7-8 121536 229547 213 284571 61,0528

3 3895 4475 7 121835 241086 228 296011 74.6621

The objective function values, the optimality gaps, and the variances of the gaps are

highly close to each other. Because the second trial has the smallest expected total

cost, we can choose P ∗
p (E) of the second trial. The candidate solution of seventh

sample with minimum v̂g can be determined as the best solution in the second trial,

i.e xSAA = argmin vSAA where vSAA = min
g=1,...,G

v̂g. The obtained solution is presented

at Table 6.4:

Table 6.4: Frequency of patterns in xSAA

Product(k)/Pattern(j) 2 12 18 19 27 40 43 44

1 26 - - - 22 - - 107

2 - 51 20 56 - 78 6 -

The used amount of items are presented as a vector rSAA =[113 185 22 78 84 245 0

210 298 299 248 107 129 0 0 77 51 0 0 22 99 100 20 51 52 51 0 100 26 71 6 99 100

77 0 26 54 92 0 74 48 26 74 56 0 78 51 6 0 0].

One of the contributions of our algorithm is to obtain preferred P ∗
p (E) by using the

minimization model Eq.s 6.13-6.19 which controls the properity of the P ∗(E). In

our 50-item example, the computational time given in Table 6.3 displays the time

required by the initial proper minimal pattern set. Even with the enlarged pattern

sets, the computational time is around two to three minutes.

We also conduct a sensitivity analysis to analyze the impact of the step size through

different multipliers for σ. Given that all other parameters and random variable

values remain the same, the comparisons regarding various statistics are presented

57



Table 6.5: Analysis of different step sizes

Stepsize1 = 13σ1 10σ1 6.5σ1 3.25σ1 1.25σ1 0.6σ1

Stepsize2 = 16σ2 12σ2 7.5σ2 3.75σ2 1.5σ2 0.75σ2

vSAA 121523 121559 121547 121597 121618 121593

σ̂2
v̂SAA 229468 229547 231179 230194 230470 229401

gapSAA 175 191 168 176 175 191

σ̂2
gapSAA

280227 285398 286006 284908 282488 283713

CPU time (sec) 258 102 76 70 74 55

in Table 6.5. The primary effect of the step size is on the proper minimal pattern

set and the computational time. A larger step size yields a higher production up-

perbound, which, as a result, requires a more extensive pattern set. The increase

in the pattern set also requires a higher computational time. However, the most

important performance measures are i) the expected total cost, ii) the variance of

the total cost, iii) the optimality gap, and iv) the variance of the optimality gap.

Table 6.5 shows the average mean and variance of the objective function values and

the optimality gaps, and the average CPU time (in terms of seconds) of 30 runs of

the algorithm. For the sake of fair comparison, all scenarios are kept the same for

every step size value. Table 6.5 visualizes the effect of the step size on the average

objective function value and the CPU time. As can be seen from the table, when

the step size is increased more than 10 times, the computational time increased

logarithmically. However, the decrease in the objective function value as the step

size increases might not be as significant compared to the increase in the compu-

tational time. The improvement in the objective function value remains less than

0.1%. Another performance measure is the service level, i.e., the average rate of

met demands. Table 6.6 shows the average service levels for different step size mul-

tipliers. One way of determining the step size is through experimentation. We also

recommend choosing several step size multipliers with respect to covering a thresh-

old service level (e.g., 95%) while observing any significant change in the objective

function value. In our example, assuming a 95% service level for each product leads

to a selection of 1-1.25 (recommended) for the σk multipliers of each product given
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that the cost decrease might not be significant for higher multiplier values.

Step size multiplier

for product 1

(σ1)

upperbound

for product 1

(units)

Service level

for product 1

(%)

Step size multiplier

for product 2

(σ2)

upperbound

for product 2

(units)

Service level

for product 2

(%)

13 314 100 16 430 100

10 277 100 12 378 100

6.5 235 100 7.5 315 100

3.25 196 99.99 3, 75 262 99.99

1.25 172 96.46 1.5 231 98.55

0.6 165 89.58 0.75 221 93.39

Table 6.6: Service levels with respect to the step size

Even though this study is not a multi-objective analysis of the stochastic SSP, it

also controls the trim loss in the meantime. While the main objective of the SAA

is to minimize the total cost incurred throughout the production process, the DA

also contributes to minimizing the trim loss. The variable δjk only allows minimal

patterns to be used so that the SAA model does not allow any non-minimal patterns

to be included in skiving even if the end product satisfies the given thresholds. A

counter argument for this structure is the case of a very high set-up cost. If the

set-up cost is considerably high, the model may choose to sacrifice the trim loss,

and the longest pattern can be used to manufacture all products. In this way, the

model avoids paying expensive set-up costs when patterns change. In such cases,

δjk = 1 for shorter products even though the pattern is not minimal. For example,

if the set-up cost were 6000 instead of 60, then the patterns for the second product

(with width 1300) could be used for the first product (with width 1200).

6.4.2 Performance Analysis for the DA

While the first phase of the algorithm uses a metaheuristic, the SAA in the second

phase implements MIP under various scenarios. Hence, the second phase solves

the problem to optimality under given parameters and scenarios. If the number of

samples and scenarios is sufficient, by the law of large numbers, the result converges

to the optimal solution. Nonetheless, the parameters fed into the second phase are

the results of the DA which does not guarantee the optimal pattern set. Hence, in
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Number of dragonflies: 20 Number of dragonflies: 50 Number of dragonflies: 100

α + β + γ = 1 α + β + γ = 1 α + β + γ = 1

α β γ
Average objective

function value
α β γ

Average objective

function value
α β γ

Average objective

function value

0.1 0.1 0.8 121579 0.1 0.1 0.8 121442 0.1 0.1 0.8 121602

0.1 0.3 0.6 121498 0.1 0.3 0.6 121625 0.1 0.3 0.6 121615

0.1 0.5 0.4 121586 0.1 0.5 0.4 121502 0.1 0.5 0.4 121590

0.1 0.7 0.2 121639 0.1 0.7 0.2 121472 0.1 0.7 0.2 121597

0.3 0.1 0.6 121627 0.3 0.1 0.6 121541 0.3 0.1 0.6 121588

0.3 0.3 0.4 121542 0.3 0.3 0.4 121688 0.3 0.3 0.4 121609

0.3 0.5 0.2 121482 0.3 0.5 0.2 121516 0.3 0.5 0.2 121523

0.5 0.3 0.2 121493 0.5 0.3 0.2 121620 0.5 0.3 0.2 121548

0.7 0.2 0.1 121466 0.7 0.2 0.1 121694 0.7 0.2 0.1 121662

α + β + γ < 1 α + β + γ < 1 α + β + γ < 1

0.3 0.03 0.07 121590 0.3 0.03 0.07 121405 0.3 0.03 0.07 121602

0.3 0.05 0.05 121667 0.3 0.05 0.05 121536 0.3 0.05 0.05 121594

0.3 0.07 0.03 121676 0.3 0.07 0.03 121533 0.3 0.07 0.03 121480

0.5 0.03 0.07 121542 0.5 0.03 0.07 121782 0.5 0.03 0.07 121718

0.5 0.05 0.05 121662 0.5 0.05 0.05 121623 0.5 0.05 0.05 121503

0.5 0.07 0.03 121542 0.5 0.07 0.03 121669 0.5 0.07 0.03 121494

0.7 0.03 0.07 121542 0.7 0.03 0.07 121542 0.7 0.03 0.07 121534

0.7 0.05 0.05 121667 0.7 0.05 0.05 121666 0.7 0.05 0.05 121491

0.7 0.07 0.03 121499 0.7 0.07 0.03 121604 0.7 0.07 0.03 121528

Table 6.7: Performance analysis for the parameters of the DA

this subsection, we analyze the effect of the DA parameters on the objective function

value. The literature recommends that α+β+γ = 1 [Mirjalili, 2016], hence the first

9 rows of Table 6.7 analyze this case, and the last 9 rows use α+β+γ < 1 for slower

convergence and to avoid jumping over the optimal solution. As can be seen from

the table, the mean absolute difference rate between the highest and lowest values

of the average objective function is approximately 0.3%. For this problem, the DA

is robust against parameter changes and produces an abundance of patterns.

Further analysis were carried about the run time of the algorithm by increasing the

number of item types in Figure 6.7 and the number of product types in Figure 6.8.

According to both graphics, when the number of item types and the number of

product types increase, the run time increases as shown in these figures. Next, we

increase the means of demand random variables of both product types by using sev-

eral growth rates to investigate the relation between run time and demand quantity

(Figure 6.9).
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Figure 6.7: CPU time (sec) vs number of item types

Figure 6.8: CPU time (sec) vs number of product types

For further analysis, experiments for several demand levels were carried out to ana-

lyze and compare the performance of Particle Swarm Optimization algorithm (PSO)

and DA for the model Eq.s 6.13-6.19 (Table 6.8). For each demand level, PSO and

DA are run five times, and we recorded the minimum results among five runs for the

PSO and DA. According to the results, for the minimization of the total cost, DA

is superior to the PSO for every demand level in the experiments. Moreover, CPU

times of the DA are more stable than the CPU times of the PSO. Especially for the

high demand levels there is a big difference in the terms of run time. For the high
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Figure 6.9: CPU time (sec) vs growth rates for the demand means of two product types

Table 6.8: Comparison of the PSO and DA for the Total Cost Minimization

Demand PSO DA

Product 1 Product 2 Total cost CPU (sec)
Lack of

Product 1

Lack of

Product 2
Total cost CPU (sec)

Lack of

Product 1

Lack of

Product 2

25 50 22050 8.34 0 0 21870 20.03 0 0

50 25 21555 7.55 0 0 21499 20.4 0 0

50 50 28870 9.51 0 0 28870 19.03 0 0

100 50 43350 12.55 0 0 42930 19,83 0 0

50 100 44100 25.06 0 0 43680 19.38 0 0

100 100 58220 25,95 0 0 57620 19.94 0 0

150 100 72340 55.39 0 0 72340 37.29 0 0

100 150 73510 109.83 0 0 72550 37.72 0 0

150 150 88170 60.96 0 0 87510 53.55 0 0

200 150 102770 533.53 0 0 101810 51,86 0 0

150 200 - - - - 102920 68.13 0 0

200 200 - - - - 116295 229.58 1 3

demand levels, the PSO generates a large number of unnecessary patterns because

generated patterns seem to be similar. It causes the high run time or licence error

in gams because of the high number of variables. On the other hand, DA seems

to generate patterns with different configuration because DA has better exploration

feature.
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7. LEXICOGRAPHIC METHOD FOR THE

MULTI-OBJECTIVE CASE FOR THE DETERMINISTIC

SSP AND HEURISTIC APPROACH

7.1 Formulation of the Multi-objective version of SSP

We primarily provide the nomenclature for the multi-objective SSP mathematical

model in Table 7.1.

Table 7.1: Nomenclature for Multi-objective SSP

Symbol Abbreviation

Indices

i index of (small) item types , i ∈ I := {1, ...,m};

j index of minimal patterns, j ∈ J∗ := {1, ..., J};

p the index of the objective functions, p ∈ P := {1, ..., k};

Parameters

aij the number of item type i in pattern j (being generated by Column Generation);

L threshold (lower bound) width of product;

cj trim loss (waste) for pattern j;

li width of item type i;

d the demand of product;

M the large number for each product such as M ≥ d;

sj Number of items in pattern j;

bi the available amount of item type i;

wj Width of pattern j;

Decision variables

yj a binary variable that indicates whether a pattern j is used or not (number of set-ups);

xj the frequency of pattern j;

We transform the original SSP into a minimization version of SSP instead of an out-

put maximization version by including trim loss, number of items in a product, and
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minimization of total number of set-ups. One important objective is to minimize

the total trim loss in the skiving process in which the trim loss of each pattern can

be determined as the waste part between the width of a pattern wj and product

threshold width L and calculated as cj = wj − L. Moreover, another objective is

minimizing the total number of set-ups in a skiving process. Set-up can be deter-

mined as the pattern change and represented as the binary variable yj that tracks

if pattern j is used or not. Finally, use of the patterns with a minimum number

of items (number of welds) is another objective. The number of items in a pattern

is represented as sj. Usage of pattern with many welds for the product effects the

quality of the product negatively. If number of welds in a product increases, the

quality of the products decreases. There may be several quality problems such as

printing difficulties on the product, breaks in product rolls from the welds. These

are potentially competing objectives in a production process. Therefore, we consider

the problem as a multi-objective problem. The objective functions are given below;

First objective function is minimizing the total trim loss. Trim loss for each product

is represented by cj.

min z1 =
∑
j∈J∗

cjxj, (7.1)

Second objective function is minimizing the number of items (welds) in the product.

The number of items in the pattern is represented by sj. Then, it helps us to use

patterns with minimum items or welds.

min z2 =
∑
j∈J∗

sjxj, (7.2)

Third objective function is minimizing the total number of set-ups in the production

process.
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min z3 =
∑
j∈J∗

yj (7.3)

Finally, by using Eq.s (7.1), (7.2) and (7.3) the multi-objective model of the new

version SSP with the instance of E := (m, l, L, b) is given through Eq.s(7.4)-(7.12).

min z1 =
∑
j∈J∗

cjxj (7.4)

min z2 =
∑
j∈J∗

sjxj (7.5)

min z3 =
∑
j∈J∗

yj (7.6)

s.t.
∑
j∈J∗

aijxj ≤ bi, ∀i ∈ I (7.7)

∑
j∈J∗

xj ≥ d, (7.8)

xj ≤ Myj ∀j ∈ J∗, k ∈ K (7.9)

xj ∈ Z+, ∀j ∈ J∗, (7.10)

aij ∈ Z+, ∀i ∈ I, j ∈ J∗ (7.11)

yj ∈ {0, 1}, ∀j ∈ J∗ (7.12)

Constraint (7.7) ensures that available items are sufficient for the produced amount

by multiplying the number of pattern replications and the number of items required

in each pattern. Constraint (7.8) balances the production according to demand. The

set-up constraint given in Eq. (7.9) states if a pattern is used, then a set-up is re-

quired due to a pattern change. Moreover, it can be used up to M times, where M is

an upperbound for the number of replications of pattern j. Constraints (7.10), (7.11)

are integrality and non-negativity constraints, and constraint (7.12), imposes that

yj is binary variable.
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7.2 The Proposed Solution Methodology for the Multi-objective SSP

In this research, lexicographic method is implemented where objective functions

are ranked in the order of importance, and the solution of the previous objective

becomes a constraint for the latter objective [Marler and Arora, 2004]. First, Column

generation (CG) [Zak, 2003] is used to obtain the minimal pattern set with the

minimum trim loss. Next, a minimal pattern set which is found by CG is used as

the parameters (aij) for the IP in order to solve each objective function. Logic of

the Lexicographic Method for multi-objective problem is presented as follows:

7.2.1 Lexicographic Method

A multi-objective program (MOP) as: [Samanlioglu et al., 2008]

min F (x) = F1(x), F2(x), . . . , Fk(x) (7.13)

s.t. x ∈ X, (7.14)

is assumed to have k (k ≥ 2) competing objective functions (x ∈ Rn, Fp : R
n → R)

minimized simultaneously.

Definition: A decision vector x∗ ∈ X is an efficient (Pareto Optimal) for MOP, if

there does not exist x ∈ X, x∗ ̸= X such that Fp(x) ≤ Fp(x
∗) for p = 1, . . . , k

with strict inequality holding for at least one index p (x∗ ∈ X is efficient, Fp(x
∗), is

non-dominated) [Samanlioglu et al., 2008].

We denote the importance ranking of these objective functions as F[1](x), F[2](x),

. . . , F[k](x), where [i], i = 1, . . . , k denotes the order indicating the objective function

with the ith priority. Therefore, [i] = p indicates that the pth objective function is in

the ith rank in terms of importance. In this study, F1(x) is minimizing the trim loss

as given in Eq. 7.1, F2(x) is minimizing the number of skives as given in Eq. 7.2, and

F3(x) is minimizing the number of set-ups as given in Eq. 7.3. Initially, we assign

F[1](x) = F1(x), F[2](x) = F2(x), and F[3](x) = F3(x) or [1] = 1, [2] = 2, and [3] = 3.
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In the LM, we solve the problem as:

min F[i](x) (7.15)

s.t x ∈ X (7.16)

F[n](x) ≤ F[n](x
∗
[n]), n = 1, 2, . . . , i− 1, (7.17)

where i represents the importance rank position of the objective functions and X

represents the search space constrained by the SSP constraints given in Eq.s 7.7-

7.12. F[n](x
∗
[n]) is the optimum of the n

th
objective function. LM starts with n = 1,

and solves the model for the most important objective function and the constraints

given in Eq.s 7.7-7.12. With this first iteration, F[1]’s optimal value is F[1](x
∗
[1]).

However, this optimal solution at x∗
[1] is not necessarily optimal for the less important

objective functions. Nonetheless, LM optimizes the other objective functions while

retaining the previous optimal values. For n > 1, LM introduces the constraints

given in Eq. 7.17 at every iteration. In a nutshell, LM filters down to a solution

for the multi-objective problem with k objective functions throughout k iterations,

adding a new constraint at every iteration [Marler and Arora, 2004][Stadler, 1988].

7.2.2 Integration of CG and LM

The flowchart of the solution methodology is given in Fig. 7.1. Initially, we run the

CG for the output maximization problem. The output of this process is P ∗(E), that

is, the minimal pattern set for producing the largest production amount possible.

The reason for running the CG for the output maximization SSP without incorpo-

rating any of the objective functions or the demand constraint is two-fold: i) The

LP relaxation gives an upper bound for the number of products produced. The

decision-maker can then compare this amount to the demand and check whether

the available patterns produce the demand. If not, we use the P ∗(E) to meet as

much demand as possible by producing the maximum number of products given

availabilities. ii) The patterns obtained from this problem can extend the search

space for F[n], n > 1. After optimizing F[1], the constraint F[1](x) ≤ F[1](x
∗
[1]) is

added to the problem and F[2] is optimized. The presence of P (E) has the potential
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of providing an alternative solution for F[1], and a better solution for F[2] and other

less important objective functions.

Figure 7.1: Flowchart of the Solution Methodology

Given that the availabilities meet the demand, we start searching for the patterns

necessary for the objective function with the highest priority using CG. Besides we

also incorporate the demand constraint given in Eq. 7.8. While the objectives have

priorities, the produced patterns should also suffice the other objectives. We aim for
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the pattern pool to be sufficient to provide options for the lesser critical objective

functions. For this reason, during the CG process, we start by assigning the value

v, that is, the minimum value the objective function can have for each pattern. For

example, for the trim loss minimization, v = 0, the possible minimum trim loss for

each used pattern is 0. If the most important objective function were to be the

number of items skived, we would assign v = 2, because there should be at least two

items in a pattern.

Assuming that the most important objective function is the trim loss, we start

solving the output maximization problem with a trim loss constraint where v =

cjyj = 0, ∀j. This constraint enables us to search for patterns that have zero trim

loss. If we can produce all demand with zero trim loss, we obtain the necessary

pattern set to minimize the first objective function. If not, we relax the objective

function target value by one, and search for patterns where cjyj ≤ 1,∀j. We check

whether the patterns with zero or one unit of trim loss can produce the demand.

We pursue relaxing the target objective function value until all demand is met. In

other words, we go through iterations until Pd(E) can satisfy the demand. In this

notation, Pd(E) is the minimal pattern set for the objective function with the highest

priority given the demand d.

Once two pattern sets are obtained, for the next phase, we join two pattern sets on

P ∗(E), that is P ∗(E) = P ∗(E)∪Pd(E). In this phase, we solve the IP model of each

objective function with CPLEX iteratively in the order of priority. At each stage,

the solution of the prior model becomes a constraint to preserve the solutions of the

previous iterations. LM filter downs to the solution where each objective function

is optimized with the order of importance.

7.2.3 An Illustrative Example

In this illustrative example, we provide the instance E:=(3, (25, 35, 45), 50, (2, 2,

2)) where the demand is 1 unit. With this example, we show the mechanisms of the
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algorithm. Firstly, P ∗(E) is produced for the output maximization problem. The

maximum output is found as 3 units. The patterns produced are as follows:

P ∗(E) = Amaxoutput =


1 0 1

1 1 0

0 1 1

, x∗
maxoutput =

[
1 1 1

]T

Once P ∗(E) is available, we compare the demand to the maximum output. Since

d = 1 < 3, the demand is producible. Next, we solve the output maximization

problem by adding the new constraint of v =
∑

j cjyj = 0 and find the patterns

that produce the maximum output with zero trim loss. For v = 0, we find that

P1(E) =
[
2 0 0

]T
and the maximum production amount is 1, that satisfies the

demand. An important note about the increments of v in this illustrative example

is that for v = 1, there are no available patterns CG can find. Since the item widths

are l =
[
25 35 45

]
, their greatest common divisor is 5. Thus, any trim loss value

between v = 0 and v = 5 is infeasible. In the light of this example, we suggest

using the greatest common divisors of item widths as the increment once a feasible

minimum trim loss is found.

P1(E) =


2

0

0

, x∗ = 1

The total production amount is 1 and it is equal to the demand. Hence, we stop to

generate pattern and find the IP solution to the trim loss problem, which is x∗ = 1

with a total trim loss of 0 units. The pattern generation process terminates with

this solution. This example also proves by contradiction that P ∗(E) ⊆ Pd(E) or

Pd(E) ⊆ P ∗(E) do not necessarily hold. A counter example for either statement

can be found as Pd(E) \ P ∗(E) ̸= ∅ and P ∗(E) \ Pd(E) ̸= ∅ as given above.

In the next stage, P ∗(E) and Pd(E) are merged. Because P ∗(E) ⊆ (P ∗(E) ∪ Pd(E)),

the merged pattern set both retains the optimal solution for the most important
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objective function and may also be capable of attaining a better solution then using

P ∗(E) alone. We join the two sets over P ∗(E), such that P ∗(E) = P ∗(E) ∪ P1(E)

and run the LM to obtain the final solution.

P ∗(E) = A∗ =


1 0 1 2

1 1 0 0

0 1 1 0

, x∗ =
[
0 0 0 1

]T
Table 7.2 displays the change in the final result when P ∗(E) or P1(E) are used

marginally, as opposed to the combined minimal pattern set. While this instance

is robust in terms of the secondary and tertiary objective functions, the trim loss

changes greatly with respect to the pattern set used. In this instance, the minimum

trim loss is 0 provided by P1(E). This solution does not have an alternative in

P ∗(E), hence, it does not change when two minimal pattern sets are joined. In this

example, the optimal results is obtained by P1(E).

Table 7.2: Effect of each pattern set on the result for the illustrative example

Pattern set Trim loss Total number of items used Total number of set-ups

P ∗(E) 10 2 1

P1(E) 0 2 1

P ∗(E) ∪ P1(E) 0 2 1

7.3 Numerical Example and Results

In this section, we solve a sample of the multi-objective SSP with the proposed

solution methodology, and present its results in a larger experiment. GAMS is used

to code the CG and the IP. Moreover, the solution methodology is executed on a

computer with Intel Core i5-3230M, 2.60 GHz CPU, 4 GB RAM. The SSP instant

is presented as E := (m, l, L, b) is E := (50, l, 1200, b), where l and b are given

exclusively as:

lT=[197 195 194 191 185 173 171 168 164 160 156 155 153 152 138 133 131 130 128

120 116 115 114 105 101 99 98 96 91 89 86 76 75 66 64 60 56 49 39 36 31 30 23 19

14 13 12 11 9 6],
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bT=[200 300 300 300 300 300 300 300 300 300 300 300 300 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100].

In this example, we set seven different demand levels as d1 = 100, d2 = 200, d3 =

300, d4 = 400, d5 = 500, d6 = 600, d7 = 700 to demonstrate the changes on the

objective function values as the demand increases. Initially, the priority of the

objective functions are F[1](x) = F1(x), F[2](x) = F2(x), and F[3](x) = F3(x). The

CG generates 116 minimal patterns for output maximization, that is, | P ∗(E) |=116.

The LP relaxation of output maximization model states that at most 776.6 products

can be produced. Since the objective with the highest priority is the trim loss, we

also run CG incorporating trim loss for output maximization. The sizes of each

minimal pattern set for different demand levels are | P100(E) |=9, | P200(E) |=12,

| P300(E) |=33, | P400(E) |=37, | P500(E) |=43, | P600(E) |=52, | P700(E) |=68

and if we join all the sets and the output maximization set, total number of the

new master set P ∗(E) includes 261 patterns. The next phase solves the IP model

using LM. The results and comparisons are presented in Table 7.3. Moreover, we

Table 7.3: Objective Function Values for Different Demand Levels

Demand trim loss (z1) Total Number of items used (z2) Number of Set-ups (z3)

100 0 700 2

200 0 1488 4

300 0 2288 7

400 0 3164 9

500 0 4064 11

600 0 5060 17

700 0 6218 28

can see the number of patterns for each demand level in the set-up column of the

Table 7.3. The third objective function, the number of set-ups, also equals to the

number of patterns used, because each pattern requires a set-up. Because we are also

minimizing the number of patterns used, even for the highest demand, a little more

than 10% of the 261 patterns are sufficient to obtain the results. The abundance

of these patterns extends the search space and provides more alternative solutions
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when we fix the value of important objective function values one-by-one.

Table 7.4: Non-dominated solutions for the demand=700

Objectives trim loss (mm) Set-up number Total Number of items used

z1 >> z2 >> z3 0 28 6218

z1 >> z3 >> z2 0 25 6283

z3 >> z1 >> z2 1541 23 6027

z3 >> z2 >> z1 2334 23 5920

z2 >> z1 >> z3 13070 35 5763

z2 >> z3 >> z1 13070 35 5763

Table 7.5: Pattern types and Frequencies

d=100 d=200 d=300 d=400 d=500 d=600 d=700

Items Frequency Items Frequency Items Frequency Items Frequency Items Frequency Items Frequency Items Frequency

7 34 7 50 7 34 7 36 7 36 8 10 8 10

7 66 7 50 7 50 7 50 7 50 7 36 7 38

8 88 8 30 8 48 8 48 7 50 7 50

7 12 7 50 7 36 7 36 9 7 9 12

8 75 8 84 8 84 8 50 8 50

7 12 9 50 9 48 8 83 9 8

8 49 7 23 9 42 9 50 10 8

8 50 7 23 10 1 8 72

9 23 8 50 9 42 9 50

9 50 11 13 11 7

9 33 10 25 12 4

7 50 12 10

8 50 11 12

9 50 10 10

9 33 9 37

9 33 11 14

10 17 10 35

7 50

11 7

8 50

10 8

10 14

9 30

9 17

9 33

10 17

13 5

For the second objective which is minimizing number of items in each product,

it is important to obtain a product with minimum number of welds because of

the quality factor. For further analysis, the number of products produced and

their item numbers are presented in Table 7.5. Furthermore, for d = 700 different

non-dominated solutions that are obtained by changing the order of importance
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of objective functions Table 7.4. Even though, we present these non-dominated

solutions by considering the all combinations of order of importance of objective

functions, the preferred and realistic order of importance in paper production and

printing industry is z1 >> z2 >> z3.

7.4 Heuristic Approach

We also developed a hybrid solution approach that integrates modified version of

the Dragonfly Algorithm (DA) and Constructive Heuristic (CH) [Poldi and Are-

nales, 2009] to solve the multi-objective problem when the order of importance

z1 >> z2 >> z3. As mentioned before, this order of importance is more real-

istic in paper production and printing industry. CH is known as the exhaustive

repetition algorithm in which the most efficient pattern is found and replicated as

many times as possible [Hinxman, 1980]. For our main order of importance which

is z1 >> z2 >> z3, first, DA produces the set of minimal skiving patterns with

the minimum trim loss. Next, the overall algorithm sorts the minimal patterns in a

decreasing order by using two sorting criteria; the first criterion is the trim loss, and

the second criterion is the total item numbers in a pattern. First, minimal patterns

are sorted to obtain patterns with the minimum trim loss to minimize the total

trim loss; then obtained minimal patterns are again sorted in an increasing order

according to the second criterion to obtain minimal patterns with the minimum

number of items from these sorted minimal pattern set. CH replicates the minimal

patterns with the minimum trim loss and with minimum number of items as much

as it can by using items efficiently under availability limitation to satisfy the product

demand. In this way, CH selects the most repetitive patterns from the sorted mini-

mal pattern set in order to minimize the number of set-ups. Integration of modified

DA and the CH as a solution methodology are presented below; In the algorithm in

Alg. 6, the objective functions are arranged in the order of importance as follows;

minz1 >> minz2 >> minz3. DA is used to obtain the minimal patterns with the

minimum trim loss. We sort the minimial patterns in an increasing order and select

the pattern with the minimum trim loss, and if we have more than one, we select
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1 START ;

2 Determine parameter values;

3 Set P ∗(E) := ∅ ;

4 while Demand ≥ 0 or
∑

i∈I b
′
i ≥ L do

5 Run the DA to generate the minimal patterns for the P ∗′ (E) ;

6 Set P ∗(E) := P ∗(E)
⋃

P ∗′(E);

7 Select minimal patterns with minimum trim loss jt := argmin{cj : j ∈ J∗};

8 Set J∗t := jt;

9 Select minimal patterns with minimum welds jn := argmin{sj : j ∈ J∗t};

10 Set J∗n := jn;

11 b
′
i = bi;

12 while |J∗n| > 0 do

13 Compute fraction fij =
bi
aij

, ∀j ∈ J∗, i ∈ I ;

14 Find the minimum fraction for each pattern fmin
j = min{fij}, ∀j ∈ J∗ ;

15 Select the pattern with maximum fraction jmax := argmax{fmin
j } and

f ∗
jmax

= max{fmin
j };

16 Replicate the selected pattern jmax as much as possible without

exceeding the availability of associated items by using aij,

xjmax =

⌊
f ∗
jmax

⌋
;

17 Set J∗use := J∗use
⋃

jmax ;

18 Set J∗n := J∗n \ jmax ;

19 Update item availability b
′
i = b

′
i − (xjmax ∗ aij), ∀i ∈ I ;

20 Update demand, demand = demand− xjmax ;

21 end

22 end

23 Output=
∑

j∈J∗use
xj

24 ; STOP

Algorithm 6: Solution methodology
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all of them. Next, we sort the selected patterns in an increasing order according to

the number of items used in each pattern. We select the pattern which contains the

minimum number of items. In this way, we filter the patterns first according to the

minimum trim loss and then filter the filtered patterns according to the minimum

number of items. Next, we apply CH to these filtered patterns in order to find the

patterns that can be replicated with maximum number of times among all filtered

patterns (inner while loop of algorithm 6). In this way, we can decrease the number

of set-ups in the skiving process. In the constructive heuristic, we first compute the

fraction of each item fij in each pattern by using bi
aij

. Then, we find the minimum

fraction fmin
j for each pattern. Then, we compare all fractions and obtain the maxi-

mum one. We select the pattern with the maximum fraction f ∗
jmax

. We replicate the

selected pattern as much as the fraction of that pattern to determine the frequency

of pattern in the skiving process. Next, we update demand and availability of items.

If CH could not find the pattern set that satisfies the demand, the procedure returns

to the beginning of the overall algorithm. As a significant contribution, DA uses

an updated item availability which is obtained by constructive heuristic to generate

new patterns with a different configuration (Fig. 7.2 ).

Figure 7.2: Flow chart of the proposed Heuristic
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7.5 Numerical Example and Results

In this section, a multi-objective version of the SSP is solved by using the proposed

solution methodology, and its results are presented. The proposed algorithm is

coded in Matlab R2017b, and the algorithm is executed on a computer with Intel

core i5-3230M, 2.60 GHz CPU, 4 GB RAM. The instance SSP E := (m, l, L, b) is

E := (50, l, (1200), b) where the demand is d = 500. The width of small items and

product are denoted in millimeters. l where b vectors are presented as:

lT=[197 195 194 191 185 173 171 168 164 160 156 155 153 152 138 133 131 130 128

120 116 115 114 105 101 99 98 96 91 89 86 76 75 66 64 60 56 49 39 36 31 30 23 19

14 13 12 11 9 6];

bT=[200 300 300 300 300 300 300 300 300 300 300 300 300 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100];

The parameters of the DA are B = 0.05, α = 0.5, β = 0.03, γ = 0.07, η = 0.05, ϵ =

0.05, ω=0.05.

The primary objective function is determined as the minimization of the total trim

loss (z1)(Eq.7.1); the secondary objective is the minimization of the number of items

in a product (z2)(Eq.7.2), and the set-up reduction is defined as the third objective

function(z3)(Eq.7.3). By using the proposed methodology, 40 minimal patterns

have been found, and 16 of them have been selected. Frequency of each patterns

are represented as the X vector as follows:

X=[50 100 50 0 50 100 50 0 16 28 20 0 0 2 16 18];

With the proposed solution methodology for the multi-objective SSP, the first ob-

jective function, the total trim loss is found as 0 mm. Moreover, the total number of

items used is 4260 units with varying width. Finally, 12 different patterns are used

to produce the demand. It means that the number of set-up change is found as 12.

Then, integer programming is used to solve the same problem with lexicographic

method to obtain the solution. Column generation is used iteratively to obtain the
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most efficient pattern set, and IP is used to solve each objective function based

on the order of importance in lexicographic method. Results and comparison are

presented in Table 7.6.

Table 7.6: Comparison of Results

Objectives (Min) Heuristic obj.Values IP obj.Values Absolute Gap

Min Total Trim Loss 0 mm 0 mm 0

Min Number of Items 4260 unit 4064 unit 196

Min Number of Set-up 12 times 11 times 1

CPU 40,0865 sec 180.562 sec

Moreover, for the second objective which is minimizing the number of items in each

product, it is important to obtain a product with the minimum number of welds

because of the quality factor. For CG-IP and proposed heuristic, the distribution of

the number of products produced and their item numbers are presented in Fig. 7.3.

When the size or the tightness of the problem increases (d ≥ 770 for this example),

Figure 7.3: Comparison of DA and CG-IP in terms of produced product types

the number of patterns also increases in the IP solution. In this case, it becomes a

difficult task to solve large problems by using IP in a reasonable time.

78



8. CONCLUSIONS

The skiving process is essential in various industries such as steel, textiles, paper.

Although the skiving process has been a part of the industry for a long time, it is still

an emerging field in research. While several studies have dealt with the deterministic

version of the SSP, the stochastic nature of the problem is still an unexplored area.

We did not encounter the stochastic version of the SSP in the literature. Therefore,

as a contribution to the literature, the pure SSP is reformulated as the stochastic

version and the cost minimization problem under uncertain demand. Two-stage

stochastic programming paradigm is proposed for this stochastic version of the SSP.

The model includes the production cost, which depends on the pattern widths as the

first-stage cost, and the overproduction and underproduction costs as the second-

stage costs. As a solution methodology, the combination of CG, PHA, and B&B

is used to obtain integer solutions of the stochastic SSP problem. In the proposed

methodology, the stochastic problem is decomposed into deterministic subproblems.

CG is applied to each deterministic subproblem to obtain the minimal patterns

with minimum cost while satisfying the demand for each subproblem. In this step,

a new constraint is added to the CG which provides to search for patterns with the

minimum cost. In this way, CG is used iteratively to generate a minimal pattern

set with the minimum cost while satisfying the demand. Selected minimal patterns

are fed into the stochastic SSP model as parameters. As an important point, a

scenario decomposition-based PHA is run to solve the stochastic program in each

node of the search tree of the B&B algorithm to obtain integer solutions. Finally,

several experiments with a number of scenarios are carried out, and results of these

experiments are presented. We also solve these problems by using CPLEX solver

to compare and to validate the solution quality of our methodology. According

to the results, solutions of the PHA do not differ from the CPLEX solver for all
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experiments. Moreover, CPU time of the proposed methodology is analyzed for

each experiment. According to the results, CPU time seems to increase linearly

when we increase the scenarios.

Afterwards, our single-product stochastic SSP is extended to the multi-product

stochastic model in which additional costs such as set-up cost, raw material cost

exist. In this extended multi-product stochastic SSP model, several random vari-

ables exist such as random demand for each product and random yield of skiving

process. Two-stage stochastic programming is used for this stochastic model, and

SAA method is preferred to overcome the difficulties of working with a large number

of scenarios. As a proposed solution methodology, an iterative two-phase heuristic

algorithm is developed to solve the multi-product stochastic SSP problem. DA is

adapted to the problem to obtain an efficient set of proper patterns in the first phase.

This set provides a feasible landscape for the second phase in which the SAA solves

the stochastic problem. This phase provides the pattern set with a minimized trim

loss, whereas the later phase minimizes the total costs. While cost minimization is

the primary objective in this problem, the trim loss is secondarily minimized by the

DA. Finally, the SAA finds the solution to the SMIP model through the pattern

set obtained from the first phase, and the best candidate solution, which gives the

minimum or improved expected total cost for the stochastic problem is determined.

Several experiments are carried out with different parameter configurations as a pa-

rameter tuning. According to the results, the mean absolute difference rate between

the highest and the lowest values of the average objective function is approximately

0.3%. For our example, the DA is robust against parameter changes and produces

an abundance of patterns. Furthermore, we increase the dimensions of the problem

by increasing the number of item types up to 300, by increasing the number of prod-

uct types up to 6, which means increasing the tightness of the problem. According

to the results of these experiments, the proposed heuristic can solve the problem

in a reasonable time. Finally, we compare the results of pattern generation perfor-

mances DA and well-known metaheuristic PSO. Given the results, DA is superior

to the PSO in both obtained objective function value and CPU time.
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Moreover, a multi-objective version of the SSP is considered in which minimiza-

tion of trim loss, the number of items in a product, and the number of pattern

changes (set-ups) are the objectives. Lexicographic method is preferred for this

multi-objective problem where objectives are ordered according to their importance,

and optimal value of the priority objective becomes a constraint for the later objec-

tives. Minimization of the trim loss (waste) is the primary objective of our problem.

Minimization of the number of items is presented as the secondary objective. Mini-

mization of the number of set-ups is considered as the third objective. As a solution

approach, CG and IP are used to obtain the solution where a master minimal pat-

tern set is generated by CG and used as the parameter for the IP. Then, IP is used to

solve the objective functions by using generated master minimal pattern set. Fur-

thermore DA and CH are hybridized as a heuristic method in order to solve the

same problem and compare the results. In this heuristic, DA obtains the minimal

patterns with the minimum trim loss and with minimum number of items; then CH

replicates the efficient patterns to satisfy the demand while minimizing the number

of set-ups. Comparison of CG-IP and heuristic method is presented. According to

the results, heuristic method is as good as the CG-IP in finding the same result

of primary objective function for our example in a reasonable period of time. On

the other hand, for the secondary and tertiary objective functions, absolute gaps

between results of the CG-IP and heuristic methods exist. When the problem gets

larger, especially gets close to the upperbound (LP relaxation), efficiency of the IP

decreases to obtain the integer solutions because of the run time increment while

proposed heuristic obtains the feasible solutions in a reasonable period of time.

In this section, we present limitations of our study and extensions for future work.

We used the horizontal decomposition-based algorithm (PHA) in our solution method-

ology for the single-product stochastic SSP. Since there is no solution approach for

stochastic version of the SSP, we could not evaluate the efficiency of the proposed

solution methodology in terms of CPU time. Therefore, as future research, we can

adapt a vertical decomposition-based solution approach such as L-shaped algorithm

to evaluate the efficiencies of vertical and horizontal decomposition-based algorithms
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for the single-product stochastic SSP. In this research, we utilized B&B algorithm to

run the PHA in each node in order to solve nodal relaxation for the single-product

stochastic SSP. Even though worst case complexity of the B&B algorithm is known

as exponential, it is evaluated with its average case complexity which is lower than

exponential in the literature because of its efficient search and branching strategies.

Therefore, as future work, we can also adapt the Branch and Cut algorithm to our

solution methodology for the single-product stochastic SSP in order to analyze the

efficiency and try to obtain significant improvement in terms of CPU time. Since

the SSP is a classical NP-hard problem, there is no exact solution approach in the

literature for the multi-product stochastic SSP. Therefore, also as future research,

we can adapt a well-known heuristics in the literature to the multi-product stochas-

tic SSP and compare with the modified DA in order to investigate thoroughly the

quality of feasible solutions obtained with DA.
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