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. . . . . . . . . . . . . . . . . . . . . .

24.06.2022

iii



ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to my advisor Prof. Cafer Çalışkan.
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A NOVEL COMMUNICATION METHOD FOR CONSTRAINED IoT DEVICES

ABSTRACT

Internet of Things (IoT) is becoming an established part of life by interconnect-

ing billions of devices in diverse areas such as healthcare, smart homes, industries,

etc. However, these devices are limited in memory, energy and computational ca-

pabilities. Being constrained prevents them from applying complex cryptographic

encryption algorithms which leads to lack of security and therefore lack of privacy.

As a solution, we propose a novel secret sharing scheme based on underlying proto-

cols of visual cryptography to provide a low-cost and secure communication method

for constrained IoT devices. Generally, when a device wants to communicate with

an outer party, it does so by itself or by using a mediary such as a central hub or

gateway; which leads to single point of failure. As a solution, we propose a method

where devices collaborate each other and therefore divide the responsibility into

multiple, instead of one. We propose two different models: n-out-of-n and k-out-of-

n. In the first model, there is a complete graph where every device is connected to

each other. Instead of the original sender, every other device work collaboratively

to communicate with the outer party. In the second model, the network is realized

as an n-regular graph where a single node has n number of neighbors, which collab-

orates with each other and here the responsibility is divided into n devices. Results

show that this scheme is applicable to constrained devices.

Keywords: IoT, security, secret sharing, visual cryptography, constrained

devices
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KISITLI IoT CİHAZLARI İÇİN YENİ BİR HABERLEŞME METODU

ÖZET

Nesnelerin İnterneti (IoT), farklı alanlardaki (sağlık, akıllı ev, vb.) binlerce ci-

hazı birbirine bağlayabilme yetisiyle, günlük hayatın yerleşmiş bir parçası olmaya

başladı. Ancak, bu cihazlar hafıza, enerji ve hesaplama yeteneği konusunda lim-

itliler. Bu limit nedeniyle IoT cihazlarının karmaşık kriptografik hesaplamalar yap-

masının olanaksız hale gelmesi gizlilik ve güvenlik sorunları ortaya çıkarıyor. Buna

bir çözüm olarak, görsel kriptoloji altyapısını kullanarak; kısıtlı IoT cihazları için,

düşük maliyetli ve güvenli bir haberleşme ve sır paylaşımı yöntemi öneriyoruz.

Genellikle, bir cihaz dışarıyla iletişim kurmak istediğinde bunu ya direkt olarak,

ya da merkezi bir yapıyı aracı kullanarak kuruyor. Bu da, single point of failure’a

neden oluyor. Buna çözüm olarak cihazların işbirliği yaptığı, sorumluluğu tek bir

cihaz yerine birkaç cihaza böldüğü bir model öneriyoruz. Önerdiğimiz sistem iki

modelden oluşuyor: k’dan k ve n’den k. İlk modelde, her cihaz birbiriyle bağlantılı

ve bilgi göndermek isteyen cihaz dışındaki tüm cihazların işbirliği yapmasıyla bilgi

gönderiliyor. İkinci modelde ise, sistemi n-regular graph olarak tanımlayarak, her-

hangi bir cihazın n sayıda komşusu olduğunu belirledikten sonra; bu n komşuyu

işbirliği içerisinde kullanılıyor ve sorumluluk tek cihaz yerine n cihaza bölünüyor.

Sonuçlar, bu sistemin kısıtlı cihazlar için güvenli ve uygulanabilir olduğunu gösteriyor.

Anahtar Sözcükler: IoT, güvenlik, görsel kriptoloji, kısıtlı cihazlar
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1. INTRODUCTION

Web technologies improved dramatically over the recent years. This improvement

started from simple HTML web pages to Web 2.0 with social networks, online ap-

plications, wikis; which became indispensable for our daily and business lives. Cur-

rently, Web 2.0 dominates the Internet, and it is hard to find a simple web page with

a simple design which only aims to provide information. Web 3.0 however, aims to

achieve another goal. Also referred to as Semantic Web, it wants to mark-up content

in a standardized way to make it possible for machines to understand. This would

make it possible for machines to process data without human interaction. When

these developments come together with the recent improvements in sensor networks

and near field communication technologies, this led to a new technology and area

called Internet of Things (IoT) in which it is aimed to combine all together [1].

Moreover, IoT does not only connect computers and mobile phones, but also creates

connections in a much larger scale. For instance, automobiles, buildings, cities and

even electrical grids are connected to each other. Furthermore, like the physical

objects, the virtual objects such as electronic tickets, books etc. also take place in

this domain [2].

The term IoT was first proposed in 1998 by Weber as a global Internet-based infor-

mation architecture for exchanging goods and services in supply chain networks [3].

This is a good use-case for the Internet, because it enables the provider to be alert

in case of any lacking goods. This architecture is based on data communication,

such as RFID-tagged items. Some popular industry specific proposals for IoT are

physical objects with RFID tags [4]. But later, the definition of IoT in [1] has been

broadened as “a core concept where everyday objects can be equipped with identifying,

sensing, networking and processing capabilities that will allow them to communicate

with one another and with other devices and services over the Internet to achieve
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some useful objective.” This new definition is well-suited since IoT has widen its

range from supply chain networks to our everyday lives by finding applications in

areas such as healthcare, smart infrastructure, social applications, etc.

It seems that IoT devices have been adapting well and their adaptation level is

likely to be even higher in near future. As of 2021, the number of active IoT

devices has reached to about 10 billion and it’s estimated that this number will

reach to 25 billion by 2030 [5]. This is because the areas to implement IoT is

endless: wearables, health technologies, military applications, smart homes, smart

grid, agriculture applications, automobile industry, and so on. Researchers even

managed to implant IoT devices into human body in order to monitor organs [6].

To provide examples, a list of best (as of 2018) IoT and smart home gadgets chosen

by ZDNet is given in Table 1.1 below [7].

Table 1.1 IoT and Smart home gadgets

Device Name What it does

Ring A smart doorbell, alerting you even if you are away from your home

via mobile application if there is someone at your door.

Wemo A home automation, which can control smart devices in your home

such as light switches, plug outlets, etc.

Foobot A smart air monitor which monitors air quality including carbon

dioxide, temperature and humidity.

August Smart

Lock

A smart door lock. It can give access to certain people, track any

activity around it through a mobile application and also support

traditional keys.

Rachio 3 A smart sprinkler system for gardens.

Nest Thermo-

stat

A learning thermostat used to regulate the temperature. It can

learn your preferences and act accordingly.

Nest Cam A smart indoor security system.

RoboVac A robot vacuum system. Uses infrared sensors to map the environ-

ment and cleans the house.
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However, security for IoT devices is a challenge because of the complexity and

resource consuming nature of cryptographic algorithms. Since IoT devices are gen-

erally composed of low-power and low-memory devices, security and privacy of data

in IoT space is considered to be the biggest problem in IoT implementations [8].

Several studies claimed that tailor-made security measures are needed for IoT de-

vices on top of standardization [9, 10]. However, although the number of standard

bodies and security organizations increases, studies show that IoT devices deliver

poorly implemented security solutions [11, 12]. IoT devices mostly provide a gate-

way to networks due to their low power capacity and low security. This allows an

attacker to gain control of the network by compromising at least some part of this

network. For instance in 2017, attackers [13,14] hacked a fish tank in a casino which

had internet connection to regulate the temperature, food and cleanliness of the

tank. It is stated that 10 GB of data were sent out to a remote computer in a

different country. Attackers used the thermostat in the fish tank to find and steal

a high-roller database of the casino. Another example is ransomware attacks. Ran-

somware attacks are frequent in both personal and business life and can be pretty

expensive if the user is not taking frequent backups. Usually, a software is installed

to a computer and encrypts everything in the device with a private key. Later, a

screen pops up and asks for a certain amount of money if the user wants to see their

data again. After the amount is paid, the user is given the decryption key. Lack of

security standards in commercial IoT devices make these attacks possible. Attack-

ers also designed ransomware specifically designed for IoT devices and referred to

as IoT ransomware. Attackers try to control or lock a device and ask for payment

to release control.

Our motivation is to find a complete or partial solution for this security issue and

therefore to maintain a more secure network for IoT devices. Usually, IoT devices

communicate to devices which are out of the network by using a central hub or

gateway which can lead to single point of failure. In order to prevent this, we apply

visual cryptographic techniques to create a method where every device in a closed

IoT network is responsible for the other; by making them work together collectively.

3



This way, when a device wants to communicate with outer parties remaining or

neighboring devices are used instead of the original one.

The rest of the thesis is organized as follows: Chapter 2 includes literature review

about security issues on IoT; Chapter 3 includes preliminaries of IoT, cryptography,

networking and graph theory, then Chapter 4 contains our model. Chapter 5 has

implementation details of the proposed model and finally Chapter 6 summarizes the

proposed solution and discusses the future work.
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2. HISTORY AND RELATED WORKS

In order for IoT to reach its potential, a secure ecosystem is crucial. There are many

security challenges for IoT domains which includes but not limited to: authentica-

tion, access control, confidentiality, privacy, trust, secure middleware, mobile secu-

rity and policy enforcement [15]. There are many attacks done on consumer devices

such as attacks on cars, botnets, etc. described in sections below [1,3,13,14,16–22].

Several detailed studies were done to identify generalized or specific security prob-

lems for IoT systems. Y. yang et al. [23] summarized security issues in IoT devices.

Din et al. [24] observed several trust mechanisms for IoT such as E-LITHE, GTRS,

etc. with their pros and cons. Chen et al. [25] studied security issues specific to

location-based services in IoT. Ngu et al. [26] studied and compared several IoT

middleware applications and discussed challenges on how to build an effective and

secure IoT middleware application.

Security protocols of regular Internet is harder to apply on IoT devices due to device

constraints. Trappe et al. [27] identified two main limitations: battery life and low-

computation power. Energy requirements for high security calculations such as

encryption is very hard to be realized in low-cost solutions.

Single point of failure attacks. Single point of failure is defined as a part of a

system that, if fails, render the entire system useless. There are several examples in

real-life applications where attackers use the single point of failure problem in order

to compromise a network. Several researches stated that IoT devices could be used

as an entry point to a network [16,17]. They are a popular attacking point because

by using a third-party or an extension, an attacker may gain control of the network

without attacking the network itself, which is probably secured by several security

measures. Below, we present several attacks done on IoT devices in subsections.
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In an example, attackers found out that a smart bulb uses cloud services to interact

with the mobile application instead of Wi-Fi or Bluetooth technologies. Later, they

also found out that firmware updates were done with an unsecured communication

via HTTP which makes the smart bulb vulnerable to MITM attacks. All these

examples show that an IoT device connecting to the Internet without any security

measures can create security issues for the users. Moreover, when a device is enabled

on the Internet independently without any security measures, it causes a single point

of failure where that individual device can affect the entire network in the negative.

In a similar example, researchers from Vectra Threat Labs [17] successfully estab-

lished an access into a network by using a cheap consumer grade webcam. They

reprogrammed the device so that it can serve as a network backdoor, while still op-

erating as a camera. They have shown that cheap consumer devices can impact the

attack surface of a network. This also provides a possibility of second-hand items

to be used in organized crime and espionage.

SolarWinds, a major information technology company was hacked and infected with

malicious code which was installed to every computer via an updating mechanism.

Attackers used a method called supply chain attack where they insert malicious code

into a third party system which has access to an organization’s system, so this code

made it possible for them to install more malware. By attacking and getting control

of a simple extension called Orion, attackers accessed more than 18000 customers

and retrieved important information whose value is unable to be calculated. It is

important to state that some of the infected are government agencies.

In the recent years, automobiles became highly electrical devices. Although this

improves efficiency and safety, it also comes with potential risks. Several studies

have evaluated these risks and shown how the cars and drivers are vulnerable to

different attacks [18,28–30].

Modern cars are controlled by a combination of digital components called Electronic

Control Units (ECUs) where ECUs are interconnected by internal wired networks
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such as CAN and FlexRay buses and they control a broad range of functionality in

a car [18]. Although this connection provides additional features, it also provides

a broad internal attack surface. Since the internal network (such as CAN bus)

connects these device, a single compromised device can offer an effective vector for

other components [18]. These are some other good examples of how single point

of failure is a serious problem. Moreover, Rouf et al. [19] studied the tire pressure

monitoring system (TPMS) which is the first wireless network installed on almost

every vehicle. It uses radio frequency (RF) to transmit the data to pressure control

unit, which analyzes this data and sends it to the central computer via CAN bus.

After a careful investigation, they observed that the central computer trusts the

data coming from the TPMS without any authentication. By reverse engineering

the process, they were able to disable TPMS, inject spoofed messages to cars and

finally activate warning lights on a car.

Koscher et al. [20] studied whether an automobile could be accessed remotely. They

showed that it was possible via a broad range of attack vectors varying from CD

players and radios to wireless communications; such that it was even possible to

remotely track and control the car. They came up with four vulnerability classes:

direct physical, indirect physical, short-range wireless and long-range wireless. In

the short-range wireless class, they focused on the most general channel: Bluetooth.

After thorough investigation, they found a custom code in the telematics ECU and

several non-safe function calls. By using a paired mobile device, this flaw can be

exploited and the attacker can take control of the ECU. In addition, the attackers

made use of the cellular capabilities of the car. Many cars have cellular connection

for several use cases such as crash detection and emergency situations. This flaw is

such powerful that the attackers could use an iPod with a specially encoded audio

file to compromise the car.

There are also some studies done on vehicular ad-hoc networks (VANETs), which are

introduced to provide efficient communication between different vehicles. They are

used in enhancing traffic safety and reducing congestion [31]. VANETs comprises
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of the main elements: trust authority (TA), road unit (RSU) and on-board unit

(OSU) [32]. Vehicles are constantly exchanging information between themselves

and the RSU. The way these parties communicate to each other is very crucial

for security, since it can be attacked and used for damaging purposes. Jamming

attacks can also be used to overload the medium and therefore prevent channels

from sending or receiving information [33]; timing attacks can be used to delay

crucial information being sent to vehicles [34]; hidden vehicle attacks are used to

send false position information to neighbor nodes and can forward false messages

to vehicles [35, 36]; and many more such as replay attacks, impersonation attacks,

wormhole attacks, man in the middle attacks, etc. [32].

Another security issue is about commercial products where the user can easily con-

nect a device on the Internet. However, how this device connects to internet is out

of user’s control. Moreover, the user is not aware of whether the device is using

a secure channel for connection. They also do not have a secure password policy

forcing the users to maintain security. Usually, these devices cause issues related to

security and privacy. For instance, an attacker may connect to a webcam at your

home freely and this may help burglars. Up until now, there have been several bot-

net attacks in which a huge number of computers were compromised. For instance,

Mariposa, Conficker and BredoLab are such botnets in which approximately 10 mil-

lion computers were infected [1, 3, 22]. One of the most important botnet examples

is the Mirai botnet which infects the IoT devices. Let’s point out that Mirai botnet

is not the first example which uses IoT devices as zombies, as BASHLITE [37] and

Carna [21] have such ability to infect the IoT devices. However, Mirai infects a

huge number of IoT devices rapidly. In an example, Mirai botnet infected nearly

65,000 IoT devices in the first 20 hours, and eventually infected a total number of

600,000 devices. An analysis shows that Mirai botnet primarily and mostly infected

IP cameras, DVRs and consumer routers as well as NAS devices, printers and TV

receivers manufactured by different vendors [38].

There are numerous attempts to check for vulnerabilities in IoT devices. One of the
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well-known vulnerability was found in an SDK (software development kit) named

ThroughTek Kalay. It is a plug-and-play system connecting the device to the cor-

responding mobile application [39]. Researchers found the flaw in the registration

phase happening between devices and the corresponding mobile applications. By

using this flaw, attacker is able to watch a video feed in real time, insert malicious

code in the firmware, shut down devices via denial of service attacks, which could

create a very serious safety and privacy concern.

Ronen and Shamir [40] attacked two commercial connected lighting systems, Philips

Lux and LimitlessLED in order to achieve a different effect rather than the original

functionality of those devices, which is to control the color and intensity of lights.

They successfully completed two attacks: First, they extracted data from a secure

location by creating a covert LIFI communication system by using smart lights; and

were able to read leaked data over 100 meters using available products on market.

Second, they showed that an attacker is able to strobe lights at a frequency which

may trigger seizures in people with photosensitive epilepsy.

FLocker [41] was first introduced in 2015 targetting mobile Android devices. Later,

it is discovered that there is a new variant attacking smart TVs. There are thousands

of different variants of the ransomware and the latest one was pretending to be a

law enforcement agency, falsely accusing users of crimes and demanding iTunes gift

cards worth of 200 US dollars. First, it hides itself as a normal file in order to escape

from static code analysis. When it runs, it decrypts that file and executes the code.

After a certain amount of time, it asks for admin privileges and if not given, it

fakes a system update. After having the admin privileges, it downloads an APK

and an HTML file including the ransom page. During this time, system is collecting

information in the background such as device information, phone number, contacts,

location, etc. and sending it to a remote server. However, this ransomware does not

encrypt files but sends information in the TV to a remote location. The ransom is

paid to be able to use the TV again. It is possible to fix the computer with a PC

and Android developer tools. However, it is very hard for a non-technical person to
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deal with this problem by themselves.

Tierney [42] created a fully functional ransomware and took control of a thermostat

by local attack. When they were reverse engineering, they saw that every function-

ality of the device was included in a single directory called root. After investigation,

they found out that the code has potential for command injection. From there on,

they can implement a ransomware. However, there are also additional problems

with such an attack. They were also able to make use of the device and control

the buzzer frequency and heating & cooling systems. They concluded that simple

security protocols can stop these kind of attacks such as encrypting the firmware or

signing it so it cannot be modified.

Margaritelli [43] was able to reverse engineer a mobile application developed to

control a smart coffee machine. By learning the commands, he created a terminal

application to control the device. However, while pursuing the goal; he observed

that although mobile application needs a user to be registered; it was not for au-

thentication purposes but rather analytics. Since there were no real authentication,

anyone in that network were able to reach that port and were even able to flash a

new firmware.

In near future, standardization for IoT especially towards security aspects will be

very important, because the plan is to interconnect several IoT devices from differ-

ent vendors. For that, there should be standards which vendors are to agree on.

However, in the recent years efforts being poured into standardization follow market

aspects rather than security measures [44]. It must be stated that standardization

in itself is not enough if they are unable to provide solutions for security and privacy

concerns for end users. Although there are several international organizations and

alliances working on standardization of IoT such as (IEEE, IETF, ITU-T, etc.),

there are still open areas to debate and standardize [45,46].

Examples above show that a compromised device on a network can be used for

malicious purposes and create problems. For a network to function well, there

10



must be trust between participants. This trust can be achieved by authentication.

Authentication is defined as the process of confirming and insuring the identity of

participants. Although it is a key requirement for IoT, traditional authentication

schemes are hard to apply in IoT domain due to constrained nature of these devices

[47].
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3. PRELIMINARIES

Before going into detail about our proposed model, first we need to define key

information about certain topics. We start with graph theory, define what it is

and its use in network topologies. Next, we discuss about computer networks, their

types and how IoT adapts to networks. Then, we go into detail about how IoT

systems work and the existing security issues with IoT. Lastly, we discuss the basics

of cryptography, certain cryptographic protocols and visual cryptography.

It is important to note that this chapter do not cover all materials about the topics

but focuses mainly on certain concepts to make it easier to understand the rest of

the thesis.

3.1 Graph Theory

A graph G = (V,E) is an ordered pair of disjoint sets V (G) and E(G) such that

E(G) is a subset of the set V ×V . This means that the elements of E are 2-element

subsets from V × V . The elements of V are called vertices and the elements of E

are called edges.

An edge (x, y) ∈ V × V is usually written as xy and vertices x and y are called

neighbors. The number of vertices (edges) in a graph G is called the order (size) of

G and denoted by |G| (||G||). Given a vertex v, the degree of v, denoted by dG(v),

is the number of its neighbors. If every vertex of a graph has the same degree, that

graph is called a regular graph. Regular graphs can also be referred to as n-regular

graphs, where n is the degree of each vertex.

A path is a non-empty sequence of distinct vertices in a graph G in which the

consecutive vertices are neighbors in G. The number of edges is called the length of
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the path. A path with the ending vertex neighboring the initial vertex is called a

cycle. A cycle of length n is called an n-cycle and denoted by Cn.

A non-empty graph G is called connected if there exists a path which connects any

two vertices of G. Moreover, a graph with no cycles is called an acyclic graph and a

connected acyclic graph is called a tree. Given a connected graph G, if any edge of a

cycle is removed, the resulting graph is still connected. If this procedure is repeated

until there are no cycles left, the remaining graph becomes a tree that connects all

the vertices of G. This tree is called a spanning tree. Figure 3.1 provides an example

of a graph and one of the spanning tree of that graph.
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Figure 3.1 An example of a graph and its spanning tree

A regular graph is a graph in which every vertex has the same degree. For instance,

3-regular graphs are graphs such that every vertex has degree three. These graphs

are also referred to as cubic or trivalent graphs. Figure 3.2 presents examples of

2-regular (cycle) and a 3-regular graph.

3.2 Computer Networks

A computer network is a set of computers connected to each other in order to

share resources. For computer networks, there are several use cases such as business

applications, home applications, mobile users and social issues [48]. In business

applications, the main objective is resource sharing. Data and equipment can be

used among several parties, even without needing close proximity to each other via

Virtual Private Networks (VPN). In home and mobile uses, connectivity to internet

is crucial. At home, by using peer to peer connection, users are able to receive and
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Figure 3.2 2-regular and 3-regular graphs

share information to remote computers which help for entertainment and personal

use. In addition, mobile use can be widened into wireless sensor networks (WSN)

and GPS connections as well. Social issues on networks are several: privacy and

security of personal data, fake news, etc.

There are two types of transmission media in general: broadcast and point-to-point.

In broadcast networks, communication channel is shared within the network. A

packet sent by any device can be received by any other device in the network.

The receiver can be identified by using a field in the packet. Wireless networks

are examples of broadcast networks. However, in point-to-point networks, pairs

of devices are connected to each other. Blockchain and bittorrent are examples of

peer-to-peer networks. Figure 3.3 shows an example for broadcast and point-to-point

networks.
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Figure 3.3 Broadcast and point-to-point networks
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3.2.1 OSI and TCP/IP Reference Model

Networks are organized as a stack of layers (levels) in order to reduce complexity.

This architecture helps simplify the complex structure of systems. Each layer im-

plements some services for upper layers. Number, name and function of these layers

may differ from network to network. Every layer has a functionality, a service to be

offered to higher layers. Layering approach also limits how much the other layers

know about the internal functioning. This way, upper or lower layers only knows

the service and not the internal process. This also provides modularity. If a layer

changes or updates its implementation of a service, it can be done without effecting

the whole network (other layers).

Parties in a network communicate by following some rules and conventions which

are called as a protocol. Each layer has its own protocol and taking them together

comprises a protocol stack.

OSI reference model was developed first to address the lack of standardization and

officially adapted as a standard in 1979 [49]. It consists of seven layers: application,

presentation, session, transport, network, data link and physical layers as shown in

Figure 3.4. Although Internet uses TCP/IP reference model, OSI reference model

is still valid and its described features are important, therefore it is still widely used

for educational purposes.

TCP/IP reference model (also known as Internet protocol suite) is based on primary

Internet protocols: IP and TCP. It consists of four layers: link, internet, transport

and application. It is proposed as a model with fewer defined layers providing an

easier fit for real-world protocols. Link layer concerns itself with secure transmission

of data packets and it corresponds to first two layers of OSI model. Internet layer

is responsible for moving network-layer packets from one host to another. These

packets are also referred to as datagrams. Transport layer is concerned with reliable

exchange of connection-oriented data between different computers in a network.

Lastly, application layer serves as an interface where network applications and their
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application-layer protocols are stored [50] [51].

Figure 3.4 Internet protocol stack and OSI reference model
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The difference between two models can be seen in Figure 3.4. Link layer combines

Physical and Data Link layers, and in addition the TCP/IP reference model lacks

two layers: presentation and session. This does not mean that these layers are less

important, however it is up to the application developer to build such functionality

[50].

Table 3.1 provides several examples for each layer of this reference model.

Table 3.1 Layers of TCP/IP models and examples

Application Layer DNS, FTP, HTTP, ...

Transport Layer TCP, UDP, SCTP, ...

Internet Layer IP (IPv4, IPv6), IPSec, IGMP, ...

Link Layer PPP, MAC, Ethernet, ...

3.2.2 Computer Network Topologies

A network topology defines how elements of a network are arranged and organized.

Several common topologies in computer networks are as follow:

Bus Topology. As shown in Figure 3.5 each node in the network is connected

to a single central cable, which is also referred to as bus. All data is transmitted

through the bus and can be received by any node simultaneously [52]. It should be
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kept in mind that since the network depends on a single cable, it is possible that

single point of failure can occur.

Figure 3.5 Bus topology

Ring Topology. In ring topology, devices in the network are connected to each

other in a closed loop. No hierarchical relationship exists between nodes. Figure 3.6

is an example of a ring topology.

Figure 3.6 Ring topology

Star Topology. Figure 3.7 gives an example of a star topology, in which every

peripheral node in the network is connected to a central node. All traffic is controlled

through the central node [53].

Figure 3.7 Star topology

Mesh Topology. Mesh topology can be implemented in two ways: full mesh

and partial mesh [53]. In full mesh, every device in the network is connected to

each other. In the latter, some of them are connected but not all. A device in the
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network can also act as simple sensor nodes which can route traffic. Figure 3.8 gives

an example for both types.

Figure 3.8 Full and partial mesh topology

3.2.3 Graphs as Network Topologies

A topology is defined by a graph G = (V,E) where V represents the set of vertices

and E represents the set of edges. Vertices represent devices in a network and edges

are used to show the communications.

Table 3.2 Comparison between simple static networks

Name Advantage Disadvantage

Cliques Nodes are close to each other Too many edges

Star Efficient for communication
Weak when central nodes

are not available

Rings
Allows to implement pipeline al-

gorithms

Large communication

costs

Meshes
Good with image domains and

parallel programming

Not regular. Needs spe-

cial attention for border

nodes

Torus Eases parallel programming
Extra wires can make

physical design harder

There are several ways to design a communication architecture. One can either

design an architecture where all devices share a common medium such as a bus

or a point to point network where all devices are connected to each other directly.

Both have advantages and disadvantages, and the choice depends on the network.
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Nielsen states that for a good topology, a trade-off needs to be set between two

views: 1. Minimizing the number of links and therefore decreasing the material cost;

2. Maximizing the number of communication links to decrease the communication

cost [54].

Networks can be considered in two types: static and dynamic. Static networks

are fixed and they cannot be changed while in operation. Dynamic networks can

be adapted to the needs of applications and changing traffic conditions. There

are several types of graphs which provide simple static networks that are common

topologies: clique, star, ring, grids, torii, cube, etc. Table 3.2 provides a comparison

between simple static networks.

3.3 IoT

IoT devices are generally considered in two classes as microcontroller-based devices

and microprocessor-based devices. Microprocessor-based devices have decent pro-

cessing power, memory and connectivity. Some well-known examples for such devices

are Beaglebone and Odroid [55]. On the other side, microcontroller-based devices

consist of an Integrated Circuit (IC) housing several components such as process-

ing unit, memory and I/O peripherals. These devices are mostly inexpensive due

to their limited functionality. A well-known example for this category is Arduino

MKR1000 [55].

In this chapter, we discuss IoT networking preliminaries, such as protocols for each

layer in TCP/IP model. Later, we explain security, performance and memory capa-

bilities of IoT devices.

Star and mesh topologies are the most commonly used topologies in the IoT domain

[56]. Table 3.3 shows some protocols in IoT domain mapped to the TCP/IP reference

model. Some of these protocols are going to be explained in this section.
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Table 3.3 IoT network protocols and corresponding layers in TCP/IP model

TCP/IP model IoT Protocols

Application HTTPS, XMPP, CoAP, MQTT, ...

Transport TCP, UDP

Internet IPv6, IPv4; 6LoWPAN, ...

Link Ethernet, GSM, LTE, ...

3.3.1 Link Layer Protocols

Link layer, also referred to as sensing layer deals with IoT sensors and actuators.

While sensors capture physical phenomenon around them, actuators take action on

the environment based on the sensed data.

According to Lee et. al. [57], three of the mostly used short-range wireless proto-

cols are ZigBee, Bluetooth, and Wi-Fi that are corresponding to IEEE standards

802.15.1, 802.15.4 and 802.11a/b/g. In the following, we provide a brief description

for each these protocols. See Ferro and Potorti [58], Wang et al. [59] and Baker [60]

for further details and comparison.

ZigBee. ZigBee is designed for low data-rate and battery-powered applications

such as building and home automation applications. It is the de-facto networking

standard on the market. It is built on 802.15.4 standard and not IP-based, making

it harder to work with Internet Protocol standards such as Wi-Fi, Ethernet, or

LTE. A big advantage of ZigBee is that nodes can stay in sleep mode and therefore

maintain an improved battery life. Moreover, it is a mesh network protocol and an

open standard which operates on 2.4 GHz wireless communication spectrum.

Bluetooth and Bluetooth Low Energy. Bluetooth has been developed with

the intention of replacing devices using wired communication at homes and offices

in a 10-meter radius. Although it has lower range and transmission speed compared

to Wi-Fi, it uses less power and has lower implementation costs. Being low-powered

20



also helps not causing interference with other wireless devices in the same radio band.

BLE (Bluetooth Low Energy) is a low-power version of Bluetooth technology. It is

designed for ranges below 100 meters, usually with a single device controlling other

devices. It is best suited for devices which are designed to sleep while idle such as

wearable health devices [61].

Wi-Fi (IEEE 802.11 - 802.11ah - 802.11ax). Wi-Fi is a wireless network

technology which allows devices to communicate with each other. It is based on

802.11 IEEE network standard which uses radio frequency signals to transmit data.

Although it provides the highest data throughput, it also has a higher power con-

sumption. Currently, there exist IoT devices which adopt Wi-Fi technology well,

however, there are emerging technologies which may have potential to reduce the

number of IoT devices using Wi-Fi in near future [61]. This is mainly because

802.11 is a costly protocol with high overhead and power consumption. As a re-

sult, a lightweight version 802.11ah is designed to meet with the needs of IoT [62].

Moreover, 802.11ax, also called as Wifi-6, is the most recent version of IEEE 802.11

WLAN standard. It aims to improve its throughput and optimize its performance

in large outdoor environments while decreasing power consumption. It also adds

new features such as OFDMA, Multi-User MIMO, and spatial reuse [63].

Other than the technologies introduced above, there are also emerging new tech-

nologies such as LoRaWAN. It is a long-range wide-area network wireless technology

designed for IoT applications. It also offers low-power and low-data rate communi-

cation. Unlike other LPWAN technologies such as SigFox and NB-IoT, LoRaWAN

enables private network deployments. This and the ability of quick implementation

move LoRaWAN further as a candidate for IoT adoption [64].

There is also RFID (Radio Frequency Identification) technology available which is

using RFID tags which store identifiers and data for devices or goods, which can be

read with RFID reader. The effective range is shorter than 1 meter. A good use case

for RFID tags is tracking inventory in retail and industrial IoT applications [61].
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Another example of communication protocols with a short range is NFC (Near Field

Communication) which has an effective range of just 20 cm. It is available in many

mobile devices and has a very high potential in some applications.

In literature, there are several studies comparing these technologies. For instance,

Ferro and Potorti [58] compare Bluetooth and Wi-Fi in terms of capacity, network

topology, security, QoS support and power consumption. Wang et al [59] compare

the MAC of IEEE standard 802.15.3 and 802.11e and show that throughput differ-

ences between these standards are very small; and power management of 802.15.3

is easier than 802.11e. Moreover, Baker [60] compares ZigBee and Bluetooth in

terms of their strengths and weaknesses for industrial applications. He concludes

his study by claiming that Zigbee would be a better choice for IoT in industry be-

cause of its long-term battery power and greater range. In practice, the most widely

used standards are Zigbee and Bluetooth.

3.3.2 Internet Layer Protocols

Internet layer transmits the information from the link layer to the upper layer.

On the Internet, IPv4 still is the de-facto standard even though IPv6 has been de-

ployed. It uses 32 bits as an identifier, therefore it has potential to provide with

232 addresses. However, IPv6 uses 128 bits identifier with an ability to provide with

2128 addresses compared to its predecessor IPv4. In this sense, IPv6 has emerged as

an improved technology in order to provide more IP addresses for devices planned

to emerge in the future. Although IPv6 is an optimal protocol for resource-rich net-

working scenarios, it is not well-suited for IoT networks which are limited compared

to others. In order to use IPv6 over these constrained networks, implementation of

an adaptation layer between the IPv6 and target technology is required [65].

Standards below are trying to encapsulate IPv6 datagrams into small MAC frames

for IoT. These standards are important to realize the challenge of working with

different networking stack layers [8].
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6LoWPAN. The term 6LoWPAN is produced by combining IPv6 and LoWPAN

(Low-power Wireless Personal Area Network). It is a wireless mesh network where

every node has its own IPv6 address, so it makes small devices with low power

join into the IoT domain. This is achieved by making it possible to communicate

with 802.15.4 devices on an IP network such as Wi-Fi. PL stands for IPv6 Routing

Protocol for Low-Power and Lossy Networks. It is designed for routing IPv6 packets

within constrained networks where not all devices are always reachable such as

those implemented on 6LoWPAN [61]. It can compute the optimal routing path by

building a graph of nodes, and therefore minimizes power consumption and latency.

6Lo. The communication technologies for IoT have been growing every year.

That’s why, a new combination was created after successful completion of 6LoW-

PAN. It is called 6Lo, which leverages 6LowPAN and was basically designed for

enabling IPv6 over IEEE 802.15.4 networks. With 6Lo, IPv6 is enabled over Blue-

tooth LE, ITU-T, G.9959, DECT ULE, MS/TP, NFC, IEEE 1091.2 and IEEE

802.11ah [65].

3.3.3 Transport Layer Protocols

There are several messaging protocols used in IoT, however in order for them to be

secure, they need encryption. Described below are two de-facto standards for each

transport layer protocol, namely each of TCP or UDP.

TLS. TLS is an encryption protocol running on top of TCP, and it aims to provide

privacy and data integrity between two communicating applications. TLS consists of

two sub-protocols: TLS Record and TLS Handshake [66] [67]. TLS Record protocol

is used for encapsulation of other higher-level protocols such as TLS Handshake pro-

tocol. It decides how to divide the data, encrypt and later package it into records, so

that it can be decrypted by the receiving party [67]. It operates at the presentation

layer [67]. This protocol provides a connection security consisting of two properties:

Privacy and reliability. The connection is encrypted by a symmetric cryptographic
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algorithm with uniquely generated keys. It includes a message integrity check by

using a keyed MAC in the message transport and thus reliable. MAC computations

are done with secure hash functions such as SHA-1 [66]. TLS Handshake protocol

allows the server and client to authenticate each other and negotiate the encryp-

tion algorithm and cryptographic keys before any transmission takes place [66]. It

operates at the session layer [67]. TLS Handshake protocol provides a connection

security consisting of three basic properties: (i) The negotiation of the secret itself

is secure, (ii) It is unavailable to eavesdroppers and (iii) the secret cannot be ob-

tained even with a man in the middle attack. The negotiation is reliable as it cannot

be modified by any attacker without being detected by the communicating parties.

Lastly, the peer’s identity can be authenticated by an asymmetric cryptographic

method. Although this authentication is optional, it is required for at least one of

the peers [66]. As mentioned above, TLS works on TCP, a connection-oriented and

reliable protocol. However, for the last few years the number of application layer

protocols using UDP transport has increased [68]. Although it is easy to use TLS

between application and transport layers to ensure security, it can only be used on

a secure channel such as TCP. Therefore, it cannot be used for the datagram traf-

fic [68]. For this reason, a variant of TLS which can be used in unreliable channels

is created, namely DTLS. It is created by making some minor changes on TLS and

it makes it possible to work under unreliable conditions.

UDP. It is a protocol which is used by application programs to communicate with

other programs without a minimum protocol mechanism [40]. It is not a reliable

protocol like TCP [69]. It is mainly used in applications where data is delay-sensitive,

such as media streaming, Internet telephone and online gaming [68]. Using DTLS

protocol to secure communication does not change the behavior of such applications,

because DTLS protocol does not reorder or resend lost data.

Datagram protocols are not reliable because there is no procedure for reordering the

data or making sure that data are transferred correctly. Since TLS has no internal

mechanism to deal with these circumstances, it can only be used in reliable channels
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such as TCP. Therefore, a new protocol is needed, which can be simply stated as

TLS over datagram [68]. Unreliability in the channel creates problems for TLS in

two ways: (i) TLS does not allow independent decryption of individual records. But,

for TLS to decrypt a record, it must be ordered (ii) TLS handshake layer breaks if

handshake messages are lost. Therefore, the handshake messages must be delivered

to the other side for TLS to work. However, in an unreliable channel, this creates

a problem [68]. DTLS does provide reliability in an unreliable channel by using

a retransmission timer to handle packet loss [68]. DTLS also solves the sequence

problem by assigning a sequence number to each handshake message and therefore

determining if the incoming message is the expected one. If the order is broken, it

uses a buffer to hold these messages and handle them after receiving all previous

messages.

3.3.4 Application Layer Protocols

In this section, we introduce some of the well-known protocols such as MQTT,

SMQTT, AMQP, CoAP, HTTP and XMPP.

MQTT. MQTT (Message Queue Telemetry Transport) is a publish/subscribe,

lightweight messaging protocol designed for constrained and low-bandwidth, high-

latency devices. It was invented in 1999 by IBM and became an OASIS standard as

of 2014 [70]. It aims to minimize network bandwidth and resource requirements of

the device while ensuring reliability and a degree of insurance for delivery [70]. The

architecture of MQTT provides an open and easy implementation, therefore it can

support up to thousands of remote clients by using a single server. MQTT keeps

message headers as small as possible (2 bytes), it is royalty-free and has built-in

support for losses in connection between clients and the server. These properties

make MQTT a very good candidate to be used in constrained environments such

as M2M and IoT which contain devices with limited power, battery life, and low

bandwidth [71].
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MQTT protocol has three components: publishers, subscribers and a broker. Pub-

lishers can be defined as sensors or IoT devices which tend to send data. Subscribers

can be defined as applications which are subscribed to the broker to receive infor-

mation. It works by publishers sending data to the broker, broker having a queue

itself and then sending the data to subscribers. MQTT works over TCP port num-

ber 1883 and uses TLS for security. Publishers and subscribers do not know each

other’s identities.

SMQTT. SMQTT (Secure MQTT) is an extension to the original MQTT proto-

col, which aims to improve the security of MQTT by implementing a lightweight,

attribute-based encryption (ABE). By using this encryption method, the message

is secure and can only be read by those who have the necessary key to decrypt the

message. MQTT can be implemented in a secure way by using TLS, however this

creates additional problems, especially for IoT devices. With the increasing num-

ber of devices, storing/managing certificates and key exchanges would be hard [72].

However, SMQTT uses an attribute-based encryption, because the design makes it

possible to support broadcast encryption, which is very crucial for M2M communi-

cation [72]. The protocol works in four stages: set-up, encryption, publishing, and

decryption. Moreover, it has the same components as MQTT. First, subscribers and

publishers register themselves to the broker and receive a master secret key. This

master secret key depends on the developers’ choices of key generation algorithm.

Later, the broker encrypts data and publishes it. This encrypted message is received

by the subscribers and can be decrypted with the same key.

AMQP. AMQP (Advanced Message Queuing Protocol) is an open standard for

passing messages between applications and organizations. It is specifically designed

for business enterprises as an alternative to proprietary protocols. It can be defined

as a reliable, secure corporate messaging protocol [73]. Moreover, it is a binary

protocol designed to support a wide variety of different messaging applications [74].

Unlike MQTT, where the message-broker forwards incoming messages directly to

the subscribers; in AMQP the message-broker accepts incoming messages from a
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producer in an exchange; and routes messages to a specific queue based on pre-

defined rules. It works on the reliable TCP and uses TLS and SASL for encryption

and authentication [75].

CoAP. CoAP (Constrained Application Protocol) is a session layer protocol de-

signed for M2M applications to use with constrained nodes and networks [76]. It

aims to keep message overhead small in order to limit the need for fragmentation

which causes significant reduction in packet delivery in constrained networks while

using REST architecture. Therefore, CoAP aims to realize an optimized subset of

REST to be a generic web protocol for constrained environments. It works on data-

gram protocol UDP for transport and uses DTLS protocol for security. CoAP has

four types of messages: Confirmable, Non-confirmable, Acknowledgement and Reset.

It provides reliability by marking a message as Confirmable (CON). This message is

retransmitted until the recipient sends back an Acknowledgement (ACK) message

with the same Message ID, using a default timeout and exponential back-off between

retransmissions. If the recipient cannot process a CON message, it replies with a

Reset (RST) message instead of ACK. If a more lightweight alternative is requested,

the messages can be marked as non-confirmable. However, this will decrease relia-

bility of transmitted messages [76].

HTTP. Although HTTP (Hypertext Transport Protocol) is mostly used as a web

messaging protocol, it is an application-level protocol for distributed, collaborative

and hypermedia information systems. HTTP can be implemented on top of any

protocol assuming that protocol is reliable. Therefore, it usually takes place over

TCP/IP protocol and uses port number 80 [77]. The communication between clients

and the server is connection-oriented, and like CoAP; client and server send and

receive data through URI [73].

XMPP. XMPP, Extensible Messaging and Presence Protocol is an IETF stan-

dardized protocol based on XML and is widely used over the internet for chatting

and message exchanging [78]. Since it was designed for real-time communications,
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it has low latency and looks suitable for IoT communications. However, it is based

on XML and creates additional overhead due to heavy use of tags. For this reason,

it is not widely adopted in IoT systems [8].

3.3.5 Processing Capabilities

Type and power of processors used in IoT devices depend mainly on the design aim.

For example, high processing power may be needed for devices with multimedia-rich

use. However, a simple sensing unit does not need that much processing power and

it would be unnecessarily expensive to use such a device for that purpose.

Since many devices have default needs such as wireless connectivity, multiple com-

munication standards such as Wi-Fi, Bluetooth and Cellular are integrated into a

system of a chip (SOC). This decreases overall cost of materials and provide better

battery life [79].

IoT devices are divided into 5 parts: smart sensors, connected audio, connected

video, multimedia-rich devices, and high density computer nodes [79].

Smart sensors are microcontrollers with analog interfaces for sensing. They use

energy-efficient standards (Bluetooth Smart, Low-power Wi-Fi, etc.) and have CPU

requirements between 50-100 DMIPS. Connected audio and video devices are ranged

from bluetooth speakers to high-end home cinema systems. CPU requirements range

between 300-1000 DMIPS. They generally use Bluetooth and Wi-Fi for wireless

communication and connected video devices are used for recording and streaming

video such as IP cameras. Internal architecture is very similar to connected audio

devices.

Moreover, multimedia-rich devices and high-density computer nodes are considered

as high performance computing devices. They can integrate a multicore CPU and

multicore GPU depending on the application of the device. Using a smartly config-

ured SoC reduces costs.
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3.3.6 Memory Capabilities

For memory, there are several options for IoT developers to choose from: tradi-

tional external flash memory, embedded flash memory, multichip package memory

and multimedia cards (MMC) [80]. Each of these options is suitable for certain

applications.

Traditional external flash memory is widely used in consumer products mainly be-

cause of its reliable and low cost nature. There are two types of external flash

memory: NAND and NOR flash. NAND flash is widely used in data heavy appli-

cations which require high-capacity storage, such as wearable devices; where NOR

flash generally finds use in GPS or e-readers with less memory requirements [80].

Also known as eFlash, embedded flash memory is used in IoT devices with critical

data and code. Compatibility with microcontrollers due to its high performance

makes it a popular memory type. Multichip-package memory (MCP) on the other

hand provides more by implementing CPU, GPU, memory and flash storage in a

single chip. Embedded multimedia cards (eMMC) contains a controller and flash

memory. This controller is among exclusively designed controllers in order to better

integrate into application systems. It can process multiple tasks and have a very

good performance at reasonable cost [55].

Internet Engineering Task Force (IETF) classified IoT devices into three parts: low-

end, middle-end and high-end [55]. Low-end devices are generally used in basic

sensing and actuating powers. They are resource challenged and therefore referred

to as constrained devices [81]. Since middle-end devices are more powerful, they

are more capable than low-end devices. High-end devices on the other hand are

mostly single board computers, some of them even capable of storing a GPU to run

operating systems [55]. Table 3.4 shows several examples for low-end, middle-end

and high-end devices.

Ojo. et al compare several low-end, middle-end and high-end devices thoroughly [55].

Table 3.5 shows the comparison of the memory capabilities of such devices. High-
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Table 3.4 Some examples for different IoT device categories

Category Examples

Low-end Waspmote, Tmote Sky, TelosB

Middle-end Carambola 2, Tessel 2, Netduino

High-end Raspberry Pi, PcDuino, BeagleBoard

end devices are not included because many of them uses micro-SD cards as on-board

storage and therefore their maximum memory capacity depends on the capacity

of micro-SD card. In summary, out of 19 low-end devices, the average memory

capability is found to be 262 KB and out of 9 middle-end devices, the average

memory capability is found to be 12 MB which is 50 times more compared to low-

end average.

Table 3.5 Average memory capabilities of IoT devices

Type min max average

Low-end 48 KB 512 KB 262 KB

Middle-end 1 MB 32 MB 12MB

3.3.7 Security problems in IoT and several solutions

Andrea et al. [82] classified IoT attacks into four main parts, namely: Physical

attacks, Network attacks, Software attacks and Encryption attacks.

(i) Physical attacks: Node tampering and jamming, RF interference, malicious

node and code injection, physical damage, social engineering, sleep deprivation

attacks, side channel attacks and booting attacks

(ii) Network attacks: Traffic analysis attacks, RFID spoofing and cloning, RFID

unauthorized access, sinkhole attack, MITM attack, DoS/DDoS attacks, rout-

ing attacks, sybil attack, data transit attacks

(iii) Software attacks: Virus, malware, spyware, trojan horse, malicious scripts,

DoS, phishing, updates and patches

(iv) Encryption attacks: Side channel attacks, cryptanalysis attacks, MITM

Attacks
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Ronen and Shamir observed that most of the published studies on IoT attacks follows

four broad types of behaviour: ignoring the functionality, reducing the functionality,

misusing the functionality and extending the functionality [40].

(i) Ignoring the functionality: Attacker ignores the standard functionality of

the device and just behaves as if the device is a computing device with internet

connection. This type of attack doesn’t care about the devices’ functionality.

(ii) Reducing the functionality: Attacker tries to minimize or completely shut

down the device. A smart tv may be shut down on purpose. However, in

safety critical areas this can be a fatal problem.

(iii) Misusing the functionality: Instead of shutting down the device, attacker

uses the device for other purposes. An air conditioner can be hacked and can

be adjusted to give heat instead of cool in summer.

(iv) Extending the functionality: Attacker tries to get a broader and unex-

pected functionality rather than the original.

Another study by Hassia et al. [83] provides four categories of solutions for securing

IoT environments which are mainly blockchain based, fog computing based, machine

learning based and edge computing based.

(i) Blockchain based approaches provides solutions for privacy [84–86], scala-

bility [87,88], data loss and spoofing [89].

(ii) Fog computing based solutions focus on man in the middle attacks, data

transit attacks, eavesdropping, resource-constraint issues and incident response

services [83].

(iii) Machine learning based solutions are for DoS attack [90,91], eavesdropping

[92,93], spoofing [94–96], privacy leakage [97,98] and digital fingerprinting [99].

(iv) Edge computing based solutions focus on data breaches [100], data compli-

ance issues [101], safety issues [83] and bandwidth issues [102].

However, it should be kept in mind that applying these solutions may create addi-
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tional security issues as well. It is also suggested that for maintaining a secure IoT

environment it requires to have: rigorous penetration testing, end-to-end encryption,

authorization, scalability testing, secure transmission and cloud encryption.

3.4 Cryptography

Rivets defines cryptography as a practice and study of techniques to communicate

in a secure way in the face of third parties [103]. It is about creating secure protocols

such that any unwanted parties cannot read or alter the information being passed

between original parties. A cryptosystem is a general definition given to a set of

cryptographic primitives used to provide information security services.

In cryptography, a message is secured by encryption. This process is succeeded by

using a key and is similar to the process of locking doors in real-life. If one uses the

same key to encrypt and decrypt a message, this is called symmetric cryptography

or single-key cryptography. However, if there is a pair of keys, where one key is

shared publicly for encryption and the other for decryption, that is called asymmetric

cryptography or public-key cryptography.

Let’s say two parties, Alice and Bob, want to set up a secure communication channel

by using symmetric cryptography. Then, firstly, they need to agree on a key k.

If Alice wants to send her message (plaintext) m to Bob, she then encrypts this

plaintext by using an encryption algorithm E with the key k. As the output of the

encryption process, she obtains the corresponding ciphertext C = E(k,m) and sends

it to Bob. Upon receiving this ciphertext, Bob uses the corresponding decryption

algorithm D together with the same key k and computes plaintext m = D(k, C).

The encryption/decryption algorithms are publicly known as the only secret part of

a cryptosystem is the key. However, in order for parties to use the cryptosystem,

they need to exchange a secret key in advance. If both parties know each other

and meet prior to communication, they need to use non-cryptographic methods for

agreeing on a key. Otherwise, they may use public-key cryptography to exchange
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Figure 3.9 Symmetric cryptography

a key before their communication in a symmetric set-up. Moreover, there are also

key exchange schemes available, such as Diffie-Hellman key exchange [104].

Symmetric-key encryption is a fast encryption method to implement in both hard-

ware and software, so it is well-suited for encrypting large amounts of data. It can

use either stream ciphers or block ciphers [105]. Stream cipher encrypts a message

character by character by using a key stream. The message is sliced into characters

and each one of them becomes a ciphertext character. This key stream is generated

from a shared secret key by a pseudorandom generator. For instance, Vernam’s one-

time pad and Vigenere ciphers are considered in this category. Block ciphers can

be found in both symmetric and asymmetric cryptography. They are also building

blocks for other cryptographic protocols such as hash functions and pseudo-random

number generators. Unlike stream ciphers, block ciphers use blocks to encrypt a

plaintext. Given a plaintext consisting of blocks of n-bits, a block cipher maps each

of these blocks to their corresponding n-bit ciphertext blocks, where n is called the

block length. Many modern block ciphers for symmetric cryptography use Feistel

ciphers [106].

Some block ciphers have already been cryptanalyzed, however there are some exam-

ples, such as AES, which are still used widely today. Advanced Encryption Standard

(AES) is a symmetric-encryption algorithm which is standardized by NIST. It is a

subset of the Rijndael block cipher with a fixed block size of 128 bits and three

different key sizes: 128, 192 and 256 bits [104]. Moreover, it uses 10, 12 or 14 rounds

with 128,192 and 256-bit key sizes respectively. AES has found places in many appli-

cations, however its inflexibility in the sense of its design makes its implementation
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Figure 3.10 Asymmetric cryptography

harder for low-powered devices. Some of its requirements consume serious amount

of memory, processing, and battery power which a low-powered device is not capable

of supplying. This makes it a non-starter for low-powered embedded devices [107].

However, AES is still used in IoT in communication standards, such as Zigbee and

Bluetooth, with dedicated chipset embedded.

In asymmetric cryptography, a key pair is used instead of having a single key to

encrypt and decrypt the message. This key pair consists of a public key and a

private (secret) key. Public key is the one which is broadcasted to the public, where

anyone can use it to encrypt a message. On the other hand, private key must be

kept secret, because this key is used to decrypt the encrypted message. In addition,

the role of public and private keys may be switched for some other purposes, i.e. if

a message is signed with the private key, it can be verified by using the public key

as well. To provide this secrecy on the private key, the key pair should be selected

in such a way that no one can construct the private key from the public key.

Most public-key encryption algorithms are based on computationally hard problems

in number theory or algebra such as integer factorization and discrete logarithm

problems [108]. RSA and Paillier are two of the well-known public key algorithms

based on integer factorization. Another well-known example, El-Gamal encryption

algorithm, is based on discrete logarithm problem [109–111]. Although speed in

symmetric cryptosystems and cryptographic hash functions do not depend on the

key and hash length, it is not the same for asymmetric cryptosystems [112]. As stated

earlier, many asymmetric cryptosystems depend on either integer factorization or

discrete logarithm problem.
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Parties constantly try and communicate with each other via certain mediums such

as telephone, internet, and many more. Before communicating, parties may need to

verify that they are communicating with the right party. This verification process

is called authentication and is defined as verifying the identity of communicating

parties to each other in the context of computer science [113]. This protects the

communication by preventing unauthorized intruders to reach the information.

3.4.1 Other Cryptographic Primivites

Cryptographic Hash Functions. Generally, a hash function is used to compress

arbitrary-length strings into shorter strings, in order to achieve O(1) insertion and

lookup times for storing a set of elements. However, since the amount of data

to be compressed is very large, collisions are unavoidable. Therefore, simple hash

functions are not good candidates in cryptography. A good hash function has to

supply a unique output for every possible input, therefore minimizing the possibility

of collision. Some are classed as collision-resistant hash functions. Designing a

collision-resistant hash function is not as easy as creating a regular hash function,

where the main purpose of it is to compress files as a data structure. However, in

order to use these hash functions in cryptography, collision-resistance is a must and

therefore it requires a more advanced design [114].

According to Katz and Lindell [114], there are three levels of security when consider-

ing a cryptographic hash function: collision resistance, second pre-image resistance

and pre-image resistance.

� Collision resistance: It should be computationally infeasible to find a pair

of different input values (m,m′) to have the same digest.

� Second pre-image resistance: It should be computationally infeasible to

find a message m′, to hash to the same output as message m.

� Pre-image resistance: It should be computationally infeasible to find a

message m′, which hashes to a specific output, y = H(m).
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Here, if a hash function is collision resistant, it is also pre-image resistant; because

if there is a second preimage, then that means there is a colliding pair. Also, a pre-

image resistant function is called a one-way function, since it is difficult to inverse

it.

Cryptographic hash functions are used in many information security areas such

as digital signatures, message authentication codes, fingerprinting, checksums, and

many more [115–117].

OTP: One Time Passwords. One-time password systems are designed to over-

come several drawbacks associated with using a single use password. The security of

OTP depends on non-invertibility of a secure hash function [118]. In simplest terms,

generation of OTP’s consists of three steps: initial step, computation step and out-

put step. First, the user chooses a passphrase which needs to satisfy a standard in

size (10 chars) so that it is secure against dictionary attacks. Later, a non-secret seed

in a text form is given from the server. This seed and the passphrase are combined,

and a secure hash function is applied numerous times on this combination. Lastly,

by using a function dependent algorithm, this output is reduced to 64 bits [118].

In recent years, more and more services are using two-factor authentication and

OTP is commonly used as a part of this. Either an application or a physical device

is used to generate an OTP. A simple design would be using a seed and a timestamp

to produce such OTPs and the client uses an application/device to produce it. The

server has the same seed, so can produce the same OTP simultaneously. However,

it is impossible to synchronize time between two devices. That’s why the server

produces every possible OTP for the next minute. If the received OTP is included

in that list, the client is authenticated.

A standard password is static and can be used multiple times. If an attacker tries

and captures this password, then critical and sensitive information can be stolen.

Although adding a dynamic password does not decrease the chances of the original
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password being captured, it may prevent sensitive information to be stolen. One

time passwords are dynamic passwords and they are used only once. Therefore they

can provide protection to replay attacks and it is used as an extra layer for security.

When OTP is used, stealing the password would not be enough for the attacker to

compromise the system. However, the authentication is not limited to the usage of

static password as it is also needed for the dynamic passwords, such as one-time

password.

There are several ways of creating an OTP: time-synchronized, challenge-based,

counter-synchronized, hash-based and SMS-OTP. [119]. After creating an OTP,

there are several ways to deliver this to the target device: sending SMS, using

mobile apps (push notifications), paper-based, web-based methods, and proprietary

tokens [119].

It is highly likely to find OTP in daily life where security is an issue. For instance,

banking applications use OTP regularly as two-factor authentication. The type of

creating an OTP may change due to the nature of an application. Time-synchronized

OTP need both server and client to keep the same time, otherwise it would not be

useful. Since the mobile phones are receiving their time from the cell phone network,

they are usually synchronized. However, one must keep in mind that when one of the

users change time zones, time synchronization will break. Then, a user must enter

the OTP within a time period before it expires. Counter-synchronized OTP use a

counter which changes every time an OTP is requested. In both of these methods,

the user enters the password that he/she sees on the screen of the device creating

the OTP whether it is an additional device or a mobile phone. Challenge-based

OTP often use an additional hardware with additional PIN. In this, the algorithm

does not use time, therefore devices do not need to be synchronized time-wise. The

downside of this method is that user must keep the device with him/her at all times.

Lastly, hash-based OTP use cryptographic hash functions to produce a fixed-length

password.
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Lightweight Cryptography. Although conventional cryptographic methods

work well in regular computers, it is hard for them to work for low-powered em-

bedded devices such as IoT. This is because those cryptographic methods require

much processing power, battery power and memory space. On the other side, em-

bedded systems usually consist of 8-16-32 bit microcontrollers which make it hard for

them to use conventional cryptographic methods [107]. For this reason, lightweight

cryptography emerged as a field focusing on cryptographic solutions for devices with

constrained capabilities in power supply, connectivity, hardware and software [120].

Lightweight cryptography provides a good alternative for low-powered devices by

using a smaller block size, shorter keys and less complex rounds. Therefore, it is

safe to state that lightweight cryptography is unable to provide a security level such

as conventional cryptography [107]. It aims to provide a cryptographic algorithm

which uses less memory, less computing resource, and less power supply.

Lightweight cryptography has several promising candidates to replace AES for low

powered devices. Table 3.6 below lists some well-known block and stream ciphers.

Table 3.6 Some well-known block and stream ciphers

Lightweight

cryptographic

methods

Block size (bits) Key Size(bits)

PRESENT 64 80,128

XTEA 64 64

RC5 32,64,128 0 to 2040

SIMON 64,72,96,128,144,192,256 32,48,64,96,128

CLEFIA 128 empty

Mickey V2 Stream 80

Trivium Stream 80

Grain Stream 80

Enocoro Stream 80
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3.4.2 Visual Cryptography

Visual cryptography was first introduced in 1994 by Naor and Shamir [121] as a

novel way to provide secrecy on written material (printed text, notes, images, etc.)

without using any complex cryptographic computations. In this, encryption is done

by dividing an image into some shares, let’s say n shares, and printing them onto

transparent films. Then, in order to re-construct the original image, k or more, where

k ≤ n, transparent images must be stacked on top of each other. Otherwise, it is

not possible to obtain the image back. Figure 3.11 below provides a basic example

of 2-out-of-2 scheme. It can be seen that shares alone do not reveal anything about

the original image.

Figure 3.11 a) Share 1, b) Share 2, c) Reconstructing image by stacking shares up

In what follows, we present some related work.

Revenkar et al. [122] compared visual cryptography schemes between 1995 and 2009

based on number of secret images, pixel expansion, image format and types of gen-

erated shares. Out of 28 schemes, 19 of them work on binary images and only 5 of

them uses meaningful (non-random) shares. It is suggested by Chang et al. [123]

meaningful shares should be used because random looking shares could be seen suspi-

cious and therefore vulnerable to attacks. However, number of visual cryptographic

schemes using meaningful shares are less than others.
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QR Codes are two dimensional matrix codes consisting of black pixels arranged on

a white background on a square grid. Since it consists of black and white pixels, it

is a very good candidate for visual cryptography applications. Several applications

can be found in literature.

Lu et al. [124] use visual cryptography to provide security in QR code mobile pay-

ment systems. Authors divide the original QR code of the shop into two shares

called shadows. These shadows are further implemented into carrier QR codes to

conceal them with the help of error correction system built in QR codes. At this

point, there are two carrier QR codes. One of them is stuck on the wall of the shop

and the other one is stored in the cloud. When the customer scans the QR code

to make a payment, the system immediately downloads the carrier code from the

cloud and combines two carrier codes together in order to construct the original QR

code. At that point, payment can be done.

Roy and Venkateswaran [125] combine steganography and visual cryptography in

order to safeguard customer data, increase customer confidence and prevent identity

theft. This proposed method involves a certified authority CA which holds a cover

text involving the customer password and customer account number. A snapshot

of this information is taken and divided into two shares. One share is given to

the CA and the other is stored by the customer. In order to do payment, customer

sends its own share to CA where CA combines these two and constructs the original

image. Later, CA gives this information to the bank where the customer password is

obtained from the cover text and the customer is authenticated. When the customer

is authenticated, the bank transfers the money to the merchant. CA also gives the

account information of the customer to the merchant, so that he can verify that that

specific customer paid.

Hou and Huang [126] propose a novel intellectual property protection scheme for

digital images using visual cryptography and statistical property. Authors select

two random pixels from the original image and compare the pixel values. If the first
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one is bigger, a black pixel is added to the master share; if smaller, a white pixel is

added. This happens a number of times and authors claim that law of large numbers

satisfies the necessary security demand of visual cryptography. The positions to

select random pixels are generated from a private keyK. After constructing a master

share M ; ownership share O is constructed by using contents of master share and a

watermark share W . O is stored in a trusted third party. In order to authenticate

the ownership, same private key K is used to generate master share M. Since O

is stored in a third party, watermark share can be constructed by superimposing

M and O. If the watermark share is same as the original watermark, the image

ownership is authenticated.

Ying and Yinlan [127] propose a multiparty copyright scheme by using visual cryp-

tography. They propose a system which can work up to 6 users. N , N < 6, number

of users selects an original image and a watermark image. These two images are

later combined and divided into N+1 shares where N shares are gone to the owners

and 1 share is stored in a server. When a user wants to declare his/her ownership,

he sends his own share to the server and by combining these two images, they can

construct the watermark image.

Prakasha et al. [128] apply visual secret sharing to authenticate multiple users. Their

simulation consists of two users, A and B. Users try to get access to server S. The

system also includes a trusted third party T . User A shares key Kat with T and

user B shares key Kbt with T . There is also an additional Kt which is shared among

A, B and T . An image P is used as password to authenticate both users, and is

divided into two parts called P1 and P2. First, A and B identify themselves to T ,

who encrypts their shares and sends them back. For A, T encrypts P1 with Kat and

for B, it encrypts P2 with Kbt. If A and B are not frauds, they are able to decrypt

these images. Later, when they want to access to the server, they combine their

image shares with their identities with Kat and Kbt respectively, and encrypts that

encryption with Kt. Trusted party T can now decrypt everything, combine shares

and check whether that combination is same as original image P . If so, it grants
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access.

Tanvir and Qu [129] use a different approach to their multi-user authentication

systems. They have decided to use visual cryptography, because it is not a compu-

tationally intensive operation; and therefore making it suitable for IoT applications.

They used resistive random access memory (RRAM) based circuits to demonstrate

the concept of hardware based multi-user authentication. Previously, they have

developed a system working with RRAM-based circuits and protocols for single

user authentication [130]. While this is the basis for their multi-user authentica-

tion, they could not apply this single-user authentication protocol for every k user

multiple times, due to scalability and privacy problems [130]. To remedy, they

have designed a visual cryptography inspired RRAM-based authentication scheme

and showed a small example for 2-out-of-3 user authentication using RRAM-based

threshold detector circuit.

Construction of n-out-of-n scheme. In the simplest version of visual se-

cret sharing scheme, a message is a collection of black and white pixels and each

black/white pixel is handled separately. Moreover, each pixel appears in n different

versions, called shares, and each share is a collection of m black and white subpix-

els. Now, consider an n-by-m binary matrix S = (sij), where sij = 1 if the jth

subpixel on ith share is black. Therefore, each row in S represents a different share

in the scheme. If one is given two shares, i.e. two rows of S, stacking them together

means applying inclusive OR operation on these rows. Then the grey level of the

resulting stacked vector is determined by the count of 1 bits. This count is basically

the Hamming weight H(v), where v is the resulting stacked vector. If this count is

at least a fixed threshold value d, then the pixel obtained is assumed to be black.

Otherwise, if H(v) ≤ d− α ·m, where α > 0 is the relative difference in weight be-

tween combined shares from white and black pixels, then it is assumed to be white.

In general, the matrix S represents a single pixel and rows of this matrix represent

the shares which are to be distributed to n shareholders. After a single pixel (black

or white) is splitted into shares, it is reconstructed as follows: First, k (out of n)
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rows of S come together and then their joint grey level is computed by counting

1 bits after inclusive OR is applied on these k rows. If this number is less than

the threshold value, then the pixel is considered as white, otherwise as black. This

process requires a selection of a proper matrix S depending on the pixel being black

or white. Also, what makes this process interesting and useful is that any randomly

chosen k (or more) rows give rise to the same outcome and any k − 1 (or less) rows

do not reveal any info on the grey level of the pixel.

Naor and Shamir [121] present some solutions on how to construct these matrices

in their original article. They first consider the case where k = n. By adopting

their notations, let us consider two sets of binary vectors each of which is of length

n, namely J0
1 , J

0
2 , . . . , J

0
n and J1

1 , J
1
2 , . . . , J

1
n. Now, it is assumed further that the

vectors J0
i satisfy the property that any n− 1 of them are linearly independent, but

the entire set is linearly dependent. On the other side, the vectors J1
i are linearly

independent. For any n ≥ 2, an easy way to obtain such sets is given below.

J0
1 : 1000 . . . 00 J1

1 : 1000 . . . 00

J0
2 : 0100 . . . 00 J1

2 : 0100 . . . 00

. .

. .

. .

J0
n−1 : 0000 . . . 10 J1

n−1 : 0000 . . . 10

J0
n : 1111 . . . 10 J1

n : 0000 . . . 01

Then the matrix S0 (S1) is constructed as follows: Let’s first label the rows of the

matrix with the vectors J0
i (J1

i ) and the columns with all possible binary vectors of

length n, therefore the resulting matrix is of size n by 2n. Then, the binary entry at

the intersection of the ith row and sth column is computed from the inner product

of the vector J0
i (J1

i ) and the binary vector labeling the sth column.
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Once these matrices S0 and S1 are constructed, then two collections C0 and C1 are

produced from these matrices, respectively, by applying all possible permutations

on the columns of S0 and S1. If one plans on transmitting a 0 bit (or 1 bit), then a

random matrix from the collection C0 (or C1) is picked and its rows are distributed

as the shares. There are two cases to be considered:

(i) One picks a random matrix S ∈ C0. Since all the columns of S are labelled by

all possible binary vectors of length n, there are two columns labelled by all zero

vector and the vector 0 . . . 01. Then these are the only columns (out of 2n columns)

with all zero entries. Therefore, the number of 1 bit entries is 2n − 2 when the rows

of S are stacked together.

(ii) One picks a random matrix S ′ ∈ C1. It is similar to the first case, but there is

only one column with all zero entries which is labelled by the zero vector. Therefore,

the number of 1 bit entries is 2n − 1 in this case.

In both matrices, whenever a smaller number of rows are stacked together, the

outcome would have 2n − 2 many 1 bit entries and the only time the difference

occurs is when all rows of S ′ are stacked together. Hence, capturing n − 1 rows

does not reveal any information about the grey level and consequently not reveal

whether the rows belong to S or S ′. It requires capturing all n rows to determine

the color of the pixel. This is an illustration of n-out-of-n scheme. See page 6 on

the original article by Naor and Shamir [121] for further details on the proof of this

scheme being an n-out-of-n scheme.

Naor and Shamir [121] also came up with an alternative but slightly better way of

constructing an n-out-of-n scheme withm = 2n−1 columns. LetW = {w1, w2, . . . , wn}

be a set with n elements, then assume that E1, E2, . . . , E2n−1 and O1, O2, . . . , O2n−1

be its subsets of even and odd cardinalities, respectively. Afterwards, n by 2n−1

matrices S0 and S1 are constructed as follow: For 1 ≤ i ≤ n and 1 ≤ s ≤ 2n−1,

S0[i, j] = 1 if and only if wi ∈ Es and S1[i, j] = 1 if and only if wi ∈ Os. Then,

the collections C0 and C1 are obtained by permuting all the columns of S0 and S1,

44



respectively.

Construction of k-out-of-n scheme. Although n-out-of-n scheme provides a

secure protocol, it would not be practical with increasing number of devices in a

network. As we recall, the matrix has a size of n x 2n. Let’s say the number of devices

increases up to 100; then it will reach sizes where a device memory is inadequate.

In addition, as the number of devices increases, the chances of break downs also

increases. This problem can be overcome by using a k-out-of-n secret sharing scheme.

Although Naor and Shamir [121] shows that it is possible, Droste [131] improved

and provided a separate construction which is explained below:

Later in [131], Droste shows how to construct k-out-of-n visual secret sharing scheme

in which k ≤ n shares (instead of n shares) suffice to determine whether a pixel is

white or black. The construction of the S0, S1 matrices is discussed below.

Given a matrix S, a k-restriction of S is a submatrix of S obtained by preserving

only k rows of S. Let us assume that a given matrix S has n rows, then we define

that

ADD(p, S) =

 Add every column with q = p 1’s to S, if p ≤ k − p.

Add every column with q = p+ n− k 1’s to S, if p > k − p.

Now, the matrices S0 and S1 are constructed by following the steps given below:

1. For all even p ∈ {0, . . . , k}, add every column with p 1’s to each restriction of

S0 by calling ADD(p, S0).

2. For all odd p ∈ {0, . . . , k}, add every column with p 1’s to each restriction of

S1 by calling ADD(p, S1).

3. While the rests of S0 and S1 are not empty:

(a) Add to S0 all columns adjusting the rests of S1 by calling ADD.

(b) Add to S1 all columns adjusting the rest of S0 by calling ADD.

This algorithm gives rise to the constructions of the matrices for the schemes with
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2 ≤ k ≤ n. In what follows, it is described how to use it for constructing matrices

for the cases k = 3 and k = 4 in a much shorter way.

Case k=3. In order to construct the matrices necessary for the k = 3 case, we have

the following steps:

1. Start with S0 which consists of 1 column of all zeros and all of n columns of

weight n− 1.

2. Start with S1 which consists of 1 column of all 1’s and all of n columns of

weight 1.

3. Adjusting the rest of S1, add to S0 n− 3 columns of all zeros.

4. Adjusting the rest of S0, add to S1 n− 3 columns of all 1’s.

Note that matrices S0 and S1 are both of size n by 2n − 2. Moreover, the number

of 1 bits is equal to n whenever any two rows in S0 or S1 are stacked together, but

this number stays same when any three rows in S0 are stacked and it increases to

n+1 when any three rows in S1 are stacked together. Below are examples of S0 and

S1 matrices (for 3-out-of-5 scheme) which are constructed by the method described

above.

S0=



0 0 1 1 1 1 0 0

0 1 0 1 1 1 0 0

0 1 1 0 1 1 0 0

0 1 1 1 0 1 0 0

0 1 1 1 1 0 0 0


S1=



1 1 0 0 0 0 1 1

1 0 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 0 0 0 1 0 1 1

1 0 0 0 0 1 1 1



Case k=4. Similarly, for the k = 4 case, we have the following steps:

1. Start with S0 which consists of 1 column of all zeros, 1 column of all 1’s, and

all of
(
n
2

)
columns of weight 2.

2. Start with S1 which consists of all of n columns of weight 1 and all of n columns

of weight n− 1.
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3. Adjusting the rest of S0, add to S1 all of n columns of weight 1 for n−4 times.

4. Adjusting the rest of S1, add to S0 n−4 columns with all zeros, n−4 columns

with all 1’s and then again 1
2
· (n2 − 7n+ 12) columns with all zeros.

Note that matrices S0 and S1 are both of size n by n ·(n−2). Moreover, the number

of 1 bits is equal to 4n−9 whenever any three rows in S0 or S1 are stacked together,

but this number is equal to 5n − 13 when any four rows in S0 are stacked and it

increases to 5n− 12 when any four rows in S1 are stacked together.
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4. MODEL

As IoT devices take place in our daily lives, their security plays a central role in

their intended usage. Without some security assumptions, it is very likely to have

a chaotic medium due to the attacks, etc. As shown in given examples, IoT devices

are being used without considering their security. Therefore, there have been many

attacks such as botnet attacks, attacks on celebrated brands of cars, etc. One of

the reasons why some of these attacks occurred in an easier manner is the (lack of)

security assumption which is directly influenced by the way the system is set-up.

The security of many of these known examples depends only on the security of a

central unit. This creates a single point of failure which is defined earlier. Instead,

a decentralized(distributed) model for IoT devices could present better solutions in

security. This requires IoT devices to take active roles in protocols instead of just

handling basic commands sent by the central unit.

In this chapter, we build on the previously mentioned visual cryptographic base

and provide models and contributions. First, we describe how to use n-out-of-n and

k-out-of-n models for our own scenarios. In addition, we further ease the process

by using XOR operation instead of OR operation which is easier to construct on

computer systems.

4.1 n-out-of-n Approach

Let us consider a secure closed network N of n (where n > 2) IoT devices and

denote these devices in the network by d1, d2, . . . , dn. Assume that devices can

communicate with each other pairwise in N . Moreover, each of these devices has

individual connection to Internet through a dummy router. It means that there is

no central hub which processes and transmits messages collected from IoT devices

to a remote master device on the behalf of IoT devices. In other words, the messages
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are sent to a remote master device by the IoT devices themselves in a collaborative

environment. When an IoT device d would like to send a message to a remote

master device, it first triggers a communication with other IoT devices in N and

then these devices, other than d, use their own shares to transmit the message of d

to a remote master device. Although a master device, which is responsible for the

distribution of shares, can communicate with each of the IoT devices securely in N ,

the transmission of messages to a remote master device is assumed to be in only one

direction through an insecure channel, that is, remote master device does not send

messages back to IoT devices through this insecure channel.

Moreover, messages of the IoT devices are assumed to be predetermined and an enu-

meration applied to these messages. For instance, consider a message corresponding

to a overheating issue belonging to a device, then a certain number is assigned to

this type of issue. When this issue occurs, the bitstring corresponding to the as-

signed number is transmitted to the master device through an insecure channel.

This tranmission is done bitwise in a collaborative way by the IoT devices. Let us

assume that each device di has a fixed number ti of predetermined messages that

are enumerated by numbers 0 through ti − 1. If tmax = Maximum{t1, . . . , tn}, then

each message can be represented by a bitstring of length s = ⌈log tmax⌉ by using a

proper padding for shorter bitstrings.

Figure 4.1 Illustration of a single master device a) near case b) away case

Now consider a master device which communicates with each of the IoT devices

securely in N , so this master device can distribute same number of shares to each

device. Afterwards, each device can send a message, that is picked from their lists
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Figure 4.2 Illustration of local and remote master devices

of predetermined messages, to a master device through an insecure channel. Note

that the master device to which messages are sent by devices is not necessarily the

same master device which distributes the shares. In one case, one may think of a

master device which is near these devices on a regular basis, so it can frequently

communicate with the devices in N and IoT devices send their messages to this

master device when it is away. In another case, there may be a remote master device

to which the IoT devices send their messages. But then it requires another unit,

such as a second local master device, which can distribute shares to devices in N

and synchronize with the remote master device. In this scenario, a synchronization

between these master devices is required and how it is achieved will be discussed

later. See Figure 4.1 and Figure 4.2 for illustration of these two cases.

In what follows, we discuss the model from the IoT devices perspective, so we may

refer to the same or different master devices during share distribution and process

of sending messages. In which, having one or more master devices does not change

the actions or their order taken by the IoT devices.

We first assume a network topology for N that is based on a complete graph G of

order n in which the IoT devices are represented by the nodes in G and the adjacency

relation defines a neigborhood among the IoT devices. Since G is complete, any node

is a neighbor of any other. This neighborhood takes role in our model whenever

a device transmits a message to a remote master device. In this process, only

the neighboring devices collaborate with each other in sending the messages. It is

obvious in this case that all n−1 neighboring nodes collaborate to send a message of
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a particular node. It means that whenever an IoT device plans on sending a message

to a remote master device, all members of N become aware of this and they all keep

the track of messages contentwise and countwise.

Before any device starts sending messages to a remote master device, a master device

(same as or different than the remote master device) distributes IoT devices’ shares

in N . For sending a bitstring of length s, each participating IoT device uses s shares

in total by consuming exactly one share for every bit of the message. However,

since it is not known in advance which bitstring will be sent, the master device

distributes 2 · s shares to each device by considering all potential messages of length

s. The master device takes the expected number of messages sent by the IoT devices

overall until next scheduled share distribution process into account, so it distributes

same and enough number of shares in N . During share distribution, the network

topology determines the type of the matrices whose rows to be distributed by the

master device. In general, for a k-regular graph G defining the network topology, a

(k + 1)-out-of-n scheme is used. In our case, n-out-of-n scheme is constructed since

we adopt the complete graphs ((n-1)-regular graph) to define a topology over N .

To do so, the master device constructs S0, S1 matrices as described above and then

obtains the corresponding collections C0, C1 by permuting the columns of these

matrices. For a message of length s, the master device picks s pairs of random

matrices from C0 × C1 with the condition that the matrices in a pair differ from

each other by at least two rows. Note that each of these matrices has exactly n rows,

then, to each of the IoT devices, the master device distributes exactly one row from

each. For instance, let us assume that, for the jth bit of a potential message, the

rows of M0
j and M1

j have been distributed to the IoT devices. Then, in the actual

message, each device uses their shares belonging to M0
j if the jth bit is a 0-bit and

shares belonging to M1
j if the jth bit is a 1-bit.

Now, assume that an IoT device d plans to send the message m = m1m2 . . .ms,

where mi ∈ {0, 1}, to a remote master device after all shares are distributed by a

master device. We also assume that the neighboring devices for d are denoted by
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di1 , di2 , . . . , din−1 , where 1 ≤ ij ≤ n. Then d broadcasts the first bit of m, namely

m1, to all other devices in N . Upon receiving m1, each dij sends its current share

(row) belonging to the matrix M0
1 if m1 = 0 or belonging to the matrix M1

1 if m1 = 1

to the remote master device through an insecure channel. Note that device d itself

does not send its share to the remote master device. This process continues similarly

for m2, m3 and so on until the shares for ms are all sent to the remote master device.

Upon receiving the shares sent for the message m, the remote master device checks

whether these shares belong to the matrices M0
j or M1

j and it determines the device

that initiated the communication since its share is not sent to the remote master

device. Since matrices in a pair differ from each other by at least two rows, we avoid

the ambiguity on determining to which matrix the received shares belong. After

receiving all bits of m belonging to d, the remote master device can decide for which

of the predetermined messages of d the bitstring m has been sent.

To illustrate the model, we give the following small example. Let’s construct the

matrices S0 and S1 and generate the collections C0 and C1 as follows:

S0:


0 0 1 1

0 1 0 1

0 1 1 0

 Permuting−−−−−−−→
columns

C0:

...,


0 0 1 1

0 1 0 1

0 1 1 0

 , ...,


0 0 1 1

0 1 1 0

0 1 0 1

 , ...,


0 1 0 1

0 0 1 1

0 1 1 0

 , ...



S1:


1 1 0 0

1 0 1 0

1 0 0 1

 Permuting−−−−−−−→
columns

C1:

...,


1 1 0 0

1 0 1 0

1 0 0 1

 , ...,


1 0 0 1

1 1 0 0

1 0 1 0

 , ...,


1 0 0 1

1 0 1 0

1 1 0 0

 , ...



We assume that pairs of matrices below are picked from the collections C0 and C1,

then without loss of generality the first rows of matrices are all distributed to device

d1, the second rows to device d2 and third rows to device d3.

M0
1 : M1

1 =


0 0 1 1

0 1 0 1

0 1 1 0

 :


1 1 0 0

1 0 1 0

1 0 0 1

 ,M0
2 : M1

2 =


0 0 1 1

0 1 1 0

0 1 0 1

 :


1 0 0 1

1 1 0 0

1 0 1 0


,
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M0
3 : M1

3 =


0 1 0 1

0 0 1 1

0 1 1 0

 :


1 0 0 1

1 0 1 0

1 1 0 0

.

Now let’s say d2 plans on sending the message m = m1m2m3 = 001, then devices

d1 and d3 send the following shares to the remote master device in the order given

below:

d1 :
[
0 0 1 1

]
m1

[
0 0 1 1

]
m2

[
1 0 0 1

]
m3

;

d3 :
[
0 1 1 0

]
m1

[
0 1 0 1

]
m2

[
1 1 0 0

]
m3

When the remote master device receives the shares for m1; r1,1 =
[
0 0 1 1

]
m1

and r3,1 =
[
0 1 1 0

]
m1

, then it can decide the bit value of m1 as follows: Firstly,

it stores the pairs of matrices in the order the shares have been distributed, so it

knows that the shares are from either M0
1 or M1

1 . Moreover, these two matrices

differ from each other by at least two rows, so the master device can locate r1,1 and

r3,1 as the first and third rows of M0
1 . This implies that m1 = 0. Also, the remote

master device can detect that r1,1 is sent by d1, r3,1 sent by d3 and d2 has not sent

its share so the message belongs to d2. A similar process is conducted for m2 and

m3 so finally the master device obtains the message as m = 001.

4.2 k-out-of-n Approach

This approach has a similar set-up as the previous one, however the main difference

is the topology defined over the IoT network N . In this approach, the network

topology adapts a k-regular graph where k < n − 1. This means every node is not

a neighbor of any other node in the network. As described in the previous model

if a device wants to send a message, its neighbors are informed and they send their

shares to a remote master device. The device itself does not share its own share.

One other difference in this approach is the synchronization among the IoT devices in
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N overall. When an IoT device triggers a communication, we described that only its

neighbors send their shares. However, other non-neighboring devices must be aware

of this communication to keep track of their shares. As assumed before, master

device distributes the same number of shares to IoT devices. For a particular device,

if there is a communication initialized by one of its k neighbors, this device pass its

current share to the remote master device. Otherwise, it ignores its current share

and its next share becomes the current share. To achieve this, a synchronization is

among the IoT devices is described later.

Similarly, the master device constructs S0, S1 matrices and then obtains the cor-

responding collections C0, C1. For a message of length s, the master device picks

s pairs of random matrices from C0 × C1 with the condition that the matrices in

a pair overlap at most one row. Note that each of these matrices has still exactly

n rows, then, to each of the IoT devices, the master device distributes exactly one

row from each.

Now, assume that an IoT device d plans to send the message m = m1m2 . . .ms,

where mi ∈ {0, 1}, to a remote master device after all shares are distributed by the

master device. We also assume that the neighboring devices for d are denoted by

di1 , di2 , . . . , dik , where 1 ≤ ij ≤ n. Then d broadcasts the first bit of m, namely m1,

to all its neighboring devices in N . Upon receiving m1, each dij sends its current

share (row) belonging to the matrix M0
1 if m1 = 0 or belonging to the matrix M1

1 if

m1 = 1 to the remote master device through an insecure channel. Note that neither

device d itself nor the non-neighboring devices do not send their shares to the remote

master device. This process continues similarly for m2, m3 and so on until the shares

for ms are all sent to the remote master device. Upon receiving the shares sent for

the message m, the remote master device checks whether these shares belong to the

matrices M0
j or M1

j and it determines the device that initiated the communication

since its share is not sent to the remote master device and there is only once device

neighboring the devices which have sent their shares. Since matrices in a pair differ

from each other almost entirely, we avoid the ambiguity on determining to which
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matrix the received shares belong. After receiving all bits of m belonging to d, the

remote master device can decide for which of the predetermined messages of d the

bitstring m has been sent.

In the following sections, we illustrate this approach for k = 3 and k = 4.

4.2.1 Construction of 3-out-of-n secret sharing scheme

For k=3; the following steps are followed to construct 3-out-of-n secret sharing

scheme:

1. Let S0 consist of 1 column of all 0’s and n columns of weight n− 1.

2. Let S1 consist of 1 column of all 1’s and n columns of weight 1.

3. Adjusting the rest of S1, add to S0 n− 3 columns of all 0’s.

4. Adjusting the rest of S0, add to S1 n− 1 columns of all 1’s.

Figure 4.3 2-regular graphs

For this particular example, a cycle (2-regular graph) shown in Figure 4.3 is used

as a topology, so every device has exactly 2 neighbors.

When a 3-out-of-n scheme is constructed, rows are distributed to IoT devices. If

one of these IoT devices wants to send a message to the remote master device, it

lets its two neighboring devices know and these two devices send their shares to the

master device. Upon receiving two shares (rows) the remote master device directly

determines the device which triggers the communication since it knows the topology.

Also, with our original assumption that two matrices overlaps at at most only one

row, the master device can decide which matrix these shares (rows) belong to.
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M0
1 : M1

1 =



1 0 0 1 1 1 0 0

1 0 1 0 1 1 0 0

1 0 1 1 0 1 0 0

1 0 1 1 1 0 0 0

0 0 1 1 1 1 0 0


:



1 0 0 1 1 1 0 0

1 1 0 0 1 1 0 0

1 0 0 0 1 1 1 0

1 0 0 0 1 1 0 1

1 1 0 0 1 1 0 0


For the sake of simplicity, let’s say that a device d1 wants to send a single bit, m =

0. Neighbors of d1 are d2 and d5. These devices are going to send following shares

to the remote master device:

d2 :
[
1 0 1 0 1 1 0 0

]
m1

d5 :
[
0 0 1 1 1 1 0 0

]
m1

Remember that matrices only have one row in common. Therefore, when the remote

master device receives the shares for m1, r2,1 =
[
1 0 1 0 1 1 0 0

]
m1

and

r5,1 =
[
0 0 1 1 1 1 0 0

]
m1

; by checking with the stored pairs of matrices,

it can identify whether the shares are from M0
1 or M1

1 , and locate r2,1 and r5,1 as

second and fifth rows of M0
1 .

4.2.2 Construction of 4-out-of-n secret sharing scheme

Similar to the case k=3; the following steps are for k=4:

1. Let S0 consist of 1 column of all 0’s, 1 column of all 1’s and
(
n
2

)
columns of

weight 2.

2. Let S1 consist of n columns of weight 1 and n columns of weight n− 1.

3. Adjusting the rest of S1, add to S1 n columns of weight 1 for n− 4 times.

4. Adjusting the rest of S0, add to S0 n−4 columns with all 0’s and n−4 columns

with all 1’s. Add (n2 − 7n+ 12)/2 columns with all 0’s.

For k = 4, we need to adapt 3-regular (cubic or trivalent) graphs as the network
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Figure 4.4 3-regular graphs

topology. Figure 4.4 provides two different examples for cubic graphs. The existence

of cubic graphs is discussed for even orders. For odd n values one may have resolution

by using a dummy node to make the order even. Then, the rest is very similar to

the previous case.

For even n > 3, there exist cubic graphs of order n [132]. However, for odd n, we

may use a dummy node to make n look like an even number. Here, we add a dummy

node and join this with one of the other nodes, i.e. d. Therefore, d receives twice as

many shares as other devices shares. Since dummy node and d may share the same

nodes as neighbors, the final graph may not be simple. The dummy node would not

send a message, so d does not need to send message on behalf of the dummy node.

However, d sends the shares of the dummy node to the remote master device if one

of the neighbors of the dummy node triggers a communication.
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5. IMPLEMENTATION

In this chapter, we give further information about implementation details of our

method. First, we talk about how it provides secrecy. Next, we define how to

synchronize multiple devices by using OTP and enumeration methods. Lastly, we

analyze our method in performance and memory aspects.

5.1 Secrecy & Security

The proposed model depends on the visual secret sharing scheme originally intro-

duced by Naor and Shamir [121]. In their study, Naor and Shamir provided with

two constructions for an n-out-of-n scheme. In their first construction the resulting

matrices S0 or S1 both are of size k × 2k and the latter method produces matrices

of size k× 2k−1. Although the second construction method gives rise to a more effi-

cient result, we use mainly the first construction in our model for practical purposes

in construction. For both constructions, Naor and Shamir also include the proofs

showing that the matrices satisfy some certain conditions. In the first part of their

discussion, the number of all zero columns leads to the conclusion that stacking

less than k rows does not make any difference on S0 or S1, but stacking k rows on

S1 yields more 1-bit entries compared to the matrix S0. The continuation of the

discussion shows that the distributions of submatrices with k − 1 rows or less in

collections C0 and C1 are same. This means that if one captures k − 1 or less rows

from a matrix, then this information is not sufficient to decide to which collection

this matrix belongs.

Naor and Shamir posed some questions in their original work. Although they in-

cluded some discussions on the existence of k-out-of-n schemes, Droste [131] resolved

this problem. In his paper, Droste shows explicitly how to construct such schemes
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and includes the necessary proofs. Similarly, he shows how stacking rows on S0 and

S1 makes difference when k of them are used instead of k or less case. His approach

on security aspect is also similar as he discusses the distribution of the submatrices

in collections C0 and C1.

In our proposed model, the secrecy and security mainly depend on the fact that

matrices S0 and S1 result in the desired schemes. When an IoT device triggers a

communication, this device does not send its shares. Missing a share (a row), an

eavesdropping third party on an insecure channel cannot decide whether the sent

shares (rows) belong to a matrix from C0 or C1 even if it captures all other k − 1

rows. As it is discussed above, it is proved that finding a matrix with the captured

k − 1 rows in C0 or C1 are equally likely, so it cannot determine the bit value.

Moreover, it is assumed in n-out-of-n approach that matrices in each pair picked

from the collections C0 and C1 differ from each other by at least two rows, so

transmitting just n − 1 shares (rows) to the master devices does not create any

ambiguity on its side. It can still determine the matrix (and so the corresponding

bit value) upon receiving n− 1 rows (shares) since it stores all the shares. Similarly

in k-out-of-n approach, the assumption of having matrices differing from each other

by at most 1 row takes care of a potential ambiguity on the master device side. The

existence of such matrix pairs follow from the fact that the rows of S0 and S1 in

both approaches are all distinct.

Up to this point, it is known that a third party cannot reveal the secrecy by obtaining

the information sent over the insecure channel. However, it can try to attack in some

other ways. At this point, it is beneficial to remember and summarize inner workings

of the protocol.

Firstly, it is previously assumed that IoT devices reside in a secure network, so they

are assumed not to be compromised by third parties unless they are physically in

the network. Even so, other than doing their own sensing tasks, IoT devices are not

doing anything instead of incrementing a simple counter.
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Dummy router is open to the internet and it is possible that it may be compromised

by a third party. However, dummy router itself cannot reveal the secrecy because it

relays the information sent to it by the IoT devices. Since the original sender only

broadcasts the intention to other devices and not dummy router; compromising

dummy router does not help the adversary.

A third party may try to intervene the communication, alter some shares and can

send different data to the remote master device. Since our method uses sequence

numbering, master device can easily detect that there is an anomaly and discard the

message. IoT devices and master device both have the same sequence and master

device only compares incoming shares to the sequence the system is on. Moreover,

a third party can try a replay attack but since the master device chooses different

matrix pairs from the collections for every sequence, this case will be similar to the

previous attack and master device will discard it.

In addition, impersonation issues can also be detected since the master device au-

thenticates the senders via the missing shares. The shares are distributed to the IoT

devices by the master device and an IoT device does not produce its own share.

A third party can try to disturb the communication line by sending random values.

However, our proposed method does not aim to provide a solution for this problem.

It aims to provide secrecy on an insecure line. The only way a third party is able

to reveal the secret is to have the same database as the master device. However,

the database of the master device changes at every distribution. Therefore, if a

third party is able to compromise the master device and its database for a given

distribution, it can reveal the secret.

If a third party continously listens to the insecure line and stores that information,

it is unable to reveal a meaningful message from those submatrices. The probability

of a given submatrix to belong in either collection is the same, since each collection

has the same number of a given submatrix.
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Our proposed system is secure as long as IoT devices are communicating within

a closed network and master device keeps the distribution database to itself. If a

master device works maliciously and shares distribution details, the secret can be

revealed by a third party.

5.2 Synchronization

In this section we discuss various aspects of the implementation of the proposed

model. The intention is to point out some aspects related to implementation of the

model.

In the proposed model the topology defined over N is adopting a complete graph

or a regular graph. In the case of complete graph, we can easily assume that any

device in N can communicate with any other securely through their neighborhood.

This maintains an environment in which any device is aware of any communication

initiated by a member in N . Moreover, devices are all aware of which messages

are transmitted to the remote master device and in which order. Therefore, devices

can follow the order of the shares to be used for every communication and this

maintains the synchronization among the IoT devices in N . Note that adding or

removing device to/from network requires a new share distribution by the master

device. On the otherside, if a regular graph is adapted as a network topology, we

may still assume that any device is aware of the initiation of sending a message even

if it is not a neighbor of the device which triggered the communication. If there is

no neighborhood among the devices, the message is counted but no action is taken.

An alternative method for distributing this knowledge over the entire network is to

use a predefined spanning tree over the network topology. By this spanning tree

structure, any device on N can follow the messages. this approach may be more

useful within larger networks.

Another aspect of the implementation is the concurrent communication initiations

by different IoT devices in N . In the case of two different devices broadcasting
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their messages in N concurrently, an implementation requires some scheduling or

priority mechanism to point out which message is handled first within the network.

In this queueing mechanism, one may want to consider adding time stamps to the

broadcasted messages or using the type of the messages to be transmitted in order

to determine the priorities. It is essential to synchronize IoT devices, so they all

use correct corresponding shares for the same message. This can be implemented in

two ways: first one allowing shares to be sent by IoT devices whenever bit values

are received, and the second, IoT devices waiting for transmission until the entire

message is received. We assume that all messages are of the same length, so whenever

a device broadcasts the bits in its message, other devices in N can wait for the entire

set of bits received then transmit their corresponding shares to the remote master

device. If they choose to send their shares whenever they receive a bit value without

any delay, the remote master device can wait for a certain number of shares received,

then it processes the shares to compute the message. Both scenarios may have pros

and cons, but it is critical to maintain synchronization among the IoT devices, so

the remote master device does not fail due to some ambiguity on which sent share

belongs to which message.

In the proposed model, there may be one or two master devices present as men-

tioned previously. In the case of a single master device, synchronization on share

distribution is not an issue since there is only one device handling this. However, if

there are two master devices, namely a local one and a remote one, then it requires

some synchronization method among them to maintain the distribution of the same

shares on two sides. This may be achieved as follows:

We first assume that both of master devices can construct matrices S0 and S1

as their constructions are public. As described before, the collections C0 and C1

are obtained by permuting the columns of the matrices S0 and S1, respectively.

However, there is no need to contruct these collections in advance, instead one may

apply a permutation on S0 or S1 whenever it is necessary. This requires generating

the same permutations on both ends simultaneously and results in the same matrices
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(so same shares) on both sides. To achieve this, a randomly generated seed can be

used together with a method which maintains a one-to-one corresponding between

seeds (integers) and permutations. In other words, the seed can be used to determine

a permutation from, let’s say, a set of lexicographically enumerated permutations.

If the matrices S0 or S1 are of size n×m, the number of permutations of required ism!

Richard [133] shows that it is possible to determine the corresponding permutation

for a given randomly generated seed, where it is between 1 and m!. Surely, this

seed must be same for both local and master devices. To have this, both devices

must use the same seed generating algorithm. This algorithm will be a proprietary

algorithm which will use the timestamp information, similar to the OTP methods.

The integer, as this seed, will be used as a step to get the correspoding permutation

which is unavailable to third parties. By applying this permutation on both of S0

and S1 matrices, both local and master devices will come up with the same matrix

for share distribution.

In order to generate the seed, we need a number generator. However, this generator

must take into account some value which is shared by local and master device. This

can be a timestamp, or time information. Generally, in settings such as this (OTP),

a timestamp is used. However, it is used for authentication purposes. The client

sends a value, and the server calculates 60 values representing every outcome for

every second in a minute; and checks whether the given value is in that range.

However, this cannot be used in our scenario. A possible solution may be just using

a timestamp up to minute value. e.g. let’s say the local master device sent ”ready”

message to remote master device at 22:37:33. Since there will be a time delay, remote

master device will receive this at a time 22:37:33 + t. However, we can use 22:30:00

or 22:00:00 as a timestamp and generate a seed according to that. In addition, we

can use some simple confirmation between these two devices so that they both know

they are generating ”a” seed. However, this algorithm must be proprietary and must

not be known by the third party. Otherwise, they can intercept the timestamp and

try and guess the exact value in order to generate the same random number.
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After successfully generating the same seed in integer, master and local devices will

use that number as an order to find a permutation. In order for both devices to

find the same permutation, they must abide by the same enumeration method. By

using lexicographic enumeration, both devices can find the same permutations and

construct the same matrix from the initial S0 and S1 matrices. Moreover, factoradics

is a short term for factorial number system. This system is a mixed radix numeral

system adapted to numbering permutations. In order to find the kth lexicographical

permutation, k needs to be written in the factorial base first and here is a pseudocode

on how to write k in factorial base:

create stack s;

int i = 1;

k = input()

while k != 0:

stack.push(k%i);

int k = k / i;

i++;

while s:

s.pop()

Starting from 1, we divide k into 1 and update k as the dividend. We also store

the remainder in a stack. By increasing the quotient by 1 in every step, we do the

same calculation until the dividend is 0. When the dividend is 0, we push the last

remainder into the stack. Reading the values from stack will give us the factorial

number representation, which is the kth order in lexicographic enumeration.

Lehmer code carries out the conversion between the factorial number system and the

corresponding permutation. Each digit in the factorial number system represents

a corresponding digit from the permutation number. Let’s say that we have three

devices in the network and our RNG created integer 23. The factorial number rep-

resentation of 23 is 3210. Here, each digit gives information about the permutation.
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Since we have three devices, our matrix is going to have the size of 3 x 4, which

means there are 4 columns. Our initial value will be 1234 (0123). Table 5.1 below

is an example of how to apply 3210 into this.

digit remaining elements chosen element

3 1234 4

2 123 2

1 13 3

0 1 1

Table 5.1 How it works

Here, up until the last digit of our integer, we select that index from the original

string and remove it. Joining the removed elements will give us the final permuta-

tion.

5.3 Authentication, Performance and Memory Requirements

Authentication. In the proposed model, the IoT device which starts the commu-

nication, i.e. which intends to send a message, does not send its shares to the remote

master device. Instead, this particular device just broadcasts the bits of its message

in N . Therefore, the remote master device can figure out the owner of the message

by going through the shares received and realizing that its shares are missing. For a

message of length s, the remote master device will not receive this device’s s many

shares as it is receiving others’. Since the master device has all the shares of IoT

devices in storage, it will detect the owner of the sent messages. Moreover, it will

also detect if one of the received messages or their order is changed or manipulated.

Performance. The performance of the master device is irrelevant, because it is

chosen to be a device with relatively adequate computing power, such as a mobile

phone or a PC. However, it is important for the IoT devices to have adequate

computational power to realize this model. However, IoT devices are expected to

handle basic steps such as triggering a communication by broadcasting bit values

of its message in N , keeping the track of bits shared with itself and its own shares,
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upon receiving a bit value sending its next share to the remote master device, etc., so

none of these operations are costly and consequently do not require high computation

power on an IoT device.

Porting modern cryptography over to ultra-low-end devices are very difficult [27].

The reason is that these devices has very limited resources to use for security. They

also state that lightweight cryptography or cryptography in general is very hard to

successfully used and implemented on low-end IoT devices without any weaknesses.

Zhang et al. [134] presents a performance and energy consumption analysis of three

AES implementations. These three AES implementations are: exclusively software

original AES, exclusively software AES with optimized table lookup and hardware

supported AES. Analysis and tests were done on a MicaZ sensor node running

TinyOS 2.1.0. This sensor node has 8-bit ATmega128L microcontroller, 128KB

RAM, 512KB ROM and Chipcon CC2420 RF transceiver with AES-128 support.

Table 5.2 below summarizes their findings:

Table 5.2 Total RAM & ROM usage for key setup, encryption and decryption

AES Implementation ROM (byte) RAM (byte)

Original 26336 4660

With table lookup 25130 4898

Hardware Accelerated 30655 1634

Table 5.3 shows that using these implementations increase both time and energy

of these devices. All three methods can be successfully implemented on the MicaZ

node and the hardware implementation observed to be the fastest. However, au-

thors commented that the speed advantage of the hardware is negated by its energy

consumption.

However, it is also possible in recent microcontrollers to reduce both duration

and energy consumptions of AES operations. By using the hardware accelera-

tor in ATmega128RFA1 microcontroller with an integrated transceiver, Panait and

Dragomir [135] provided an optimized AES implementation for four modes of op-
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Table 5.3 Execution times & energy consumption for key setup and encryption

AES Implementation Time (ms) Energy (µJ)

Original 1,4217 30,31

With table lookup 1,3272 28,64

Hardware Accelerated 0,5751 43,94

eration (ECB, CBC, CFB & CTR). Compared to the previous studies, by using a

microcontroller with an integrated transceiver, they were able to decrease the cost

of encryption. Authors also shown that although average power consumption is sim-

ilar between software implementation compared to their hardware implementation,

energy consumption differs dramatically. Table 5.4 shows the approximated energy

consumption for increasing plaintext size.

Table 5.4 Energy consumption of software vs. hardware AES implementation

AES Implementation Energy (µJ)

Software (0 bytes) 10

Software (128 bytes) ≈ 60

Hardware (0 bytes) ≈ 0

Hardware (128 bytes) ≈ 15

Tables above show that although encryption can be applicable in certain scenarios,

it is obvious that they come with increase in running time and energy consumption.

Our proposed method does not employ traditional encryption algorithms and can

work faster with less energy consumption, making it available to even lesser capable

devices.

Memory Requirements. As discussed in the earlier section, assuming that tmax =

Maximum{t1, . . . , tn}, where ti is the number of predetermined messages for a device

di, then each message can be represented by a bitstring of length s = ⌈log tmax⌉.

Moreover, for every bit of a message, the master device distributes a share (row)

of length 2n−1, where n is the number of devices in N . Furthermore, if there are

approximately p messages that are sent to the remote master device from one share

distribution to the next one, then an IoT device requires to keep at least p · s · 2n−1
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bits in a given certain order. For instance, in a scenario with an IoT network with n

devices in which overall one message out of 128 predetermined messages is sent every

minute and share distribution process is conducted on daily basis, each device needs

to keep at least 2n+12.3 bits or approximately 2n kB. In a small-sized network, this

requires IoT devices to have low memory capacities and, as the number of devices

in a network increases, their individual memory capacities are required to increase

accordingly. This may be considered as a limitation during the implementation of

the model, however one may come up with a resolution by dividing the original

network into smaller-sized subnetworks and managing them. Another resolution

may be adopting a k-regular graph, where k << n, as a topology and adjusting the

model with respect to this topology.
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6. CONCLUSION

IoT is a concept where objects we use everyday are equipped with capabilities such as

identifying, sensing, networking and processing. These capabilities allow IoT devices

to communicate with one another. With increases in technological space, IoT devices

are being used in many diverse areas: supply chain networks, healthcare, smart

infrastructure, social applications and much more. However, this fast movement

brings security vulnerabilities with it, making IoT an open target for botnets and

such, which is shown to be a big problem for both IoT and other devices on the

Internet. One of the security vulnerabilities is single point of failure which is defined

as a crucial part of the system such that if it fails, it renders the entire system

useless. There are several examples in real-life applications where attackers use this

problem to compromise a network.

Since IoT devices are constrained in performance and power, it is hard to apply

security protocols. Therefore, our motivation is to find a suitable solution which

eliminates single point of failure and provide a secure communication without the

application of power consuming cryptographic techniques.

To overcome this problem, we propose a distributed model for IoT devices where

every IoT device in the network take active roles in communication instead of being

independent from each other. By working together, the need for a central gateway or

hub diminishes and this eliminates single point of failure. We propose two different

approaches, namely n-out-of-n and k-out-of-n approaches. In the first approach, the

topology is a complete graph where every device is responsible for the other. This

approach is more useful for areas with small number of devices such as smart home,

etc. In the second approach, the topology is a k-regular graph, where k < n. Here,

unlike the first approach; only neighboring devices are participating in the secrecy

scheme. Moreover, we provide easier constructing methods for 3-out-of-n and 4-out-
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of-n secret sharing schemes. This approach is more useful for larger areas such as

factories, farms, etc.

Lastly, our proposed method provides secure communication on an insecure line

without any use of complex cryptographic algorithms and satisfies necessary memory

conditions; thus making it suitable for constrained devices.
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Jessen, M. H. Chaves, Í. Cunha, D. Guedes, and W. Meira, “The evolution of
bashlite and mirai iot botnets,” in 2018 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2018, pp. 00 813–00 818.

[38] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Under-
standing the mirai botnet,” in 26th USENIX security symposium (USENIX
Security 17), 2017, pp. 1093–1110.

[39] L. H. Newman, “Millions of web camera and baby monitor feeds
are exposed,” Wired. accessed: Apr 5, 2022. [Online]. Available:
https://www.wired.com/story/kalay-iot-bug-video-feeds/

[40] E. Ronen and A. Shamir, “Extended functionality attacks on iot devices: The
case of smart lights,” in 2016 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2016, pp. 3–12.

[41] K. Y. Echo Duan, Veo Zhang, “Flocker mobile ransomware crosses
to smart tv,” TrendMicro. accessed: May 1, 2022. [Online]. Available:
”https://www.trendmicro.com/en us/research/16/f/flocker-ransomware-cro

74

https://hal.archives-ouvertes.fr/hal-01262473
https://www.wired.com/story/kalay-iot-bug-video-feeds/
"https://www.trendmicro.com/en_us/research/16/f/flocker-ransomware-crosses-smart-tv.html"
"https://www.trendmicro.com/en_us/research/16/f/flocker-ransomware-crosses-smart-tv.html"


sses-smart-tv.html”

[42] A. Tierney, “Thermostat ransomware: a lesson in iot security,”
PenTestPartners. accessed: May 1, 2022. [Online]. Available: ”https:
//www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-i
n-iot-security/”

[43] S. Margaritelli, “Reversing the smarter coffee iot machine protocol to make
coffee using the terminal,” EvilSocket. accessed: May 1, 2022. [Online].
Available: ”https://www.evilsocket.net/2016/10/09/IoCOFFEE-Reversing
-the-Smarter-Coffee-IoT-machine-protocol-to-make-coffee-using-terminal/in
dex.html”

[44] P. Morgner and Z. Benenson, “Exploring security economics in iot standard-
ization efforts,” arXiv preprint arXiv:1810.12035, 2018.

[45] A. Pal, H. K. Rath, S. Shailendra, and A. Bhattacharyya, “Iot standardization:
the road ahead,” Internet of Things-Technology, Applications and Standard-
ization, pp. 53–74, 2018.

[46] A. Pal and B. Purushothaman, IoT technical challenges and solutions. Artech
House, 2016.

[47] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey of
internet of things (iot) authentication schemes,” Sensors, vol. 19, no. 5, p.
1141, 2019.

[48] A. S. Tanenbaum and D. Wetherall, Computer Networks, 5th ed. Boston:
Prentice Hall, 2011. [Online]. Available: https://www.safaribooksonline.com/
library/view/computer-networks-fifth/9780133485936/

[49] M. M. Alani, “Osi model,” in Guide to OSI and TCP/IP Models. Springer,
2014, pp. 5–17.

[50] K. James F. and K. W. Ross, Computer Networking: A Top-Down Approach.
Pearson, 2001.

[51] C. Meinel and H. Sack, “The foundation of the internet: Tcp/ip reference
model,” in Internetworking. Springer, 2013, pp. 29–61.

[52] D. Groth and T. Skandier, Network+ study guide. SYBEX Inc., 2005.

[53] R. Jiang, “A review of network topology,” in 4th International Conference on

75

"https://www.trendmicro.com/en_us/research/16/f/flocker-ransomware-crosses-smart-tv.html"
"https://www.trendmicro.com/en_us/research/16/f/flocker-ransomware-crosses-smart-tv.html"
"https://www.trendmicro.com/en_us/research/16/f/flocker-ransomware-crosses-smart-tv.html"
"https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/"
"https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/"
"https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-security/"
"https://www.evilsocket.net/2016/10/09/IoCOFFEE-Reversing-the-Smarter-Coffee-IoT-machine-protocol-to-make-coffee-using-terminal/index.html"
"https://www.evilsocket.net/2016/10/09/IoCOFFEE-Reversing-the-Smarter-Coffee-IoT-machine-protocol-to-make-coffee-using-terminal/index.html"
"https://www.evilsocket.net/2016/10/09/IoCOFFEE-Reversing-the-Smarter-Coffee-IoT-machine-protocol-to-make-coffee-using-terminal/index.html"
https://www.safaribooksonline.com/library/view/computer-networks-fifth/9780133485936/
https://www.safaribooksonline.com/library/view/computer-networks-fifth/9780133485936/


Computer, Mechatronics, Control and Electronic Engineering. Atlantis Press,
2015, pp. 1167–1170.

[54] F. Nielsen, “Topology of interconnection networks,” in Introduction to HPC
with MPI for Data Science. Springer, 2016, pp. 63–97.

[55] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, “A review of low-end,
middle-end, and high-end iot devices,” IEEE Access, vol. 6, pp. 70 528–70 554,
2018.

[56] J. R. Anna Gerber, “A guide to internet of things (iot) processors,” IBM.
accessed: Apr 12, 2022. [Online]. Available: https://developer.ibm.com/arti
cles/iot-lp101-connectivity-network-protocols/

[57] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless pro-
tocols: Bluetooth, uwb, zigbee, and wi-fi,” in IECON 2007-33rd Annual Con-
ference of the IEEE Industrial Electronics Society. Ieee, 2007, pp. 46–51.

[58] E. Ferro and F. Potorti, “Bluetooth and wi-fi wireless protocols: a survey and
a comparison,” IEEE Wireless Communications, vol. 12, no. 1, pp. 12–26,
2005.

[59] X. Wang, Y. Ren, J. Zhao, Z. Guo, and R. Yao, “Comparison of IEEE 802.11e
and IEEE 802.15.3 MAC,” in Proceedings of the IEEE 6th Circuits and Sys-
tems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless
Communication (IEEE Cat. No.04EX710), vol. 2, 2004, pp. 675–680 Vol.2.

[60] N. Baker, “Zigbee and bluetooth: Strengths and weaknesses for industrial
applications,” Computing & Control Engineering Journal, vol. 16, pp. 20 – 25,
05 2005.

[61] A. Gerber and J. Romeo, “Connecting all the things
in the internet of things,” IBM Developer.—2020.—URL:
https://developer. ibm. com/technologies/iot/articles/iot-lp101-connectivity-
networkprotocols/(accessed: 30.03. 2021), 2017.

[62] M. Park, “Ieee 802.11ah: sub-1-ghz license-exempt operation for the internet
of things,” IEEE Communications Magazine, vol. 53, no. 9, pp. 145–151, 2015.

[63] E. J. Oughton, W. Lehr, K. Katsaros, I. Selinis, D. Bubley, and
J. Kusuma, “Revisiting wireless internet connectivity: 5g vs wi-fi 6,”
Telecommunications Policy, vol. 45, no. 5, p. 102127, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S030859612100032X

76

https://developer.ibm.com/articles/iot-lp101-connectivity-network-protocols/
https://developer.ibm.com/articles/iot-lp101-connectivity-network-protocols/
https://www.sciencedirect.com/science/article/pii/S030859612100032X


[64] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey of
lorawan for iot: From technology to application,” Sensors, vol. 18, no. 11, p.
3995, Nov 2018. [Online]. Available: http://dx.doi.org/10.3390/s18113995

[65] C. Gomez, J. Paradells, C. Bormann, and J. Crowcroft, “From 6lowpan to
6lo: Expanding the universe of ipv6-supported technologies for the internet of
things,” IEEE Communications Magazine, vol. 55, no. 12, pp. 148–155, 2017.

[66] T. Dierks and E. Rescorla, “Rfc 5246-the transport layer security (tls) protocol
version 1.2,” The Internet Engineering Task Force (IETF), 2008.

[67] S. Vandeven, “Ssl/tls: What’s under the hood,” SANS Institute InfoSec Read-
ing Room, vol. 13, 2013.

[68] E. Rescorla, N. Modadugu et al., “Rfc 4347: Datagram transport layer secu-
rity,” IETF, Request For Comments, 2006.

[69] J. Postel, “Rfc0768: User datagram protocol,” 1980.

[70] O. S. I. A. Errata, “Mqtt version 3.1. 1 plus errata 01,” 2015.

[71] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrahmanyam, R. Xiang,
G. Kallas, N. Krishna, S. Fassmann, M. Keen et al., Building smarter planet
solutions with mqtt and ibm websphere mq telemetry. IBM Redbooks, 2012.

[72] M. Singh, M. Rajan, V. Shivraj, and P. Balamuralidhar, “Secure mqtt for in-
ternet of things (iot),” in 2015 fifth international conference on communication
systems and network technologies. IEEE, 2015, pp. 746–751.

[73] N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP,” in 2017 IEEE International Systems Engineering
Symposium (ISSE), 2017, pp. 1–7.

[74] A. Foster, “Messaging technologies for the industrial internet and the internet
of things,” PrismTech Whitepaper, vol. 21, 2015.

[75] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Man-
zoni, “A comparative evaluation of AMQP and MQTT protocols over unstable
and mobile networks,” in 2015 12th Annual IEEE Consumer Communications
and Networking Conference (CCNC), 2015, pp. 931–936.

[76] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Rfc 7252: The constrained
application protocol (coap),” Internet Engineering Task Force, 2014.

77

http://dx.doi.org/10.3390/s18113995


[77] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Rfc2616: Hypertext transfer protocol–http/1.1,” 1999.

[78] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate,
“A survey on application layer protocols for the internet of things,” Transac-
tion on IoT and Cloud computing, vol. 3, no. 1, pp. 11–17, 2015.

[79] A. Voica, “A guide to internet of things (iot) processors,” MIPS. accessed:
Apr 11, 2022. [Online]. Available: https://www.mips.com/blog/a-guide-to-i
ot-processors

[80] C. Zevala, “Iot memory: An overview of the options,” JAXEnter. accessed:
Apr 11, 2022. [Online]. Available: https://jaxenter.com/iot-memory-overvie
w-options-131270.html

[81] C. Bormann, M. Ersue, and A. Keranen, “Terminology for constrained-node
networks,” Internet Engineering Task Force (IETF): Fremont, CA, USA, pp.
2070–1721, 2014.

[82] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of things: Se-
curity vulnerabilities and challenges,” in 2015 IEEE symposium on computers
and communication (ISCC). IEEE, 2015, pp. 180–187.

[83] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: application areas, security threats, and solution archi-
tectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[84] O. Novo, “Blockchain meets iot: An architecture for scalable access manage-
ment in iot,” IEEE internet of things journal, vol. 5, no. 2, pp. 1184–1195,
2018.

[85] P. Lv, L. Wang, H. Zhu, W. Deng, and L. Gu, “An iot-oriented privacy-
preserving publish/subscribe model over blockchains,” IEEE Access, vol. 7,
pp. 41 309–41 314, 2019.

[86] U. Javaid, M. N. Aman, and B. Sikdar, “Blockpro: Blockchain based data
provenance and integrity for secure iot environments,” in Proceedings of the
1st Workshop on Blockchain-enabled Networked Sensor Systems, 2018, pp.
13–18.

[87] K. R. Ozyilmaz and A. Yurdakul, “Designing a blockchain-based iot with
ethereum, swarm, and lora: the software solution to create high availability
with minimal security risks,” IEEE Consumer Electronics Magazine, vol. 8,
no. 2, pp. 28–34, 2019.

78

https://www.mips.com/blog/a-guide-to-iot-processors
https://www.mips.com/blog/a-guide-to-iot-processors
https://jaxenter.com/iot-memory-overview-options-131270.html
https://jaxenter.com/iot-memory-overview-options-131270.html


[88] V. Sharma, “An energy-efficient transaction model for the blockchain-enabled
internet of vehicles (iov),” IEEE Communications Letters, vol. 23, no. 2, pp.
246–249, 2018.

[89] “How blockchain can change the future of iot,” VentureBeat. accessed: Apr
15, 2022. [Online]. Available: https://venturebeat.com/2016/11/20/how-blo
ckchain-can-change-the-future-of-iot/#:∼:text=Blockchain%20technology%2
0will%20enable%20the,as%20device%20spoofing%20and%20impersonation.

[90] K. Pavani and A. Damodaram, “Intrusion detection using mlp for manets,”
2013.

[91] R. V. Kulkarni and G. K. Venayagamoorthy, “Neural network based secure
media access control protocol for wireless sensor networks,” in 2009 interna-
tional joint conference on neural networks. IEEE, 2009, pp. 1680–1687.

[92] L. Xiao, C. Xie, T. Chen, H. Dai, and H. V. Poor, “A mobile offloading game
against smart attacks,” IEEE Access, vol. 4, pp. 2281–2291, 2016.

[93] L. Xiao, Q. Yan, W. Lou, G. Chen, and Y. T. Hou, “Proximity-based secu-
rity techniques for mobile users in wireless networks,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 12, pp. 2089–2100, 2013.

[94] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, “Phy-layer spoofing detec-
tion with reinforcement learning in wireless networks,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 12, pp. 10 037–10 047, 2016.

[95] C. Shi, J. Liu, H. Liu, and Y. Chen, “Smart user authentication through actu-
ation of daily activities leveraging wifi-enabled iot,” in Proceedings of the 18th
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
2017, pp. 1–10.

[96] L. Xiao, X. Wan, and Z. Han, “Phy-layer authentication with multiple land-
marks with reduced overhead,” IEEE Transactions on Wireless Communica-
tions, vol. 17, no. 3, pp. 1676–1687, 2017.

[97] Z. Yan, P. Zhang, and A. V. Vasilakos, “A survey on trust management for
internet of things,” Journal of network and computer applications, vol. 42, pp.
120–134, 2014.

[98] C. Li and G. Wang, “A light-weight commodity integrity detection algorithm
based on chinese remainder theorem,” in 2012 IEEE 11th international confer-
ence on trust, security and privacy in computing and communications. IEEE,
2012, pp. 1018–1023.

79

https://venturebeat.com/2016/11/20/how-blockchain-can-change-the-future-of-iot/#:~:text=Blockchain%20technology%20will%20enable%20the,as%20device%20spoofing%20and%20impersonation.
https://venturebeat.com/2016/11/20/how-blockchain-can-change-the-future-of-iot/#:~:text=Blockchain%20technology%20will%20enable%20the,as%20device%20spoofing%20and%20impersonation.
https://venturebeat.com/2016/11/20/how-blockchain-can-change-the-future-of-iot/#:~:text=Blockchain%20technology%20will%20enable%20the,as%20device%20spoofing%20and%20impersonation.


[99] K. Spirina, “Biometric authentication: The future of iot security
solutions,” VentureBeat. accessed: Apr 15, 2022. [Online]. Available:
”https://www.iotevolutionworld.com/iot/articles/438690-biometric-authent
ication-future-iot-security-solutions.htm”

[100] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the
internet of things: A case study,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 1275–1284, 2018.

[101] L. Rosencrance, “6 significant issues that edge computing in iot solves,”
IoTAgenda. accessed: Apr 15, 2022. [Online]. Available: ”https:
//www.techtarget.com/iotagenda/feature/6-significant-issues-that-edge-com
puting-in-IoT-solves”

[102] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing:
A survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[103] R. L. Rivest, Cryptography. Elsevier, 1990, vol. 1, ch. 13, pp. 717–755.

[104] J. Daemen, “Aes proposal : Rijndael,” 1998.

[105] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and
practitioners. Springer Science & Business Media, 2009.

[106] V. Nachef, J. Patarin, and E. Volte, “Feistel ciphers,” Cham: Springer Inter-
national Publishing, 2017.

[107] W. J. Buchanan, S. Li, and R. Asif, “Lightweight cryptography methods,”
Journal of Cyber Security Technology, vol. 1, no. 3-4, pp. 187–201, 2017.

[108] P. Gaudry, “Integer factorization and discrete logarithm problems,” Les cours
du CIRM, vol. 4, no. 1, pp. 1–20, 2014.

[109] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, p.
120–126, feb 1978. [Online]. Available: https://doi.org/10.1145/359340.35934
2

[110] P. Paillier, “Public-key cryptosystems based on composite degree residuos-
ity classes,” in Advances in Cryptology — EUROCRYPT ’99, J. Stern, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238.

[111] T. Elgamal, “A public key cryptosystem and a signature scheme based on

80

"https://www.iotevolutionworld.com/iot/articles/438690-biometric-authentication-future-iot-security-solutions.htm"
"https://www.iotevolutionworld.com/iot/articles/438690-biometric-authentication-future-iot-security-solutions.htm"
"https://www.techtarget.com/iotagenda/feature/6-significant-issues-that-edge-computing-in-IoT-solves"
"https://www.techtarget.com/iotagenda/feature/6-significant-issues-that-edge-computing-in-IoT-solves"
"https://www.techtarget.com/iotagenda/feature/6-significant-issues-that-edge-computing-in-IoT-solves"
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342


discrete logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4,
pp. 469–472, 1985.

[112] A. K. Lenstra, “Key length. contribution to the handbook of information
security,” 2004.

[113] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in
large networks of computers,” Communications of the ACM, vol. 21, no. 12,
pp. 993–999, 1978.

[114] J. Katz and Y. Lindell, “Introduction to modern cryptography,” 2020.

[115] R. C. Merkle, “A digital signature based on a conventional encryption func-
tion,” in Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378.

[116] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for message
authentication,” 1997.

[117] J. Oostveen, T. Kalker, and J. Haitsma, “Feature extraction and a database
strategy for video fingerprinting,” in Recent Advances in Visual Information
Systems, S.-K. Chang, Z. Chen, and S.-Y. Lee, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 117–128.

[118] N. Haller, C. Metz, P. Nesser, and M. Straw, “A one-time password system,”
Network Working Group Request for Comments, vol. 2289, 1998.

[119] K. Aravindhan and R. Karthiga, “One time password: A survey,” Interna-
tional Journal of Emerging Trends in Engineering and Development, vol. 1,
no. 3, pp. 613–623, 2013.

[120] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K. Rantos, “Lightweight cryp-
tography for embedded systems – a comparative analysis,” in Data Privacy
Management and Autonomous Spontaneous Security, J. Garcia-Alfaro, G. Li-
oudakis, N. Cuppens-Boulahia, S. Foley, and W. M. Fitzgerald, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 333–349.

[121] M. Naor and A. Shamir, “Visual cryptography,” in Advances in Cryptology
— EUROCRYPT’94, A. De Santis, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 1–12.

[122] P. S. Revenkar, A. Anjum, and W. Gandhare, “Survey of visual cryptography
schemes,” International Journal of Security and Its Applications, vol. 4, no. 2,
pp. 49–56, 2010.

81



[123] C.-C. Chang, C.-S. Tsai, and T.-S. Chen, “A new scheme for sharing secret
color images in computer network,” in Proceedings Seventh International Con-
ference on Parallel and Distributed Systems (Cat. No. PR00568). IEEE, 2000,
pp. 21–27.

[124] J. Lu, Z. Yang, L. Li, W. Yuan, L. Li, and C.-C. Chang, “Multiple schemes
for mobile payment authentication using QR code and visual cryptography,”
Mobile Information Systems, vol. 2017, 2017.

[125] S. Roy and P. Venkateswaran, “Online payment system using steganography
and visual cryptography,” in 2014 IEEE Students’ Conference on Electrical,
Electronics and Computer Science, 2014, pp. 1–5.

[126] Y.-C. Hou and P.-H. Huang, “Image protection based on visual cryptography
and statistical property,” in 2011 IEEE Statistical Signal Processing Workshop
(SSP), 2011, pp. 481–484.

[127] Y. Shen and Y. Ye, “Visual cryptography based multiparty copyright pro-
tect scheme,” in 2010 2nd International Conference on Advanced Computer
Control, vol. 2, 2010, pp. 223–226.

[128] K. Krishna Prakasha, B. Muniyal, D. Shetty et al., “Multi user authentication
protocol using visual sceret sharing,” 2016.

[129] M. T. Arafin and G. Qu, “Secret sharing and multi-user authentication: From
visual cryptography to RRAM circuits,” in Proceedings of the 26th edition on
Great Lakes Symposium on VLSI, 2016, pp. 169–174.

[130] M. Arafin and G. Qu, “RRAM based lightweight user authentication,” in 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2015, pp. 139–145.

[131] S. Droste, “New results on visual cryptography,” in Advances in Cryptology —
CRYPTO ’96, N. Koblitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 401–415.

[132] F. Harary, Graph Theory. CRC Press, 1994.

[133] R. A. Brualdi, Introductory combinatorics. Pearson Education India, 1977.

[134] F. Zhang, R. Dojen, and T. Coffey, “Comparative performance and energy
consumption analysis of different aes implementations on a wireless sensor
network node,” International Journal of Sensor Networks, vol. 10, no. 4, pp.
192–201, 2011.

82



[135] C. Panait and D. Dragomir, “Measuring the performance and energy con-
sumption of aes in wireless sensor networks,” in 2015 Federated Conference
on Computer Science and Information Systems (FedCSIS). IEEE, 2015, pp.
1261–1266.

83



 

84 

 

CURRICULUM VITAE 

Personal Information 

Name and surname:   : Tuğberk Kocatekin 

 

Academic Background 

Bachelor’s Degree Education : Electrical and Electronics Engineering (2010) 

        Yeditepe University 

Post Graduate Education  : Computer Engineering (2013) 

        Bahçeşehir University 

Foreign Languages   : English 

 

 

 

 


