

KADIR HAS UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

POWER CONSUMPTION ESTIMATION USING IN-MEMORY
DATABASE COMPUTATION

GRADUATE THESIS

MOHAMED ALAMIN

JUNE 2016

M

oham
ed A

lam
in

M

.S
. T

hesis

2016

S

tu
d
en

t’s F
u
ll N

am
e

P
h.D

. (or M
.S

. or M
.A

.) T
hesis

 2011

POWER CONSUMPTION ESTIMATION USING IN-MEMORY
DATABASE COMPUTATION

MOHAMED ALAMIN

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

INFORMATION TECHNOLOGIES

KADIR HAS UNIVERSITY

June, 2016

APPENDIX B

KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

POWER CONSUMPTION ESTIMATION USING IN-MEMORY
DATABASE COMPUTATION

MOHAMED ALAMIN

APPROVED BY:

Prof. Dr. Hasan DAĞ (Advisor)

Assoc. Prof. Mehmet N. AYDIN

Asist. Prof. Taner ARSAN

APPROVAL DATE: 10/06/2016

AP
PE
ND
IX
C

APPENDIX B

APPENDIX B

“I, Mohamed Alamin, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that

this has been indicated in the thesis.”

MOHAMED ALAMIN

KADIR HAS University

Abstract

Graduate School of Science and Engineering

Information Technology

by MOHAMED ALAMIN

In order to efficiently predict electricity consumption, we need to improve the speed

and the reliability. Concerning the speed, we use IN-Memory database, which is the

best solution that allows manipulating data many times faster than HDD. For this

purpose, we need to choose ”the best” open-source In-Memory database using a standard

benchmark, such as YCSB.

For reliability, we use machine learning algorithms. Since the model performance and

accuracy may vary depending on data each time, we test many algorithms and select

the best one.

In this thesis, we use SmartMeter Energy Consumption Data in London Households

to predict electricity consumption using machine learning in Python and Aerospike in-

memory database. The study shows that the best algorithm for our data set is Bagging.

We also prove that R-squared is not always a good test to choose the best algorithm.

Finally, we propose a graphical user interface for machine learning using Python, that

can be used by non-experienced users to predict the consumption at a certain time.

http://www.khas.edu.tr
http://www.khas.edu.tr/en/742/ise
http://www.khas.edu.tr/en/866/master-of-science-in-management-information-systems

Contents

Abstract i

List of Figures v

List of Tables vi

Symbols vii

1 Introduction 1

1.1 Related Work . 2

1.2 Research Questions . 2

1.3 Scope . 3

1.4 Approach . 3

1.5 Thesis outline . 3

2 In Memory Database Architecture 4

2.1 Introduction . 4

2.2 Data store . 6

2.2.1 SQL Data Store . 6

2.2.2 No SQL Data Store . 8

2.2.2.1 Key-value store . 9

2.2.2.2 Column-Oriented Store 9

2.2.2.3 Document Store . 10

2.2.2.4 Graph data store . 10

2.3 Main Store . 12

2.4 Differential Store . 12

2.5 Compression . 13

2.5.1 Light-Weight Compression . 13

2.5.2 Heavy-Weight Compression . 14

2.6 Index . 14

2.6.1 AVL-trees . 14

2.6.2 T tree . 15

2.6.3 B tree . 15

2.6.4 T*-tree Index Structure . 16

2.7 Partitioning . 16

2.7.1 Vertical Partitioning . 16

2.7.2 Horizontal Partitioning . 16

ii

Contents iii

2.7.3 Hybrid Partitioning . 17

2.8 Replication . 17

2.8.1 Master and slave replication . 17

2.8.2 Replication configurations . 17

2.8.3 Synchronous replication . 18

2.8.4 Asynchronous and return service replication 18

2.9 Durability store . 18

2.9.1 Logging . 19

2.9.2 Checkpoint . 19

3 Predicting Power Consumption Using Machine Learning And An In-
memory Database 20

3.1 Introduction . 20

3.1.1 Electricity Demand Side Management 20

3.1.2 Machine Learning . 21

3.2 Objectives . 22

3.3 In-memory databases comparison . 23

3.3.1 Introduction . 23

3.3.2 Aerospike . 23

3.3.3 Redis . 23

3.3.4 Tarantool . 24

3.3.5 Table of comparison . 24

3.3.6 Yahoo Cloud Serving Benchmark(YCSB) 24

3.3.6.1 Workload A . 26

3.3.6.2 Workload B . 26

3.3.6.3 Workload C . 28

3.3.6.4 Workload D . 28

3.3.6.5 Workload E . 28

3.3.6.6 Workload F . 30

3.3.6.7 Throughput . 30

3.4 SmartMeter Energy Consumption Data in London Households Dataset . . 32

3.4.1 Why London Households Data set? 33

3.4.2 Preprocessing Data set . 33

3.5 Choice of the best model of machine learning to fit our data 37

3.5.1 First Test (R-squared, R2) . 37

3.5.2 Second Test (Summation of months) 38

3.5.3 Third Test (By differences between real and predicted individual
data) . 39

3.5.4 Fourth Test (Choose 500 houses randomly) 40

3.5.5 Test Five (Predict determined hour for All Houses) 41

3.6 Create grafical interface software to use on the power dataset 42

3.6.1 Algorithm page . 42

3.6.1.1 Add Data Button: . 42

3.6.2 Upload the data to Aerospike (In-memory) 43

3.6.2.1 Update Data: . 44

3.6.2.2 Delete Data: . 44

3.6.2.3 Preprocessing Data . 44

Contents iv

3.6.2.4 Choose Algorithm . 45

3.6.2.5 Predict: . 45

3.6.3 Period Page . 45

3.6.4 Result Page . 46

4 Conclusion 48

Bibliography 49

List of Figures

2.1 Memory Hierarchy [1] . 5

2.2 Latency numbers[2] . 6

2.3 key valuse[3] . 9

2.4 Column store[4] . 10

2.5 document store[5] . 11

2.6 document store [6] . 11

2.7 The memory architecture of SanssouciDB [7] 12

2.8 An example of an AVL tree [8] . 15

2.9 T tree [9] . 15

3.1 The result of Workload A . 26

3.2 Workload A . 27

3.3 Workload B . 27

3.4 Workload C . 28

3.5 Workload D . 29

3.6 Workload E . 29

3.7 Workload F . 30

3.8 Throughput . 31

3.9 The data on main memory . 32

3.10 Sample of SmartMeter energy consumption dataset. 33

3.11 Delete null values . 34

3.12 Separate DateTime column . 34

3.13 Electricity consumption for one day for one house. 35

3.14 Total electricity consumption based on months. 36

3.15 Sample of dataset after preprocessing. 36

3.16 Comparison of ML algorithms for monthly electicity consumption for
house number 3. 38

3.17 Comparison of ML algorithms for monthly electicity consumption for
house number 1199. 39

3.18 Login Page . 43

3.19 Main page . 43

3.20 Before Uplading To Aerospike . 44

3.21 After Uplading To Aerospike . 44

3.22 Prediction Period Page . 45

3.23 One core . 46

3.24 Work in parallel with four cores . 46

3.25 The results of the predict . 47

v

List of Tables

3.1 In-memory Databases General Comparison 25

3.2 R2 Results for various algorithms using House 3 data. 37

3.3 R2 Results for various algorithms using House 1199 data. 38

3.4 Comparison of algorithms for House 3. 40

3.5 Comparison of algorithms for House 1199. 40

3.6 R2 and Difference of 500 Houses randomly 41

3.7 Comprison Algorithms of 500 Houses Randomly 41

3.8 Percentage Prediction Comprison Algorithms of 500 Houses Randomly . . 42

vi

Symbols

IMDB In memory data base

MMDB Main Memory database

HD Hard Drive

HDD Hard Disk Drive

RAM random access memory

DBMS database management system

RDBMS relational database management system

YCSB Yahoo Cloud Serving Benchmark

vii

Chapter 1

Introduction

The world of technology is growing every day. The development of both software and

hardware along with the increase in information creation and sharing of all structures

and sizes have engendered the Big Data era. The need for processing large data fast

enough for decision-making has increased the need for new solutions, capable of facing

this dilemma.

Today, machines create all sorts of data and share it with other machines. The devel-

opment of social media has increased the size of data generated and communicated on

the web. For companies, processing data is a priority. The companies that succeed in

the analysis and processing of data to take the right strategic decision have fewer risks

of failure. Data storage is a primary concept in big data; the capacities of storage have

increased enormously. However, the usage of hard disk (HD) is not efficient enough in

the era of big data. When dealing with large data set, HD or solid state drive (SDD)

do not accompany the development of speed of new processors and the capacity of data,

it is slow and fails to respond timely to all requests when received by millions on a

daily basis. The best solution to increase the speed is the in-memory databases. The

advantage of using in-memory over HD is that there will be no latency time between

the hard disk and RAM.

Companies from different sectors including the energy invest in data analysis for many

reasons. In fact, there are many companies specialized in electricity management offering

help and assistance for electricity consumption management, based on big data analysis.

Their process starts by observing and collecting information on the general consumption

of a certain company, in order to understand the electricity consumption cycle and

therefore propose different solutions to decrease the consumption. Actually, the need

of power consumption increases due to the independence on the electrical devices and

technologies in businesses. As for big companies, the high prices of power consumption

1

Chapter 1. Architecture 2

impose the control and the management of the overall electricity usage. Even though

multiple sources of energy are available, they are still expensive and not all of them are

applicable especially for companies that use electricity in a massive way. As a result,

finding solutions to decrease the power consumption prices became a new business.

Using machine learning algorithms, we can determine the peak hours and estimate the

consumption in future for a better management of the energy resources. Generally, the

prices of the electricity depend on time; the electricity is always more expensive in peak

times. In order to avert the need of using more generators, it is essential to try decreasing

the consumption in those peak hours. For example, by turning off the unnecessary lights

or the heating and cooling systems during these periods.

In this thesis, we chose the use of in-memory databases since they represent the future

of fast data processing.

1.1 Related Work

There are some related articles concerning the prediction of power consumption, such as:

“Electric Load Identification using Machine Learning”[10], “Home Electricity Forecasting”[11],

“Energy Prediction Based on Resident’s Activity ”[12] and “Online Machine Learning

Algorithms For Currency Exchange Prediction”[13] as a report . All those articles among

many others talk about power prediction and using algorithms to find best one in the

prediction. But none of them has used in-memory databases or obtain the Bagging Tree

Regression as the best choice to predict power consumption. Our study will be the first

for prediction using in-memory databases.

1.2 Research Questions

In this thesis, the purpose is not to explain what In-memory database is and how it

works, but to show how it is possible to use it in the real life and demonstrate how

In-memory databases are faster than database management system. For those reasons,

we need to respond to many questions, including the followings:

� What is the architecture of in-memory databases?

� Can we compare between In-memory database systems?

Chapter 1. Architecture 3

� What is the best model to use for the prediction of power consumption used in-

memory?

� Can we use the in-memory database to store power consumption data?

� Can we use the in-memory database with some models to predict power consump-

tion in a short time?

� Is there a way to develop a solution integrating both machine learning for predic-

tion and in-memory databases?

1.3 Scope

The scope of this research will focus on three sides. The first is about in-memory

databases and how is work; the architecture, the advantages and the disadvantages. The

second side is concerned about the usage of a power consumption data set in-memory

and trying to understand when people consume a lot of power and when they do not.

The last part is about machine learning and its usage to predict power consumption.

1.4 Approach

We are going use some tools and softwares to accomplish our goal, as following:

� Aerospike database: this software is in memory database that stores data in mem-

ory.

� SmartMeter Energy Consumption Data in London Households as a dataset.

� Python programing language and its packages (sklearn, numpy) for prediction and

plots.

1.5 Thesis outline

The Chapter 2 will explain the architecture of In-Memory database.

Chapter 3 will establish the prediction of electricity consumption using both machine

learning and an In-memory database. To choose the database, comparison between

some In-memory open-source systems is elaborated. At last, a graphical user interface

is developed using Python for prediction.

Chapter 2

In Memory Database

Architecture

2.1 Introduction

In the last few years, the In-Memory Technology has been used at a large scale in many

fields. Big companies, in particular, have shown a lot of interest towards In-Memory

technologies, ever since the need for fast data processing has increased dramatically.

These days, with the impact of the Big Data era, there is a big need for processing data

at a large scale and fast enough for a real-time or a near real-time response. The need

for new technologies that can process data quickly has become a necessity. In-Memory

database (IMDB) or Main Memory database (MMDB) is a database that stores data

in the main memory (RAM). In conventional databases, the data goes from the HD to

the RAM, and then it is processed by the Processor. However, within the IMDB, the

data will reside in RAM instead of HD. This means that the data would take a short

cut directly from RAM to be processed.

The IMDB contains two main parts: the Main Store and the Buffer store. It has also

a backup system on the hard disk or the SSD of flash memory to restore data if the

system crashes; that is called the Durability Store. In addition, it has one or more

types of data structure store (key value) and indexes. Using IMDB can demonstrate

many benefits, especially in speed. The stream of data when using IMDB decreases in

size. The main memory can present a solution since it is by nature faster than the hard

disk. The index structure of the hard disk aims to minimize both the number of disk

accesses and the disk space; whereas the index structure of the main memory doesn’t

need to minimize any disk accesses since it is contained in main memory. 1 However, the

implementation of a solution based on RAM is a challenging operation. Each memory

4

Chapter 2. Architecture 5

has its own specificities. We shall describe in the upcoming part the differences between

the memories.

To start with, L0 the register is the smallest one, but it is also the fastest. The latency

time or the response time from first layer L1 cached data word is 0.5 nanoseconds.

However, it can only hold one word. The second layer, L2 holds one line and it delays

7 nanoseconds, the delayed time from the main memory to the registry is about 100

nanoseconds (0.1 Microseconds), Solid state drive SSD takes 150 microseconds (150,000

nanoseconds)such as in figure 2.1,

Figure 2.1: Memory Hierarchy [1]

On the other hand, the hard disk drive takes about 10 milliseconds (150,000,000). As we

can see, the difference between HDD and SSD is about 9,750,000 nanoseconds. For this

reason, many computer companies started to use the SSD instead of HDD. However,

there is still not enough processors to process a large amount of data in a short time.

Hence, there is no way to compare between the HDD and the Main memory in terms

of speed. Still, the main memory is small and more expensive compared to the HDD.

These technologies were used widely and developed constantly in the mid of 2000s due

to the increasing capacity of data storage. The dropping prices of these technologies

have encouraged the companies to obtain and invest in the in-memory technology. To

illustrate this fact, in the late 1990s 1 gigabyte of main memory used to cost about a

1000 dollars. Today, you can get the same 1 gigabyte for less than 5 dollars.

Chapter 2. Architecture 6

Figure 2.2: Latency numbers[2]

2.2 Data store

A data store is used for storing and managing a set of data that is involved in a particular

structure. Generally, there are two types of data store: SQL and NOSQL or Not SQL

data store. SQL databases are also named Relational database since they are well

structured.

2.2.1 SQL Data Store

SQL stands for the relational database management system. SQL is a type of database

management system (DBMS) that stores structured data in related tables. The most

commonly used DBMS are the RDBMS’s.

The relational DBMS were originally created by Edgar F. Codd from IBM in 1970.

The first commercial and available RDBMS was Oracle, which was accessible to the

public in 1979. SQLs are used extensively and considered powerful for the reason that

they require fewer assumptions about how data is related and how it will be extracted.

Most of today’s database applications are relational, either commercial such as Oracle

Database and

Microsoft SQL or open-source like MySQL and SQLite. The structure of a relational

database implies the usage of tables for data storage in addition to the creation and the

management of relations between the data. In addition, a relational database can consist

of a single table in this case called a flat-file database, or many tables interrelated.

When, Edgar F. Codd, a British computer scientist with IBM, published a paper back

in 1970 titled “A Relational Model of Data for Large Shared Data Banks”. Very few

paid attention to this topic and no one could predict that his rules and vision for the

RDBMS would have a huge impact on the future of data storage.

Chapter 2. Architecture 7

The basic rules for relational data storage can be described as the following:

� The data must be stored and presented as relations. The data must be stored in

tables that have relationships with each other, using primary/foreign keys.

� The system should provide relational operators in order manipulate the data stored

in tables; which means codes that enable to test the relationship between two en-

tities. As an example, the WHERE clause of a SELECT statement, i.e., the SQL

statement SELECT * FROM CUSTOMER WHERE CUSTOMER SURNAME

= ”Smith” will query the

CUSTOMER MASTER table and return all customers with a surname of Smith.

Codd later published another paper specifying 12 rules that all databases must follow

to be called relational. Even though many modern database systems do not follow all

12 rules, still they are considered to be relational because they conform to at least the

two previously mentioned rules.

The popularity of the RDBMS is due to a number of advantages that it represents,

which mainly are:

� Security and privacy: possibility of access limitation at different levels

� Ease of use and manipulation: creation, addition, elimination and modification

� Respect of data integrity by limiting the redundancy

� High flexibility due to the independence of the tables

� Easy data query

� Easy data recovery

The disadvantages of RDBMS can be resumed in the fact that RDBMS were created

to handle structured data, meaning that they can’t handle unstructured data correctly.

Also, if the data tables are large the relations complex, data queries can take a lot of time

to respond. In order to store large dataset in RDBMS, powerful servers are required,

which are expensive and difficult to handle.

Chapter 2. Architecture 8

2.2.2 No SQL Data Store

NoSQL data stores became popular in the last decade for many reasons. First, the large

amount of unstructured data generated every day increased the need for an appropriate

data store. The development of mobile applications and social media, led to the creation

of different types of data: images, videos, tweets, etc.

The traditional relational database system uses tables for data storage, with relations

between the data and the possibility of complex SQL queries. However, RDBMS fail to

meet the need when it comes to large databases and unstructured data. The need for

managing this type of data and improving the performance implied the development of

a different type DBMS.

As described previously, in a relational database, the data is stored in a way that it can

be retrieved easily, since it uses tables to organize the data. In fact, one table can only

handle data with the same type. The RDBMS is very advantageous and is easy to use

but it cannot be a suitable solution to all the situations.

The relational databases were for a long time the first choice of companies. However,

with big data, the limitation of RDBMS have surfaced. The new solution developed to

overcome those limitations consists of the NoSQL databases. In fact, NoSQL is not a

new solution, but it gained its popularity after the introduction of the database as a

service. In reality, the NoSQL databases are used generally with the RDBMS and not as

a replacement. NoSQL manages better high scale data and deals with instructed data.

In addition, NoSQL can execute queries at a high speed using a volatile memory.

The choice of using either SQL or NoSQL database or both depends on the character-

istics of the business and the data: type, volume and business needs. NoSQL databases

were developed to increase their scalability, using a different architecture and removing

some features of RDBMS. NoSQL is largely used today, notably in Google (BigTable,

LevelDB), Twitter (Hadoop HBase, Cassandra), Facebook (Cassandra), Netflix (Sim-

pleDB, Hadoop HBase, Cassandra), etc.

The NOSQL data model does not confirm to the ACID properties (Atomicity, Con-

sistency, Isolation and Durability) which are specific characteristics of the RDBMS.

Instead, NOSQL guarantees BASE properties (Basically Available, Soft state, Eventual

consistency).[14].1 It means that with NoSQL, the data is highly available even in large

scale, but without a guarantee of consistency.

To sum up, the relational databases are the best solution when it comes to structured

data. However, for the big volume of data, especially when it is instructed, the use

Chapter 2. Architecture 9

of NoSQL is more favorable. The aggregation of the data at larger scale is easier and

consumes less time with NoSQL.

There are different types of NoSQL databases including key-value store, Column store,

Document store and Graph store.

2.2.2.1 Key-value store

The key-value data store is one of the simplest NoSQL architectures, yet it is an efficient

model that provides many functionalities. It stores values with indexes in order to be

retrieved using key values. Key-value stores handle both structured and unstructured

data. The key-value based systems provide scalability, due to the key distribution over

nodes[15]. Some key-value data store can store data in RAM or on disk. For its func-

tionalities, Key-value data store usage is common in e-commerce websites, advertisement

and forums.

Examples of databases using the key-value data store model include Cassandra, Dyan-

moDB, Redis, Riak, Memcached, FastDB and Azure Table Storage.

The key-value data store model consists of two parts2.3. The first one is the data, stored

as values; the second part is the key where they are stored as indexes. The user can

request the value by calling the keys like maps. Data can only be retrieved using the

keys and every key corresponds to a certain value.

Figure 2.3: key valuse[3]

2.2.2.2 Column-Oriented Store

Column-Oriented stores store data in columns instead of full tables in order to save time

in queries. The model is composed of columns; each column contains the keys and the

correspondent values. It provides a rapid query response and thus a higher scalability

than the classical RDBMS tables or a row-Oriented Store2.4.

Chapter 2. Architecture 10

The Column-Oriented Store model is very useful if the need of visualizing records is

not often required. In fact, retrieving a single record and its modification can be a

slow process since every instance data must be retrieved from the ensemble correspon-

dent columns. Besides that, the Column-Oriented Store presents a high possibility of

compression and a fast queries execution when they are column based. Examples of

databases using column-oriented stores are HBase, MonetDB, LucidDB, Hekaton and

eXtremeDB.

Figure 2.4: Column store[4]

2.2.2.3 Document Store

The Document-Oriented Store model stores data as documents in a standard format,

usually encoded in XML, YAML, JSON or other formats. They are a specific type of

key-value stores. Document Stores have a schema-free organization, which allows more

freedom in manipulating the data. The data is described in the documents and from

there it can be modified or deleted. The data doesn’t necessarily have to be in the same

structure, See the figure 2.4. The advantage of the document store is that it provides

the possibilities of complex indexing. Examples of databases using Document Store are

Couch DB and Mongo DB2.5.

2.2.2.4 Graph data store

The Graph Data store database stores the data in a graph format. The graphical

representation reminds of the classical RDBMS design, but the graph is more flexible and

Chapter 2. Architecture 11

Figure 2.5: document store[5]

scalable. The structure consists of nodes and edges, in addition to properties describing

the relations between the data. Node: is the entity or the record. Every node must point

to another node. Edge: is the relationships connecting the different nodes. Properties:

is the information that specifies the type of relation between the nodes2.6.

Figure 2.6: document store [6]

Graph data store are used when there is a need of describing the relation between the

nodes, like in social media, recommendation systems and security. The databases using

this type of store include Neo4j, InfoGrid and Orient DB that also uses Document store

and key-value store.

Chapter 2. Architecture 12

2.3 Main Store

The main store or the data store is a repository and consists of the biggest part of the

system that stores all the data in the main memory. In the traditional databases using

the hard disk, any operation like join, find or aggregation is done in Pool buffer in in-

memory and the changes will be saved in the database that is found in HDD. However,

in the main memory (also knows as the Volatile memory), the main store is used to store

all data. In this main store, we can read only (such as in figure 2.7). In fact, the main

store is not touched by any data modifying operation, all the changes (update, delete

and addition) is done in another part of main memory called the buffer store.

Figure 2.7: The memory architecture of SanssouciDB [7]

2.4 Differential Store

The differential store or the buffer store is a work place within the main memory that

is used to update, delete and add data to the database. It keeps the data safe in main

store and avoiding by that the overlaps when modification is happening.

The data stored in the main and the differential store may be subject to a compression,

depending on the type of data store. The column, row and key-value stores accept

compression. This compression is also called a dictionary. When an update occurs at

the level of the buffer store, there is an operation called marge that synchronizes the data

from buffer store to the main store when a lock stops the I/O data from the processor

Chapter 2. Architecture 13

to the main store. Some relational databases management systems offer in-memory

database by keeping all data in Pool buffer. Still, this happens when the memory can

obtain all data to pool buffer like SQLite database, which works as RDMS but it also

uses its Pool Buffer as an in-memory database.

As for my personal experience, the operation works only for one time; if we use python

to call it, we can’t use another API like R at the same time. In addition, if we use it from

python environment, we can’t call our database using another python environment.

2.5 Compression

The capacity of the main memory has increased in a fast manner within the last years.

However, the main memory is still expensive especially if there is a need of many giga-

bytes to store large amounts of data. For that reason, some in-memory database starts

using the compression in order to reduce the data size.

Yet, not all data store are suitable for compression. For the row and the column-

oriented data stores, compression is possible and simple. The compression operation

consists of compressing all equal values in one and storing them in a dictionary for the

values. The dictionary stores the integer values instead of the real values in length

string, thus saving memory and increasing the performance by improving the speed of

queries. Consequently, this method is only feasible if the data contains similar values.

Moore’s law states that computing capacity of processors doubles every 18 months and

this has shown to be valid for more than 35 years. Even though, this doesn’t really

solve the problem, since this law doesn’t apply to the development of hard disk and

the main memory access speeds. The imminent problem today concerns the delay in

I/O. In order to reduce this delay, the new strategies try to develop the compression

capacities, for example, to enable the retrieval of the data by accessing the values instead

of decompressing the entire data.

The objective of all types of compression is to liberate space by eliminating redundancies.

In the context of in-memory databases, the objective is also to reduce the data trans-

ferred between the main memory and the CPU. There are many types of compression;

the most ones are the Light-Weight Compression and the Heavy Weight Compression.

2.5.1 Light-Weight Compression

There are many types of Light-Weight Compression; the dictionary is the most famous

one. It is called light because it doesn’t require extreme computations. It consists of

Chapter 2. Architecture 14

assigning a symbolic value to represent the most frequent values. This method makes

also the queries faster. Decompressing is also simple and only requires looking up the

dictionary to retrieve the original values. For in-memory databases, the Light-Weight is

the more appropriate than the Heavy-Weight Compression.

2.5.2 Heavy-Weight Compression

The Heavy-Weight Compression include many techniques like Huffman encoding and

arithmetic encoding. It consists of reducing the value to its entropy. Even if it compresses

the values perfectly, this type of compression demands large computations, which makes

it more suitable for the classical DBMS[16].

The choice of a compression method depends on the data store type. In all cases, the

decompression of the entire data should be avoided as much as possible.

2.6 Index

The concept of the index for in-memory databases differs from the disk-based systems.

In the classical case of the disk-based systems, the indexes are usually necessary and

used to minimize the disk space. Indexes actually use the memory. In contrast, the

in-memory index structure is within the main-memory. The objective, in this case, is to

decrease the time consumption with less memory usage. Instead of storing the values in

the indexes, the use of pointers can show more efficiency and flexibility. There are many

types of index structures for the main memory such as AVL-trees, T tree, B-tree, etc.

2.6.1 AVL-trees

The AVL-tree uses a binary search for internal memory; it adjusts itself to maintain a

(log n) height and limits the branching for the perfect balance. The AVL tree usually uses

pointers to point to the nodes and performs fast. It is more suitable for the in-memory

structure.

The drawback of this method is that the deletion may be complicated due to the possible

rotations.

AVL-trees are used as indices in the AT&T Bell Laboratories Silicon Database Machine

(such as in figure 2.8).

Chapter 2. Architecture 15

Figure 2.8: An example of an AVL tree [8]

2.6.2 T tree

T-tree was first introduced by Tobin J.Lehman and Michael J.Carey in 1986[17].1 is a

solution that somehow combine the advantages of the AVL tree and the B-tree. It is

has a binary structure and it is designed for the main memory. Similar to the AVL tree

in the structure, T-tree has the same balance characteristics2.9. Among many other

databases, MySQL Cluster, EXtremeDB and Oracle use the T-tree structure.

Figure 2.9: T tree [9]

2.6.3 B tree

B-trees were first introduced by R. Bayer and E. M. McCreigh in 1972. B-tree is mostly

used for storing huge amount of data, and they are common in the external disk storage

since it can store a large number of keys and has a deeper tree structure in terms of

Chapter 2. Architecture 16

branching compared to the AVL tree. It is a better solution than the AVL tree when

it comes to the hard disk, but not to the main memory. CouchDB databases use the

B-tree structure.

2.6.4 T*-tree Index Structure

The t*-tree index structure is a variant of T -tree. It is a binary tree with the same

design, except with more pointers for a fast access to data. This type of tree structure

solve the issues encountered in the T-tree and improves the queries operations [18]. It

also saves memory.

2.7 Partitioning

Partitioning is an essential process for parallelism. The process consists of dividing

data into distinct datasets. Each partition has its own properties and can be managed

independently. Partitioning improves performance and allows an easy control and main-

tenance. In fact, partitioning also enables saving time for queries. There are many ways

to achieve partitioning. The most used methods for partitioning are the vertical, the

horizontal and the hybrid portioning.

2.7.1 Vertical Partitioning

This type of portioning involves dividing the data while keeping the same number of rows

for each dataset. The division is by columns. It implies that the splitting of rows causes

the loss of the primary key. For this reason, a normalization is necessary. Normalization

suggests the linking of the tables with a foreign key. The vertical partitioning is very

practical if some columns of the data are used more than others. In addition, it is useful

for limiting access to some columns in the data to some users. For example, in a large

dataset of hospital patients, the repartition may suggest a division of the data in two

datasets, the general and medical information about the patient in one dataset and his

personal information in the other one.

2.7.2 Horizontal Partitioning

Horizontal portioning also known as row partitioning. It consists of splitting the data

into a number of distinct datasets with respect to the columns. Which means that all

the datasets must have the same number of columns. The horizontal portioning is a

Chapter 2. Architecture 17

classical method and a simple one. However, the splitting criteria must be significant

to ensure a quick access and maintain a logic of partitioning. For example, if we have

weather data by hours for one year, we can divide this data by months, so we have

twelve distinct datasets.

2.7.3 Hybrid Partitioning

The hybrid partitioning combines both vertical and horizontal partitioning. This type

of partitioning is popular among very large datasets. Usually, the partitioning starts

with vertical partitioning [19], followed by the vertical partitioning. Hence combines the

advantages of both partitionings.

2.8 Replication

Replication is the main concept in managing datasets: it ensures security, consistency

and integrity of data. It is essential as well for backup strategies. Mostly, Replication

allows a better management of data. Managing conflicts, availability and recovery are

parts of data replication process. It is important to manage a copy of the data for

security matters, but managing the synchronization is necessary when the data goes

through growth and modification. The updates should be performed in an automatic

way to save time and protect the integrity of the data.

The user can choose from different types of replication, to find the optimum solution to

increase performance.

2.8.1 Master and slave replication

This type of replication considers managing data from a master server to slave servers.

The replication agent is responsible for managing the communication between the two

servers using a log. The master maintains the data of all slave sites. If any change is

detected from the master side, the replication agent communicates those changes to the

slave’s side. This method is useful for backups if the master server faces a failure or a

loss of the data.

2.8.2 Replication configurations

The replication configuration must be achieved in a way it can improve performance and

guarantee data availability. The configuration ca be made using SQL statements from

Chapter 2. Architecture 18

the master to one or many slaves. in this case, it is called unidirectional replication.

The other configuration is called bidirectional, it links two or more master servers to a

slave. When data stores are configured for bidirectional replication it is called “N-way”

or “update anywhere”.

2.8.3 Synchronous replication

Synchronous replication updates the information at the same time it is received in both

sides. By that, the data is always on point and updated. This method is expensive

and it is rarely used in practice. Even if it guaranties zero loss of data at any time,

both datasets are identical. Which means that if the first dataset is under attack, the

corruption will be instantly copied to the second one. This type of replication is only

practicable if the need of instant synchronization of both datasets is more important

than security and cost.

2.8.4 Asynchronous and return service replication

Asynchronous replication is the default method and the most used one. The drawback of

the asynchronous master-slave architecture is that when the master server is updating

the data, the slave is waiting. However, this method is safer and less costly. The

asynchronous replication is done in steps. The changes are copied after the updates in

the master side is done. The slave side confirms the reception and application of the

changes.

2.9 Durability store

The data resident in-memory can easily be lost if there is a lack of a backup strategy.

The data must be stored in a disk or other stable storage. The components of recovery

include the procedure used during normal database operation to keep the backup up-to-

date and the one used to recover from a failure. The system that uses a log for commit

processing generally also perform backups or checkpoints to limit the amount of log

data that must be processed to recover from a failure. There are many tools to achieve

backups. Durability can be realized with logging and checkpoints.

Chapter 2. Architecture 19

2.9.1 Logging

Any system can be in a situation of failure, due to the dependence on hardware. The

availability and integrity of data must be secured. Many mechanisms have been devel-

oped to achieve recovery including logging. The logging can recover the best stable state

of the data. The data is written in log files then it restored on Disk. The transaction

log backup allows the recovery of data at a specific time before the failure. The logging

is used in enterprise applications and can work in both in-memory or for RDBMS.

2.9.2 Checkpoint

The different modifications of the data are performed in the in-memory. The checkpoint

allows the system to register this modification in disk periodically. Checkpoints create

a snapshot of the database at a certain point in time when the data is in the stable

state. The purpose of check pointing is “to speed up the recovery process, since only log

entries after the snapshot have to be replayed, while the main store can be loaded from

the snapshot directly.

Chapter 3

Predicting Power Consumption

Using Machine Learning And An

In-memory Database

3.1 Introduction

Large data is generated every day from different sources, especially with the development

of social media and the new technologies. Machine learning is the key to analyzing data

and extract knowledge for future use. The business world today wants to access the

valuable data and process it fast so it can extract the useful information to make decisions

in the right time, and stands out in the market. For this reason, in-memory databases

became popular amongst companies trying to find the best solution for speed. In this

chapter, we use a real data set to predict the power consumption using machine learning

in Python and an in-memory database. The choice of the in-memory database is based

on a comparison of three well-known open source in-memory databases. The method

used for the comparison is Yahoo Cloud Serving Benchmark. At the end, we propose

a graphical user interface in Python for machine learning, to select the best algorithms

based on a given dataset and also to perform predictive based on the electrical dataset.

3.1.1 Electricity Demand Side Management

Nowadays, utilities have a tendency to invest in Demand Side Management (DSM) for

many reasons. In fact, it became important to manage and control the energy usage

in order to reduce costs related to the power consumption and the power generation

resources. The growth in population and the extensive usage of electronic devices led

20

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 21

to an increase in the power’s usage and consequently the need for further resources.

The utilities today seek a way to achieve their goals with lower costs. The Electricity

Demand Side Management (EDSM) offers solutions for a better management of elec-

tricity consumption based on the future prediction of the electricity usage. According

to a report from Navigant Research, the global spending on DSM will increase from

$214.7 million in 2015 to $2.5 billion in 2024 [5]. The implementation of smart meters

is a widely used technique to collect electrical data from the devices on a big scale.

This data is analyzed to determine the pattern of electrical loads which allows a future

prediction of the electricity needs and therefore be prepared for the peak times. DMS

proposes different solutions for the electricity management in order to avoid the waste

of energy and the need for new power installations. Companies that use electricity on

a large scale are the most interested in DSM since it offers solutions enabling one to

decrease the costs of electricity usage and reduce the risks related to the critical needs

of extra power generators.

3.1.2 Machine Learning

In order to define what machine learning is; it is important to understand to what each

word refers. Machine learning is composed of two notions: machine and learning. The

machine is the subject of the process, it must learn and develop itself, and that is from

where learning comes.

Actually, learning means changing the behavior with experience. In machines, learning

involves the amelioration of prediction based on changes in data or the program. Tom

Mitchell gave the following definition when asked about machine learning: A computer

program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with

experience E [20].

The machine observes the first data and makes a prediction, but when exposed to new

data, it gives a better prediction. That is the process of learning.

Machine learning involves developing programs to learn in order to improve then per-

formance every time exposed to new data. It has a goal of solving a problem based on

past knowledge.

Machine learning is a subfield and an essential part of Artificial Intelligence for the

simple fact that there could not be any artificial intelligence machine without machine

learning.

There are many reasons that made machine learning important today:

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 22

* The development of new technologies and the interest of artificial intelligence

* Big data and the large sizes of data are created every day from different sources

* The need for speed in analyses processing and less human involvements.

* The machine can extract and remember information that is hidden or non-logical

to human thinking.

Machine learning is based on many disciplines, which are statistics, psychology (copy

the human brain), biology (neural network) and computer science [21].

There are some important concepts in machine learning, such as the generalization. It

means that the machine learns something for data, and develops a general idea based

on the examples. This generalization allows prediction of the new examples. The other

important concepts are the training and testing. The algorithms learn first form the

training data and develop a model that fits this data. To evaluate the algorithm, we use

the test set.

Different algorithms can be used to solve a machine-learning problem. In general, the

choice of the algorithms depends on the type of the data and the type of the problem that

needs to be treated. There are algorithms for regression, clustering, and classification.

3.2 Objectives

Keeping cost of energy in the range of budget and save the overflow of the production

is a big challenge that is becoming an important requirement for electricity companies.

We witness the increase of world’s population and we use the electrical devices more

and more in all aspect of life. Humans became dependent on the electrical goods like

mobiles, TVs, electric cars and more. This has pushed us to find all possible solutions to

save energy and in the same time provide the power for each single device. To do this,

we want a system that can predict the power consumption in the few next hours and tell

us if we need to generate more power or not. This system can be done with the houses

power consumption data and predict the values that can be generated in the next few

hours. However, with all houses in the country or even in the city our dataset will be

very large if we want to process all the houses’ history dataset. If we want to calculate

and evaluate the value of power in the next hours, using the classical databases will be

impossible due to speed limitation for storing and accessing data in time. The solution

is to store the data in In-Memory database like Redis.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 23

3.3 In-memory databases comparison

3.3.1 Introduction

Databases are stored and processed in different ways, some of them in-memory and oth-

ers in disk. These systems defer in key store, durability, replication, capacity, and speed,

which is main feature. In order to distinguish which system is the best, we should pro-

ceed with a comparative approach. NoSQL databases and disk-based databases present

enormous advantages and facilities and many papers and articles were published in

relation to the subject. However, with the in-memory databases, there are fewer publi-

cations done, in addition to some comparisons that were made by in-memory companies,

but none from neutral researchers. In this Chapter, we will compare three in-memory

databases key-values store systems. We chose databases that were originally built as

in-memory databases, and not on disk like Aerospike , Redis and Tarantool.

For the comparison, we used YCSB tool from Yahoo. We also propose a general table

for comparison between Redis, Aerospike and Tarantool.

3.3.2 Aerospike

Aerospike is an open source data base key-value store first release was 2012. It is written

in C, and works with traditional disks, RAM and flashes. The architecture of Aerospike

has three layers. The first one is called the distribution layer or the cluster, it has a

replication distribution to set the consistency with a cross data-center synchronization.

The second layer is the smart client layer, which is used to control the communications

in the server node. The last layer is the data layer, and it is used to store the data in

the RAM or the disk.

Aerospike works on Linux ,Windows and Mac. It works as well with the cloud like

amazon and Google Compute Engine. Aerospike can support different data structures:

integers, string, bytes, double, lists, maps and GeoJSON. It can be used from shell as

console mode or by using client like java, pyhon, node.js, go, ruby, C, C sharp, Go, PHP.

3.3.3 Redis

Redis is a database based on the main memory which stores all the data in-memory

without the need of a hard disk (except for durability).

Redis is open source and a key-value data store. Its first release was in 2009 by Salvatore

Sanfilippo. Redis is written in ANSI, It works on Linux and OS X. it is very easy and

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 24

light to install and run. It has also a lot of APIs that allow the access between Redis

and other applications. Redis can work with a lot of clients like ActionScript, Bash, C,

C++, Clojure, Common Lisp, Crystal, D, Dart, Elixir, emacs lisp, Erlang, Fancy, gawk,

GNU rolog, Go, Haskell, Haxe, Io, Java, Javascript Julia, Lua, Matlab, mruby, Nim,

Node.js, Objective-C, Ocaml, Pascal, Perl, PHP, Pure Data, Python, R, Racket, Rebol,

Ruby, Rust, Scala, Scheme, Smalltalk, Swift, Tcl, VB and VCL.

3.3.4 Tarantool

Tarantool is an open source distributed under a BSD license, as an integral part of

the Mail.Ru, an internet company in Russia. It is a key value store, and written in

c. Its first release was in 2008. It runs on Linux and Mac and it was developed to be

in-memory database. It has a fiber model that makes it possible for the applications

run simultaneously on a single thread. It is a Lua application server and has its own

console and clients. The data types that Tarantool can support are number, String,

Boolean, Nill, Lua table or Tuble. Tarantool connectors are PHP, Java, Python, C,

Ruby, Node.js, Erlang and Go.

3.3.5 Table of comparison

We looked for the features for every database and we go the result as in table 3.1

3.3.6 Yahoo Cloud Serving Benchmark(YCSB)

YCSB is an open source project released in 2010 by Yahoo to compare NoSQL database

systems. It uses some tests called workload. The goal of (YCSB) project is to develop

a framework and common set of workloads for evaluating the performance of different

key-value and cloud serving stores. YCSB has a set of predefined workloads to define a

basic benchmark, with the possibility to add new workloads. Each workload represents a

different load that the application will put on the database system. YCSB is a commonly

used method to benchmark the NoSQL database management systems. For comparison,

we use five tests from workload A, B, C, D ,E and F. A Workload is type of test for

the database. It may can be reading or writing or mixed with more than one operation.

Each workload represents a particular mix of read/write operations. The YCSB shows

us the latency of every operation like read and insert in microseconds, in addition, every

workload gives us the throughput (the number of operations in one second). The data

set used for the comparison is a random data that generates itself automatically with a

size of 1 GB.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 25

Table 3.1: In-memory Databases General Comparison

Aerospike Redis Tarantool

Model Key-value Key-value Key-value

Developer
Salvatore San-
filippo

Aerospike Inc Tarantool

License BSD AGPL BSD

Implementation
Language

C C C

First public Re-
lease year

2009 2012 2008

Latest stable
version

3.2.0 3.7.3 1.6.7

Embedded No No Yes

Cross-platform
(Windows, OS
X, Linux)

Yes Yes
No no support
for Windows

Supported pro-
gramming lan-
guages

C,C#, C + +,
Clojure,Dart,
Erlang,Go,
Haskell, Java,
JavaScript, Lisp,
Lua,Objective−
C,Perl
, PHP, Python,
Ruby, Scala,
Smalltalk, T cl

C,C + +,
Java, C#
Node.js,Go,
PHP,HHVM,
Python,Ruby,
Erlang,
libevent2(C),
P erl

C, php,
Perl, Python,
Java,Ruby,
JavaScript
,Go

Server Side
scripts

Lua Lua Lua

Locking model
Optimistic
locking

Lock Free
Model

Lock Free
Model

Query language API calls UDF and Lua
Lua, HTTP,
JSON

Interface CLI AMC and CLI CLI

Compression Yes No No

Minimum
memory

3 GB 2 GB 8 M

Replication
mode

Master-Slave
Replication,
Synchronous
replication

Master-Master
Replication

Asynchronous
replication

Indexing Hash, Bitmap
Secondary In-
dexes, B tree,
Hash

Secondary
Indexes Com-
posite keys
Geospatial In-
dexes R-tree,
Hash, Bitmap

Cloud platform
support

Heroku Cloud
Foundry

Google App
Engine Ama-
zon

No

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 26

Figure 3.1: The result of Workload A

3.3.6.1 Workload A

This workload has a mix of 50/50 reads and writes. Figure 3.1 shows the result of

workload A.

The result of this test for reading shows that in reading, Aerospike was the fastest with

281 us. While for the update, Redis was the best with 222 us, as shown in figure 3.2.

3.3.6.2 Workload B

This workload has a 95/5 reads/write mix. This test shows the partial update and most

of operations are read. For reading, Aerospike was the fastest. However, in updating it

was advanced by Redis. Tarantool had the slowest times in both operations 3.3.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 27

Figure 3.2: Workload A

Figure 3.3: Workload B

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 28

3.3.6.3 Workload C

This workload is 100/100 read. There is no writing. From previous tests, we expect

Aerospike to be the fastest in reading, which was true. It is quickly followed by Redis,

then Tarantool with 378 us. See figure3.4.

Figure 3.4: Workload C

3.3.6.4 Workload D

In this workload, new records are inserted, and the most recently inserted records are

the most popular. As we see in 3.5, Aerospike was the best with time of insertion equal

to 665 us and 203 us for reading. Redis was second with 1051 us for insert and 231 us

for read. Tarantool came in the last place with 1059 us for insert 368 us for read.

3.3.6.5 Workload E

This test uses short ranges of the records. In this test as we see in the figure 3.6,

Aerospike has failed in scanning Aerospike scan but was the fastest in insert with 888

us. Redis was the slowest in the scan test with 3674 us. Tarantool’d results were 1151

us for scan and 1070 us for insert.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 29

Figure 3.5: Workload D

Figure 3.6: Workload E

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 30

3.3.6.6 Workload F

In last workload, the client will read a record, modify it, and write back the changes.

The figure 3.7 shows the following results.

Aerospike: read 197, READ-MODIFY-WRITE 507, update192

Redis: read 245, READ-MODIFY-WRITE 524, update 227

Tarantool: read 375, READ-MODIFY-WRITE 512, update 398

Figure 3.7: Workload F

3.3.6.7 Throughput

Throughput refers to how many operations can do the system in one second. In the next

figure 3.8, we can see Redis was the best system in the workloads B and C, however, in

workloads A, D, E and F Aerospike was the best.

FFrom the different workloads, it seems that Aerospike is the best system in reading

while Redis is good in updating. With read-modify-write, both systems had the same

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 31

Figure 3.8: Throughput

results. With inserting, Aerospike was the best one. Meanwhile, Redis was good in

throughput.

These observations lead us to the following conclusion:

Aerospike is good for databases that do not need a lot of modifications or writing.

However, Redis can be good for online systems and frequent modifications.

Comparison for memory usage:

We added another comparison based on memory usage. We tried to calculate the space

that in-memory database takes in main memory when it uploads one gigabyte of data.

As shown in figure 3.9, we can see Tarantool didn’t take any more space over real value

(Gigabyte). Aerospike took 200 MB over one gigabyte. However, surprisingly Redis

took double of the value size of data. It took exactly one more gigabyte.

To sum up this comparison, Redis is easy to use, you can insert and get data with just

one command, also you don’t need to set the connection from another place. Another

Advantage is the backup. If the machine crashes, you will not lose your data. Aerospike

is fast in response and has good supporting. In addition, Aerospike has a continuous

development in its capacities. When I did a comparison between Aerospike and Redis

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 32

in December 2015, Redis was by far better than Aerospike in the majority of the tests.

However, today Aerospike is the best. Tarantool has a major advantage because it

doesn’t take a lot of memory. However, it has problems with the configuration and

making the connection. You need to open Tarantook server itself before establishing the

connection from python.

Figure 3.9: The data on main memory

3.4 SmartMeter Energy Consumption Data in London House-

holds Dataset

In this study, we use a sample of the energy consumption readings that contain 4,376

London Households in the UK, within the period of November 2011 and February 2014

[22].

The consumption is measured in kWh for every 30 minutes. The features include an ID

of the households, the date and time, and CACI Acorn group. The total size of the data

set is 11 gigabytes, which is around 167 million rows.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 33

Figure 3.10: Sample of SmartMeter energy consumption dataset.

3.4.1 Why London Households Data set?

Our choice is based on the fact that the data set represents the real data of electricity

consumed by real people in their houses. Unlike the electricity consumption data of fac-

tories or malls - which have approximately the same value every day- this data represents

the inconsistency and diversity in the electricity consumption of people depending on

their life style and habits, such as the time spent inside the house, late parties, usage of

electrical gadgets, etc. In addition, some people use their house only during the summer

holidays or weekends.

3.4.2 Preprocessing Data set

We need to preprocess our data to eliminate the unwanted or redundant data [23], make

corrections, deal with missing values, and prepare it for the analysis. To this end, we

apply the following preprocessing steps:

• Feature reduction: We deleted some columns that have the same values and never

change like, Acorn and Acorn grouped.

• Delete Null Values: Every house that has one or more null values of power and

non-hourly time, is eliminated. as in Fig. 3.11.

• Separate DateTime column: We divided the DataTime column to six columns in

order to use them in the comparison and make every column as a variable that

can affect the result of prediction as seen in Fig. 3.12.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 34

Figure 3.11: Delete null values

Figure 3.12: Separate DateTime column

• Id of House: We changed the ID of houses from string values to integer values,

in order to use the ID in most of the machine learning models. In addition, we

changed the power consumption from KW to Watts.

• Delete incomplete data: Not all the houses have full region data covering the entire

period from November 2011 until February 2014. For example, house number 1957

contains only data from 11-06-2012 till 26-6-2012, which is less than one month.

We delete this type of houses. As a result, we have a total of 4,130 houses to work

with.

• Add days: We add the days’ feature to make our prediction more accurate. As

we know, by adding weekdays and weekends we can determine the reasons behind

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 35

the changes in power consumption based on the days. For example, the difference

between the consumption in Sundays and Mondays is noticeable. This operation

has increased the prediction value by approximately 10% in some houses.

• Half-hourly to Hourly: We change the data from half hourly to hourly power

consumption as in Fig. 3.15. This would reduce our data to half and improve the

prediction. The total size of the data is now 4150 houses with 1.6 Gigabyte.

• Shape the data: Figure 3.13 show the consumption for an house just for one day,

28-4-2012. we can determine in which hours the power consumption is higher.

As we see, the costumer consumes more power between 11 am and 15 pm, and

the highest period is between 18pm and 22 pm in the evening. Furthermore, the

period of time when the costumer doesn’t consume much power is between 2 and

7 am.

Figure 3.13: Electricity consumption for one day for one house.

Figure 3.14 depicts monthly power consumption data of house number 145. We

can understand the months where the users consume more power, in this case it

is in December, January, and February, which can be explained by the weather

condition. Also there is small increase in June, which may be caused by the usage

of the air conditioner.

• Delete non-complete data Not all the houses have full region data converıng the

entıre period from November 2011 until February 2014. For example, house num-

ber 1957 has only data from 11-06-2012 till 26-6-2012, which is less than one month.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 36

Figure 3.14: Total electricity consumption based on months.

We delete this type of houses. As a result, we have a total of 4,130 houses to work

with.

• Add days We add the days’ feature to make our prediction more accurate. As

we know, by adding weekdays and weekends we can determine the reasons behind

the changes in power consumption based on the days. For example, the difference

between the consumption in Sundays and Mondays is noticeable. This operation

has increased the prediction value by approximatively 10

• Half-hourly to Hourly We change the data from half hourly to hourly power con-

sumption as in figure 3.15. This would reduce our data to half and improve the

prediction. The total size of the data is now 4150 houses with 1.6 Gigabyte.

Figure 3.15: Sample of dataset after preprocessing.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 37

3.5 Choice of the best model of machine learning to fit our

data

First, we want to choose some models, to apply them and determine which model can

fit all or most of our data and give good results. We did a comparison of some models

using different machine learning tools: First we split data to training and testing sets.

The split is done using a library called (train test split) to split the data to a training

data and a testing data. The value that was given for data training is 80 percent and

for testing 20 percent. First, we chose five regression models: Random Forest, Decision

Tree regression, Extra Tree regression, Bagging regression and Linear regression.

3.5.1 First Test (R-squared, R2)

We used R2 to test the different models and chose the best one.

The R2, also called the coefficient of determination is a statistical method used for many

regression and statistical analysis and is most commonly used to determine the quality

of a statistical model’s fit [4]. The R2 error value generally varies from 0 to 1. The

model is considered to be a good fit if its R2 value is close to 1. The formula of the R2

error is:

R2 = 1− SSE
SST

,

where the SSE represents the sum of squared errors and the SST stands for the total

sum of squares[3].

First we applied it to house number 3. We can see the results in Table 3.2. We obtained

the best results from the Bagging regression (0.896) and the Random forest (0.895)

methods for the house number 3 as shown in Table 3.2. While replicating the same

Table 3.2: R2 Results for various algorithms using House 3 data.

Algorithm R2

Bagging regression 0.896080196574

Random regression 0.895494830121

Extra regression 0.87848854631

Decision regression 0.376203098132

Linear regression 0.209074906098

k nearest neighbors 0.691809565284

calculation on the house number 1199 as seen in table 3.3, the R results were not good.

For this house, R2 calculation for Bagging was -0.005, R2 for Random Forest was -0.053

but with Decision tree it was 0.10.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 38

Table 3.3: R2 Results for various algorithms using House 1199 data.

Algorithm R-squared

Bagging regression -0.00505593237186

Random regression 0.0533046674133

Extra regression -0.0604631321477

Decision regression 0.108030788443

Linear regression 0.0350849871945

k nearest neighbors 0.0425716922033

3.5.2 Second Test (Summation of months)

In this test we calculated the summation of every month independently for testing pur-

pose. Then we divided this sum by the summation of the predicted data.

As presented in the house 3 as in Fig. 3.16. We can see the line fits perfectly with

Bagging and Extra regression and lost in some points with Random. But Decision and

Knn didn’t fit exactly, yes they got the same curve put no on the points.

Figure 3.16: Comparison of ML algorithms for monthly electicity consumption for
house number 3.

In house number 1199 as shown in Fig. 3.17 , the R2 was negative. However, we can

see that there is no one fitted. But we can see some points near fitted with Bagging

and Random. Like in June and December 2012 and Mars, April and September in 2013.

this result led us to elaborate another test.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 39

Figure 3.17: Comparison of ML algorithms for monthly electicity consumption for
house number 1199.

3.5.3 Third Test (By differences between real and predicted individual

data)

We conducted another test by calculating the differences between the real data of the test

set and the predicted data. This test includes the calculation of the difference between

the first value of the test set and the first value of the prediction, then the difference

between the second value of the test set and the second value of the prediction, and so

on. At the end, we sum up the differences and divide it by the summation of the real

values of the test set.

Result =

∑m
n=1 |P̃ − P |∑m

n=1 P

where:

P̃ is the predicted data

P is the real data

Python Code:

ifsum(abs(P̃ − P)) < sum(P) :

result = abs(sum(abs(P̃ − P))/sum(P)− 1)

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 40

else :

result = abs(sum(abs(P̃ − P))/sum(P))

The results of this test were different than the result of the R-squared. For house num-

ber 3 as seen in table 3.4, using Bagging, the results of (differences between data test

and predicted data) are 0.73 for Bagging and 0.72 for Random Forest. We notice that

the results are less than the R-squared calculated values. However, the house 1199 as

seen in table 3.5 showed a completely different and interesting results. The Bagging and

Random got 0.38 although R2 was equal to -0.005. But for the Decision Tree the result

was 0.4.

In fact, house 3 and house 1199 are different. House 3 represents a decent house with

a regular and ordinary power consumption. On the other hand, house 1199 is charac-

terized by the irregularity in the power consumption, which may have confused the R2

calculation to give a negative output.

Since R2 may in some cases give inconclusive values, we decided to perform more tests.

Table 3.4: Comparison of algorithms for House 3.

Algorithm R-squared Differences

Bagging regression 0.896080196574 0.730565101844

Random regression 0.895494830121 0.721535570183

Extra regression 0.87848854631 0.715903642935

Decision regression 0.376203098132 0.333302025741

Linear regression 0.209074906098 0.139211611706

k nearest neighbors 0.691809565284 0.551830094765

Table 3.5: Comparison of algorithms for House 1199.

Algorithm R-squared Differences

Bagging regression -0.00505593237186 0.388482137428

Random regression 0.0533046674133 0.381369335206

Extra regression -0.0604631321477 0.370511945392

Decision regression 0.108030788443 0.401667363226

Linear regression 0.0350849871945 0.353074466826

k nearest neighbors 0.0425716922033 0.383886275354

3.5.4 Fourth Test (Choose 500 houses randomly)

We calculated the average of R2 and the differences for 500 houses selected randomly

as seen in Table 3.6. We can see that all results of R2 are less than 0.43. But using

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 41

the differences formula, the Random forest and Bagging result in a higher value of 0.61.

Extra regression got 0.60 and K Nearest Neighbors with 0.58. Linear regression value

equals 0.44 (although Linear got 0.12 using R-squared).

Table 3.6: R2 and Difference of 500 Houses randomly

Algorithm R-squared Differences

Bagging regression 0.421451144778 0.614139562817

Random regression 0.421121406344 0.614143242967

Extra regression 0.388489691547 0.605980602049

Decision regression 0.212188577625 0.495803420023

Linear regression 0.125578016697 0.447913538955

k nearest neighbors 0.382293658572 0.580228344575

3.5.5 Test Five (Predict determined hour for All Houses)

In this test, we chose some hours in different days. We chose 8 hours randomly of the

the data as in table 3.7 . We have Real data is the result of summation all houses. and

the predicted data of every model. By divid the predicted data on Real data we can

understand the result clearly like in table 3.8.As we see the there is no difference between

Bagging and Random. But the result came perfectly from Extra tree regression.and the

worst is Linear Regression. As we see small difference but with thousands of houses can

make big effict.

Table 3.7: Comprison Algorithms of 500 Houses Randomly

Time
Real
Data

Bagging Random Decision Extra KNN Linear

2012-2-27-
23-Mon

298415 301952.4 304031.6 380585 294216 293314 381947

2012-7-3-
20-Tue

1645631 1658973 1663170 1626277 1649456 1604907 1618319

2012-11-10-
12-Sat

2133610 2155970 2146603 1934544 2137980 2141772 1763494

2013-1-25-
6-Fri

1689121 1689446 1687991 1533603 1682233 1612100 1559988

2013-4-15-
5-Mon

1247781 1260324 1262069 1184304 1250630 1259841 1400693

2013-9-21-
1-Sat

919730 926730 926426 1088458 923555 940225 1134373

2013-12-18-
14-Wed

1758775 1795363 1797447 1854697 1778146 1808561 1771957

2014-1-19-
14-Sun

1921865 2013432 2021547 1758047 1963316 2117988 1759506

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 42

Table 3.8: Percentage Prediction Comprison Algorithms of 500 Houses Randomly

Time
Bagging
%

Random
%

Decision
%

Extra
%

KNN
%

Linear
%

2012-2-27-23-
Mon

98.8 98.1 78.4 98.5 98.2 78.1

2012-7-3-20-
Tue

99.1 98.9 98.8 99.7 97.5 98.3

2012-11-10-12-
Sat

98.9 99.3 90.6 99.7 99.6 82.6

2013-1-25-6-
Fri

99.98 99.9 90.7 99.5 95.4 92.3

2013-4-15-5-
Mon

99 98.8 94.9 99.7 99 89

2013-9-21-1-
Sat

99.2 99.2 84.4 99.5 97.8 81

2013-12-18-14-
Wed

97.9 97.8 94.8 98.9 97.2 99.2

2014-1-19-14-
Sun

95.4 95 91.4 97.8 90.7 91.5

Average 98.4 98.4 90.5 99.2 96.9 89

3.6 Create grafical interface software to use on the power

dataset

With this GUI, it is possible for a user to use the graphical interface to predict power

consumption without being experienced in machine learning or any programming lan-

guages. This tool performs automatic prediction using the SmartMeter Energy Con-

sumption Data in London Households.

he first page is Login page as in Fig.3.18, which allows the user to enter the User name

and Password to onto to the system. This would take us to Algorithms Page.

3.6.1 Algorithm page

In this page we have four button boxes and two menus:

3.6.1.1 Add Data Button:

It is used to upload the data to Aerospike (In-memory). By picking up the file from the

drag dialog. We can also insert a folder (more than one file).

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 43

Figure 3.18: Login Page

Figure 3.19: Main page

3.6.2 Upload the data to Aerospike (In-memory)

we put data on the main memory using Aerospike. It takes the space of 2 GB from

RAM after preprocessing the data.. In next two figures, we can see the difference before

uploading data in Aerospike as in Fig. 3.20. We have 3.7GB of RAM and 600MB used

by the system, after uploading data to Aerospike as in the Fig. 3.21, we can see that the

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 44

new size of RAM is about 2.9GB. This means that our data size is now 2.4GB, when

before it was 6.1GB. This is due to deleting some columns and Null values. We are

left with about 800MB for computations and process’s work. Of course, we can’t put

all data in the memory due to the space needed for processing. Finally, we have 3043

houses in our final database.

Figure 3.20: Before Uplading To Aerospike

Figure 3.21: After Uplading To Aerospike

3.6.2.1 Update Data:

In real life, electrical data of houses has gigabytes and we may want for example to add

daily data that comes from meters every few hours. it would be difficult to delete all

data from Aerospike and update it then re-upload it to main memory. This would take

a lot of time. The solution consists of keeping our data on the RAM and every new data

that comes from the houses or the meters will be appended to Aerospike on the Memory

to reduce the time.

3.6.2.2 Delete Data:

It is used to delete data from the RAM in order to keep our RAM free

3.6.2.3 Preprocessing Data

In this menu, we have two options YES and NO. It asks if your data needs preprocessing

or not. if not, that means that the software will skip the preprocessing part and move

to the processing or the prediction phase. If you chose yes, this means that the software

will do preprocessing at background.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 45

First, the software deletes Null values, change the ID of every house from string value

to integer values, and separates every house alone. It also deletes the columns we don’t

need for prediction. And finally, separates the time to individual columns and adds

weekdays.

3.6.2.4 Choose Algorithm

Here we have a menu that allow us to choose one of six algorithms to apply on the

data set: Extra tree regressior,Bagging regressor, random forest regressor, Decision Tree

regressor, K nearest neighbor and Linear regressor.

3.6.2.5 Predict:

The predict option redirects us to another page to determine the period we want for

prediction.

3.6.3 Period Page

Figure 3.22: Prediction Period Page

This page gives us the following commands:

Insert Time from: It is used to insert the beginning of the time period. We added

a descriptive note to show that there is only one way to insert the time, and it is by

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 46

writing the Year then ”:” then the Day. Etc . In this form:

Year:Month:Day:Hour

Insert Time to: the end of the time period must be inserted in the same format. Here,

the user must insert the end of the time that he wants to predict.

Start Predicting: it gives the command to start the prediction and redirects the user

to another page.

In the background, the data will be divided into a training and a test set. 80 percent of

the data will be for training, and the rest for testing.

In normal cases, the code of comparison workss in sequential manner, operation after

operation. Our machine has 4 cores and to benefit from those cores we forced our code

to work in parallel. We can see in there in Fig. 3.23 that every core has line with special

Figure 3.23: One core

Color. Traditionally, one core works at the time, and wait for the others. When the first

core finishes its work, another one starts. However, with parallel programming we can

keep all 4 cores busy working together as in Fig. 3.24, which makes our code 4 times

faster than normal.

Figure 3.24: Work in parallel with four cores

3.6.4 Result Page

In this page as in Fig. 3.25. We have the results of our dataset prediction as following:

Total OF Houses: It shows how many houses we have predicted.

Time In Seconds : It retrieves the total of time in seconds

Results in K/W: It gives the total of power consumption that we predicted within

the time interval.

Chapter 3. Predicting Power Consumption Using Machine Learning And An
In-memory Database 47

R-squared: Will calculate R-squared for all data

Differences: Will show us the summation of differences between data test and predicted

data

Plot: Clicking on this button will generate a plot as a line of the power consumption

of real testing data with a line of predicted data.

The final image is saved on the hard disk.

Figure 3.25: The results of the predict

Chapter 4

Conclusion

In this thesis, we explored the power of machine learning and in-memory databases.

With the development of technologies, the RAM is getting cheaper and offers the ad-

vantage of speed over Hard Disk. We proved using machine learning to predict electricity

consumption, that the process of reading and writing data is much faster using the main

memory.

This thesis is the first application of machine learning with an in-memory database. We

chose the Aerospike In-memory database. And using the SmartMeter Energy Consump-

tion Data in London Households data set, we applied many machine learning algorithms

for prediction, before selecting the best one: Bagging. During the process, we demon-

strated that R squared error is not always the best indicator of the algorithm’s success.

In addition, based the SmartMeter Energy Consumption Data in London Households

data set, we built a graphical user interface for power prediction that can easily be

used by non-experimented users. The usage of main memory is definitely going to be

more and more important in the future. The limitation of I/O delays is opening doors

for more researches in developing this technology. All applications that need real-time

response will start using the main memory instead of HDD.

48

Bibliography

[1] The memory hierarchy. URL http://blog.csdn.net/cinmyheart/article/

details/36687963. Accessed on 2016.

[2] Hasso Plattner. A Course in In-Memory Data Management. Springer, German, 2

edition, 2014. ISBN 978-3-642-55269-4.

[3] nosql database comparison. URL http://refreshmymind.com/

nosql-database-comparison/. Accessed on 2016.

[4] How do column stores work? URL http://kejser.org/

how-do-column-stores-work/. Accessed on 2016.

[5] Comparing document-oriented and relational data. URL http://docs.couchbase.

com/developer/dev-guide-3.0/compare-docs-vs-relational.html. Accessed

on 2016.

[6] Where is nosql practically used? URL http://scraping.pro/

where-nosql-practically-used. Accessed on February 20- 2016.

[7] Hasso Plattner. Sanssoucidb: An in-memory database for processing enterprise

workloads. Datenbanksysteme für Business, 9, March 2011.

[8] Height balanced binary trees. URL http://www.csee.umbc.edu/courses/

undergraduate/341/fall98/frey/ClassNotes/Class18/avl.html.

[9] Tobin J. Lehman and Michael J. Carey. A study of index structures for main

memory database management systems. Proceedings Conference of the Twelfth

International on Very Large Data Bases, August 1986.

[10] Anand Deshmukh and Danny Lohan. Electric load identification using ma-

chine learning. 2002. URL https://www.cs.ucsb.edu/research/tech-reports/

2002-20.

[11] Atinuke Ademola-Idowu, Pawel Kupsc, and Sonya Mollinger. Home electric-

ity forecasting. December 2014. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=1469097.

49

http://blog.csdn.net/cinmyheart/article/details/36687963
http://blog.csdn.net/cinmyheart/article/details/36687963
http://refreshmymind.com/nosql-database-comparison/
http://refreshmymind.com/nosql-database-comparison/
http://kejser.org/how-do-column-stores-work/
http://kejser.org/how-do-column-stores-work/
http://docs.couchbase.com/developer/dev-guide-3.0/compare-docs-vs-relational.html
http://docs.couchbase.com/developer/dev-guide-3.0/compare-docs-vs-relational.html
http://scraping.pro/where-nosql-practically-used
http://scraping.pro/where-nosql-practically-used
http://www.csee.umbc.edu/courses/undergraduate/341/fall98/frey/ClassNotes/Class18/avl.html
http://www.csee.umbc.edu/courses/undergraduate/341/fall98/frey/ClassNotes/Class18/avl.html
https://www.cs.ucsb.edu/research/tech-reports/2002-20
https://www.cs.ucsb.edu/research/tech-reports/2002-20
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1469097
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1469097

Bibliography 50

[12] Eleftherios Soulas Dennis Shasha. Online machine learning algorithms for currency

exchange prediction. Technical report, NYU, New York Courant Department, 2013.

[13] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Predicting the

energy and power consumption of strong and weak scaling hpc applications. Inter-

national Journal of Supercomputing Frontiers And Innovations, September 2014.

URL http://superfri.org/superfri/article/view/9/8.

[14] Renu Chaudhary and Gagangeet Singh. A novel technique in nosql data extraction.

INTERNATIONAL JOURNAL of RESEARCH – GRANTHAALAYAH, 1, August

2014.

[15] Rick Cattell. Scalable sql and nosql data stores. SIGMOD ACM Special Interest

Group on Management of Data, 39:12–27, December 2010. URL http://dl.acm.

org/citation.cfm?id=1978919.

[16] Raghunath Nambiar and Meikel Poess. Performance evaluation and benchmarking:

Traditional to big data to internet of things. 7th TPC Technology Conference,

Semtember 2015.

[17] Zhilin Zhu, Jinxue Sui, and Li Yang. A novel main memory database t-tree in-

dex optimization algorithm. International Journal of Advancements in Computing

Technology, 3(5), 2011.

[18] DanielOhene-Kwofie and Gideon Nimako. A fast memory resident index for in-

memory databases. International Conference on Information and Knowledge Man-

agement, 45, 2012.

[19] Poznań. Business information systems. 16th International Conference, 2013.

[20] Harsh Bhasin and Surbhi Bhatia. Application of genetic algorithms in machine

learning. (IJCSIT) International Journal of Computer Science and Information

Technologies, 2:2412–2415, 2011.

[21] Pat Langley. Editorial: Human and machine learning. Machine Learning, 1:

243–248, Sep 1986.

[22] Smartmeter energy consumption data in london house-

holds. URL http://data.london.gov.uk/dataset/

smartmeter-energy-use-data-in-london-households.

[23] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. Data preprocessing for

supervised leaning. International Journal of Computer, Electrical, Automation,

Control and Information Engineering, 12, 2007.

http://superfri.org/superfri/article/view/9/8
http://dl.acm.org/citation.cfm?id=1978919
http://dl.acm.org/citation.cfm?id=1978919
http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

