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ABSTRACT 

Purpose: This study examines the potential of production systems of the heavy industry branches with the 

help of cyber-physical systems. Sources of public and private sectors may not be sufficient to transform 

and develop all heavy industry branches simultaneously. Because of that, policymakers can determine 

priority industries for development and growth, which are sustainable and balanced in a country. 

Methodology: In current study, the proposed approach uses the LMAW (Logarithm Methodology of 

Additive Weights) technique to identify priority sectors. The LMAW is a novel MCDM (Multi-Criteria Decision 

Making) technique providing an opportunity to evaluate both objective and subjective criteria; in addition, it 

uses the Bonferroni functions to transform the subjective evaluations of decision-makers to the group 

decision. 

Findings: It has been observed that the most significant criterion is overall equipment effectiveness (OEE), 

and the most prior branch of heavy industry is the aerospace industry. 

Originality: This paper examines the transformation process of the heavy industry branches to the cyber-

physical systems by using a new MCDM approach. 

Keywords: Heavy Industries, LMAW, Bonferroni Function, Multicriteria Group Decision-Making, Cyber-

Physical Systems. 

JEL Codes: D2, C44, D81, E23. 

TÜRKİYE’DE AĞIR SANAYİ ENDÜSTRİLERİNİN SİBER-FİZİKSEL ÜRETİM 
SİSTEMLERİNE GEÇİŞ POTANSİYELLERİNİN YENİ BİR BONFERRONİ 
FONKSİYONU TEMELLİ KARAR VERME YAKLAŞIMI ILE DEĞERLENDİRİLMESİ  

ÖZET 

Amaç: Bu çalışma ağır sanayi alt sektörlerinin üretim sistemlerinin siber-fiziksel sistemler yardımıyla 

dönüştürebilme potansiyellerini incelemektedir. Birçok ülkede kamu ve özel sektör kaynakları, bütün ağır 

sanayi endüstrilerinin eş zamanlı olarak geliştirilmesi ve dönüştürülmesi için yeterli olamayabilmektedir. Bu 

nedenle politika yapıcılar dengeli ve sürdürülebilir bir gelişim ve kalkınma yaratabilmek için öncelikli 

sektörler belirleyebilirler.  

Yöntem: Mevcut çalışmada önerilen yaklaşım, öncelikli sektörlerin belirlenmesi için LMAW (Logarithm 

Methodology of Additive Weights) tekniğinden yararlanmaktadır. LMAW tekniği hem nicel hem de nitel 

kriterlerin birlikte değerlendirilmesine imkân tanıyan aynı zamanda karar vericilerin öznel 

değerlendirmelerinin grup kararına dönüştürülmesinde Bonferroni fonksiyonunu temel alan çok kriterli karar 

verme (ÇKKV) yaklaşımlarından birisidir. 

Bulgular: LMAW tekniğinin uygulanması sonucunda çalışmada en etkili değerlendirme kriterinin genel 

ekipman verimliliği olduğu ve ilk sırada Havacılık ve Uzay Sanayi Endüstrisinin yer aldığı gözlemlenmiştir.  

Özgünlük: Bu çalışma ağır sanayi alt sektörlerinin siber fiziksel sistemlere geçiş sürecini yeni bir ÇKKV 

yaklaşımı kullanılarak incelemektedir. 

Anahtar Kelimeler: Ağır Sanayi, LMAW, Bonferroni Fonksiyonu, Çok Kriterli Grup Karar Verme, Siber-

Fiziksel Sistemler. 
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1. INTRODUCTION 

Heavy industry is a field of business with highly complicated production and supply chain processes, 
which requires high investment costs and heavy machines, equipment, and extensive facilities to make 
production. The heavy industry includes aerospace, shipbuilding, mining, machine tool building, locomotive 
manufacturing, oil and gas, steel production, chemical production, and large buildings and infrastructure 
(CFI, 2021). Also, heavy industry is an upstream industry, which means that high energy consumption is a 
significant feature of the heavy industry (Lin and Liu, 2016). Hence, large-scale private companies or public 
institutes mostly conduct these activities due to high investment and operational costs. Heavy industrial 
enterprises are primarily companies, which are active at a high capacity. In addition, their target customers 
are different industries or public authorities instead of a broad consumer mass consisting of individuals and 
small enterprises. For instance, a company active in aerospace and manufactures commercial planes does 
not expect to take orders from all individuals.  

From this perspective, heavy industrial enterprises have high investment and operational risks. On the 
other hand, they provide contributions to the development and growth of countries on a vast scale. 
Therefore, successfully installing and operating these industries depends on detailed planning processes, 
which carry out from a rational perspective. In addition, Industry 4.0, we are in, has started to suppress the 
heavy industrial enterprises and all other industries and businesses for keeping pace with this most 
incredible transformation process. As a condition for surviving in the highly competitive and struggling 
business environment, it is crucial to carry out business activities with the highest quality and logistics speed 
and lowest operational costs. Hence, using instruments, which can technologically develop production, 
supplying, and logistics processes may be a good solution for heavy industries to keep pace with the 
requirements of the industry 4.0 process. As a result, companies have become necessary to redesign their 
operations and processes as proper to the requirements of the Industry 4.0 process, whether small or large-
scale enterprises. 

This situation is forced to the heavy industries on a vast scale when the structural problems are 
considered. Being low flexibility of these companies may cause to increase the existing risks much more. 
In addition to the risks, digital transformation is more complicated and costlier for heavy industrial 
enterprises than more flexible small and medium-sized enterprises. When it is evaluated from this 
perspective, planning and managing the synchronously digital transformation for all branches of heavy 
industry is extremely difficult and costly. Moreover, designing the digital transformation and technological 
development process for all branches of heavy industry is not practical for policymakers of countries; it may 
also cause public source usage improperly and unproductively. Therefore, decision-makers should focus 
on priority areas, which provide higher added value and can be conducted of this transformation with lower 
costs and efforts to transform these branches from a more realistic and applicable perspective. In addition, 
focusing on these kinds of priority areas of the heavy industry may be essential for designing sustainable 
and manageable transformation processes.  

When considered from this point of view, one of the main components of Industry 4.0 is the Cyber-
Physical Systems   CPSs (Makris et al., 2019), and it requires to use of automation and autonomous 
systems in production processes at the maximal level. Already, CPS is motivating many research agendas 
related to production systems around the world (Riberio, 2017), and CPSs, which are a crucial part of the 
4th Industrial Revolution (4IR), have started to transform the production system CPSs. CPSs provide 
connections among all production parties (Daflon et al., 2021) such as machines, humans, equipment, and 
others with the help of technological instruments (i.e., cloud systems, internet of things, RFID applications, 
and sensors). Besides, these systems can help produce routine and standardized behaviors for the 
elements of the production systems by developing algorithms. Also, CPS can provide opportunities for 
interaction and integration between the physical world and the digital world (Iansiti and Lakhani, 2014). As 
a result, they can help solve many problems encountered in actual production processes by transferring 
from the real world to the virtual environment (Gaggioli, 2018) with the help of the simulation technique. As 
a natural result, depending on reducing the usage of human resources in production processes, human 
errors are also reduced (Ali and Hong, 2018), and production processes become more speedy, effective, 
and productive (Pascual et al., 2021). Creating this kind of system is extremely difficult for heavy industries 
having relatively low flexibility. However, being managerial abilities and high financial powers can be 
accepted as advantages of heavy industrial enterprises.  

Automation processes in smart factories mean regular, planned, and organized interactions (Lu et al., 
2020) among machines, devices, and humans to organize the production processes. For instance, if any 
problem on source utilization in any production phase happens, it means giving orders for this requirement 
automatically and autonomously to the suppliers without a decision-making process. Therefore, CPS can 
help solve any problem, i.e., unexpected malfunction of machines and equipment, lack of resources such 
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as human force, raw materials, semi-finished products, etc. Thus, production and logistics systems can be 
run in full capacity and unproblematic based on the successful integration of CPSs. 

However, implementation steps and ways followed by all companies and industries for digital 
transformation are not sufficiently precise (Shahi and Sinha, 2020; Zaoui and Souissi, 2020), and obtaining 
crisp values for related data may be difficult and even impossible. This situation may source from data 
publishing habits of companies and being insufficient of the developed methodologies for obtaining the 
crisp values, or they have not existed. Hence, it has not developed a commonly held measurement system 
for identifying the crisp values for alternatives concerning criteria even though there are some well-meaning 
attempts, as Industry 4.0 is a pretty new process. From this perspective, there are severe and notable gaps 
in the existing literature on production systems, in addition to all processes of industry 4.0. 

When the literature is reviewed comprehensively, the central part of the previous work existing in the 
literature examined CPSs, or they dealt with the implementation of CPSs in production companies and 
industries with a general view. From this perspective, these papers did not forward an idea that can CPSs 
be more effective in which industry(s) and made general evaluations on applying these systems for all 
industries only. However, each industry has different dynamics and specific characteristics; hence, the 
digital transformation process requires different scenarios for each industry. More importantly, each industry 
has a different potential for success related to CPSs. When they are evaluated from this perspective, there 
are severe gaps in the literature in the aspect of studies examining the potential of success of the industries 
on the implementation of CPSs. In addition, according to the authors' information, there is no paper 
evaluating the digital transformation process of the heavy industries concerning CPSs in the existing 
literature. By keeping in mind these gaps and requirements, the current paper examines the potential of 
the heavy industries related to the CPSs. Also, it tries to show priority branches of heavy industry that can 
be allocated sources and made investment for the digital transformation process by public and private 
sectors, as the sources of the public and private sectors are not limitless. Also, the proposed approach in 
the current paper has valuable contributions with respect to theoretical as summarised below to the existing 
literature.    

The current paper proposes a novel, applicable and powerful MCDM (Multi-Criteria Decision Making) 
approach, keeping in mind these gaps in the existing literature and requirements of the practitioners and 
decision-makers in related branches of heavy industries. The proposed approach was introduced firstly by 
Pamucar et al. (2021), and it is a novel MCDM framework presenting a new algorithm different from other 
traditional and popular MCDM approaches. It has many relative advantages compared to the other popular 
MCDM techniques. 

First, it is maximally consistent and stable and can not be affected by the rank reversal problem; hence, 
the ranking results do not change dramatically when we add or remove a criterion or decision alternatives. 
Because of that, the (-Logarithm Methodology of Additive Weights (LMAW) approach is more reliable in a 
dynamic environment than others for decision-makers. Also, the most significant contribution of the LMAW 
technique is to give better, accurate and reliable results, as it is a maximally consistent and stable MCDM 
framework (Pamucar et al., 2021). This methodological implication of the technique has been approved in 
the current paper to solve the decision-making problem on heavy industry branch selection for applying the 
CPS. 

The proposed approach's mathematical framework and basic algorithm do not change based on the 
number of criteria and decision alternatives; it also allows both objective and subjective criteria. In addition, 
it does not require a different technique for identifying the weights of criteria. Hence, this approach can 
determine the criteria weights. Also, it uses the Bonferroni function for aggregating the subjective 
evaluations of the decision-makers. It provides a flexible decision-making environment to the decision-
makers (Pamucar et al., 2021). 

The motivations for the study are as follows. First, this paper introduces an applicable, robust, and 
effective MCDM framework to provide a powerful and flexible evaluation tool to the practitioners and 
decision-makers. The proposed mathematical tool can help make evaluations better for relating to selecting 
the branch of heavy industries, which are planned to transform their production systems into CPPSs. 
Hence, it can provide an opportunity to apply public incentives and subsidies and support the right and 
appropriate industrial fields. Thus, more efficient use of resources of public and private sectors may be 
possible.  

Second, we decided to use the LMAW technique, as it provides reliable, realistic, and reasonable 
results because it is a maximally consistent and stable approach and is resistant to the rank reversal 
problem. In addition to these advantages, it has a very easily followable basic algorithm, and decision-
makers can apply it without advanced mathematical information. Based on its advantages, it can help to fill 
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the gaps related to the requirement of a methodological frame to solve these kinds of decision-making 
problems.  

Third, contrary to research that have studied this topic from a general perspective, this paper examines 
the branches of the heavy industry from a more detailed perspective. Therefore, we considered the 
significant differences and dynamics among different branches of heavy industry to identify the best heavy 
industry branch having the potential to gain success for transforming its production system to an advanced 
and technologically improved production system. From this perspective, it can help determine a road map 
for digital transformation for the industries in a country. 

In addition, we sought reasonable and realistic answers to the research questions. The research 
questions were determined by researchers as follows. i) is it possible to apply a mathematical model or 
decision support system to identify the priority branch of heavy industry to implement incentives, subsidies, 
and supports for digital transformation. ii) Are decision-makers in these industries make decisions based 
on their experiences and individual judgments only? iii) what are the significant criteria to identify the 
appropriate heavy industry branch?    

The rest of the paper is organized as follows. In section 2, the proposed LMAW technique and its basic 
algorithm are demonstrated in detail. In section 3, the suggested approach has been implemented to 
evaluate the branches of the heavy industry concerning the suitability of digital transformation by using the 
CPS in their production processes. Also, a comprehensive sensitivity analysis was performed to test the 
validity of the proposed MCDM framework. In section 4, the overall results are evaluated and discussed. In 
addition, the methodological and managerial implications of the proposed approach and the current paper 
are indicated in this section. In section 5, the current paper is concluded; besides, limitations of the paper 
and recommendations to authors who conduct future works on this issue are indicated.  

2. LITERATURE REVIEW 

In this section, we review the existing literature in detail. We noticed severe and surprising gaps in the 
existing literature when we performed a comprehensive literature review. Although many studies deal with 
CPSs, few papers used an MCDM (Multiple criteria decision making) framework to solve decision-making 
problems on this issue. More importantly, MCDM approaches used in these papers also have some 
structural problems and many drawbacks. For example, Silva and Jardim-Goncalves (2021) examined the 
selection of a more suitable device (system) to perform a task for CPSs with the help of the AHP (Analytic 
Hierarchy Process) and the PROMETHEE (The Preference Ranking Organization Method for Enrichment 
Evaluation) combination. Even though this paper has many valuable contributions to the literature, it has 
some limitations and structural problems. First, the main subject of this study is not the same as the current 
paper's focal point. Also, the proposed approach has many disadvantages. The AHP is the most commonly 
criticized MCDM approach since it requires many computations and pairwise comparisons among criteria 
and decision alternatives. Hence, it has a very complicated basic algorithm, and it may not be reliable for 
decision-makers, as it suffers from the rank reversal problem (Mufazzal and Muzakkir, 2018). It means any 
changes in the number of criteria and alternatives or values existing in the indexes may cause dramatic 
changes in the ranking results. In addition, it requires additional computations for identifying the consistency 
(Karthikeyan et al., 2016). Besides, it is required to express the preferences and the significances of the 
criteria on a ratio scale by decision-makers to be able to apply the PROMETHEE technique. Also, the 
criteria weights denote trade-offs among the selection criteria (Keyser and Peeters, 1996). Therefore, the 
obtained results by applying this approach may not be realistic and reliable. 

Mbuli (2019) evaluated the applicability of the CPS in the railway industry without using any MCDM 
approach. This study is valuable for the railway industry, but it is limited, as it did not provide an opportunity 
to compare industries and focus on a single industry. Oliviera et al. (2020) examined the impacts of CPS 
on Failure Mode and Effect Analysis for the railway industry with the help of Risk Priority Number (RPN) 
estimation approach. This paper did not also use an MCDM technique, and its managerial implications and 
contributions are limited with risk assessment. 

Jamwal et al. (2021) assessed the applicability of the CPS for the MSMEs (Micro Small Medium 
Enterprises) sector to develop a sustainability practices framework for Industry 4.0 with the help of a hybrid 
MCDM technique based on F-AHP (Fuzzy-Analytical hierarchy process) and DEMATEL (Decision making 
trial and evaluation laboratory). This paper's primary assumption and approach approve the main 
arguments of the current paper on the difficulties of collecting the crisp values by applying the fuzzy 
approaches. However, we have indicated the main structural problems and drawbacks of the AHP 
technique in the previous section; also, the DEMATEL technique has many disadvantages: researchers 
may have to eliminate some criteria since it has a very complicated and time-consuming basic algorithm; 
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also, it assumes that each decision-maker have the same experiences, knowledge, and abilities; hence it 
does not consider the differences among decision-makers (Si et al., 2018).  

In addition to these studies, some previous works dealt with smart factories from the perspective of 
industry 4.0 (Machado et al. 2020; Nujoom et al. 2019; Jiang, 2018; Pascual et al., 2021). However, these 
papers do not present a robust methodological frame to compare the different industries. In addition, they 
examined smart factories' impacts on the companies' targets related to accords of requirements of industry 
4.0. Besides, they also proposed the traditional MCDM approaches having some structural problems 
argued above. In addition, Hayhoe et al. (2019) examined the impacts of cross-sector networks of multiple 
supply chains, cyber-physical production systems on sustainable manufacturing systems, but they did not 
consider the differences among industries. As is seen above, there are many gaps in the existing literature, 
and they can be summarised as follows.  

• The most of decision techniques used in the previous studies are traditional MCDM approaches. 
Therefore, these techniques may not provide a flexible decision-making environment to the 
decision-makers when their structural problems and drawbacks are considered.  

• There is no commonly accepted mathematical model used for evaluating the industries concerning 
the applicability of the CPSs in the production processes. 

• Most of the previous works existing in the literature focused on defined subjects such as smart 
factories, intelligent systems, and sustainable production instead of differences between 
companies or industries.  

• There is no paper dealing with the applicability of CPS for developing the manufacturing processes 
of heavy industries concerning technology and creating sustainable production systems. 

Keeping in mind these gaps and requirements to a comprehensive methodological frame to measure 
the suitability of the heavy industry branches, the current paper proposes a practical and applicable MCDM 
framework to fill these gaps and respond to these requirements.   

3. THE PROPOSED MCDM FRAMEWORK 

Here, we demonstrate the basic algorithm of the new LMAW technique. The proposed MCDM 
framework has five implementation steps, and these steps are presented as follows (Pamucar et al., 2021). 
Also, the basic algorithm of the proposed approach is presented in Figure 1.      

 

 

Figure 1. The basic algorithm of the proposed approach 

Step 1. Forming initial decision-making matrix: The initial decision matrix is constructed in the first step 
of the proposed approach. Let suppose 𝑚 number of alternatives 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑚) and 𝑛 number of 
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criteria 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑛) exist in an evaluation process. In addition, the criteria weight coefficients have to 
equal 1. Also, k number of decision-makers (experts) 𝐸 = (𝐸1, 𝐸2, … , 𝐸𝑘) perform evaluations for criteria and 

decision alternatives. Therefore, the 𝑘 number of initial decision matrices given in Equation 1 is generated.   

𝑋𝑒 = [

𝜂11
𝑒 𝜂12

𝑒 . . . 𝜂1𝑛
𝑒

𝜂21
𝑒 𝜂22

𝑒 . . . 𝜂2𝑛
𝑒

. . . . . . . . . . . .
𝜂1𝑚

𝑒 𝜂2𝑚
𝑒 . . . 𝜂𝑚𝑛

𝑒

]                                                                                                              (1) 

Then, these obtained initial decision matrices are aggregated with the help of the Bonferroni function 
approach. By applying the mathematical formulation of the Bonferroni function shown in Equation 2, the 
aggregated initial decision matrix is constructed.   

𝜂𝑖𝑗 = (
1

𝑘(𝑘−1)
∑ (𝜂𝑖𝑗

(𝑥)
)

𝑝
∑ (𝜂𝑖𝑗

(𝑦)
)

𝑞
𝑘
𝑦=1
𝑦≠𝑥

𝑘
𝑥=1 )

1

𝑝+𝑞

                                                                                         (2) 

Where 𝜂ij presents the averaged values obtained by applying Bonferroni aggregator; 𝑝, 𝑞 > 0 present 

stabilization parameters of the Bonferroni aggregator, while e presents the eth expert 1 ≤ 𝑒 ≤ 𝑘 (Pamucar 
et al. 2021). 

Step 2. Standardization of the initial decision matrix: The elements of the aggregated decision matrix 
are normalized in this step by applying Equation 3. For this purpose, the linear normalization technique is 
applied by considering the characteristics of the criteria, i.e., benefits “B” and cost criteria “C”. Where; 𝜂𝑗

+ 

denotes maximum value and 𝜂𝑗
− is the minimum value. 𝛩𝑖𝑗 symbolizes the normalized (Standardized) values 

of the initial decision matrix. 

𝛩𝑖𝑗 = {
𝛩𝑖𝑗 =

𝜂𝑖𝑗+𝜂𝑗
+

𝜂𝑗
+  𝑖𝑓 𝐶𝑗 ∈ 𝐵 

𝛩𝑖𝑗 =
𝜂𝑖𝑗+𝜂𝑗

−

𝜂𝑖𝑗
 𝑖𝑓 𝐶𝑗 ∈ 𝐶

                                                                                    (3) 

Step 3. Determining weight coefficients of the criteria: In this step, decision-makers evaluate the 
selection criteria by considering the linguistic evaluation scale given in Table 1. 

Table 1. Linguistic evaluation scale for criteria and alternatives 

Scale 

Criteria   Alternative 

Linguistic terms/Abbreviation Scale Linguistic terms/Abbreviation 

[1.0] Absolutely low/ [AL] [1] Absolutely low/ [AL] 

[1.5] Very low/ [VL] [2] Very low/ [VL] 

[2.0] Low/ [L] [3] Low/ [L] 

[2.5] Medium/[M] [4] Medium/[M] 

[3.0] Equal/ [E] [5] Medium High/[MH] 

[3.5] Medium High/[MH] [6] High/[H] 

[4.0] High/[H] [7] Very high/[VH] 

[4.5] Very high/[VH]   
[5.0] Absolutely High/[AH]   

Source: Pamucar et al., 2021. 

Then, the priority vector is formed as 𝑃𝑉𝑒 = (𝛾𝐶1
𝑒 , 𝛾𝐶2

𝑒 , . . . , 𝛾𝐶𝑛
𝑒 )

e

Cn
denotes the value obtained from the 

linguistic scale identified by each expert to criterion𝐶𝑡(1 ≤ 𝑡 ≤ 𝑛).  

Step 3.1. Defining absolute anti-ideal point: Absolute anti-ideal point is defined in relation to the 
minimum values from the priority vector and should be lower than the smallest value from the priority vector 
(Pamucar et al., 2021; Deveci et.al.2021).  

Step 3.2. The relation is determined between the elements of the priority vector and the absolute anti-
ideal point in this step. Differences between these values are computed with the help of Equation 4. 

𝜃𝐶𝑛
𝑒 =

𝛾𝐶𝑛
𝑒

𝛾𝐴𝐼𝑃
                                                                   (4) 

Step 3.3. Determining the vector of weight coefficients: The values of weight coefficients of criteria are 
identified by decision-makers with the help of Equation 5.  
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𝜔𝑗
𝑒 =

𝑙𝑜𝑔𝐴(𝜃𝐶𝑛
𝑒 )

𝑙𝑜𝑔𝐴(𝑏𝑒)
𝐴 > 1                                                                                  (5) 

𝜃𝐶𝑛
𝑒 denotes the elements of relation vector and 𝑏𝑒 = ∏ 𝜃𝑗

𝑒𝑛
𝑗=1 . Also, the condition of being equal to 1 

for the sum of criteria weights has to be provided. Then we apply the Bonferroni functions to construct the 
aggregated weight coefficient vector with the help of Equation 6.  

𝜔𝑗 = (
1

𝑘(𝑘−1)
∑ (𝜔𝑗

(𝑥)
)

𝑝
∑ (𝜔𝑗

(𝑦)
)

𝑞
𝑘
𝑦=1
𝑦≠𝑥

𝑘
𝑥=1 )

1

𝑝+𝑞

                                                                      (6) 

Step 4. Computing the weighted matrix: By implementing Equation 7, the elements of the weighted 

matrix 𝑌 = [𝜁𝑖𝑗]
𝑚𝑥𝑛

are calculated.  

𝜁𝑖𝑗 =
2𝛿

𝑖𝑗

𝜔𝑗

(2−𝛿𝑖𝑗)
𝜔𝑗+𝛿

𝑖𝑗

𝜔𝑗
                                                                              (7) 

where; 

𝛿𝑖𝑗 =
𝑙𝑛(𝛩𝑖𝑗)

𝑙𝑛(∏ 𝛩𝑖𝑗
𝑚
𝑖=1 )

                          (8) 

where; 𝛩𝑖𝑗denotes the normalized matrix elements and 𝜔𝑗symbolizes the criteria weights coefficient. 

Step 5. Calculation of the final index for ranking alternatives (𝑄𝑖): the final index for alternatives defining 
the preference ratings of options is identified by applying Equation 9.  

𝑄𝑖 = ∑ 𝜁𝑖𝑗
𝑛
𝑗=1                                                                                                       (9) 

4. EVALUATION OF THE HEAVY INDUSTRY BRANCHES 

In this section, the proposed dynamic MCDM framework consisting of three phases was applied to 
evaluate the potential of transformation from the traditional production system to CPSs for the branches of 
heavy industry.  

4.1. The Preparation Process 

For this purpose, a board of experts consisting of five highly experienced and have deep knowledge 
professionals was constructed to ask their opinion on this issue during the research process. Details of 
these experts are presented in Table 2. 

Table 2. Details of the members of the board of experts 

DMs Graduation Degree Duty Experience 

DM1 Industrial Engineering Master’s degree Project Manager 12 
DM2 Mechanical Engineering Undergraduate General Manager 18 
DM3 Industrial Engineering Undergraduate Product Manager 13 
DM4 Business Undergraduate System designer 17 
DM5 Industrial Engineering Undergraduate Supply Chain Man. 20 

 

Table 3. The selection criteria and decision alternatives 

Code Direction Criteria  Code Alternatives  

C1 Max First Pass yield A1 Aerospace 

C2 Max Throughput Rate A2 Shipbuilding 

C3 Max Availability A3 Mining 

C4 Min Downtime  A4 Machine tool building 

C5 Max 
Overall Equipment 
Effectiveness (OEE) 

A5 Locomotive manufacturing 

C6 Min Energy consumption A6 Oil and gas 

C7 Min Scrap ratio A7 Steel production 

C8 Max Target A8 Chemical production 

C9 Max Count A9 
Construction of large 
buildings and infrastructure 

C10 Min Takt Time    
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Then, existing literature was reviewed, and the selection criteria and decision alternatives were 
identified together with the experts. For this purpose, researchers and decision-makers decided to use the 
set of key performance indicators (KPI) in the ISO 22400-2:2014 Automation systems and integration 
published by the International Standardisation Organisation as the set of selection criteria. Also, the 
branches of heavy industry were selected as the decision alternatives. The selection criteria and decision 
alternatives are presented in Table 3. 

The definitions of the criteria given in Table 3 are presented as follows. C1 yield refers to the percentage 
of products that meet quality requirements from the total of inspected products (IP). Products that meet 
quality requirements are named good products (GP). C2 is the performance of the production process. The 
calculation compares produced quantity (PQ) with actual order execution time (AOET). C3 is the availability 
shows the actual time the equipment is available for usage. The calculation compares the actual utilized 
time (OPT) with the loading time (LT). C4 is the result of a breakdown or simply a machine changeover. 
When machines are not operating, the company can be at risk of loss.  

C5 combines the availability, the effectiveness, and the finished goods ratio. The produced index 
indicates the efficiency of machines or complete assembly lines. C6 is the ratio of energy consumed per 
production cycle (E) in comparison to the produced quantity (PQ). C7 is the ratio of scrap quantity (SQ) in 
comparison to the produced quantity (PQ). C8 is target and many organizations display target values for 
output, rate, and quality. This KPI helps motivate employees to meet specific performance targets. C9 
relates to the amount of product produced. The count typically refers to the product produced since the last 
machine changeover or the production sum for the entire shift or week. C10 is the amount of time, or cycle 
time, to complete a task. 

When it is considered that expectations of all industries and companies concerning industry 4.0 and 
digital transformation processes are not clear sufficiently, collecting data on this issue is not easy. In 
addition, data publishing habits of almost all companies do not exist except corporate companies. 
Therefore, no commonly accepted measurement system can help to collect crisp data in the related field. 
Because of that, while subjective evaluations were performed for criteria by decision-makers by considering 
the nine-point scale, the seven-point scale was used for evaluating the decision alternatives. 

4.2. Implementation of the LMAW Technique 

After the phases of the preparation process are completed, the basic algorithm of the LMAW 
techniques that is the proposed approach in the current paper is followed. Linguistics evaluations of the 
experts are presented in Appendix 1. Then, the initial decision matrix is generated in the first implementation 
step of the model, as presented in Table 4. 

Table 4. Aggregated decision matrix 

Alternatives 
Criteria 

1 
Criteria 

2 
Criteria 

3 
Criteria 

4 
Criteria 

5 
Criteria 

6 
Criteria 

7 
Criteria 

8 
Criteria 

9 
Criteria 

10 

Alt.-1 6.595 6.993 5.797 2.145 6.797 5.394 6.588 1.761 6.797 2.793 

Alt.-2 5.992 5.394 5.983 1.732 5.586 5.992 5.595 2.793 7.000 3.391 

Alt.-3 2.588 2.569 1.581 5.394 6.595 3.937 1.549 7.000 5.586 6.181 

Alt.-4 3.347 4.593 5.394 5.385 5.797 3.391 5.394 5.177 5.595 5.187 

Alt.-5 4.123 4.123 4.000 4.393 2.191 3.194 4.382 3.000 5.394 2.145 

Alt.-6 4.583 5.779 2.569 7.000 5.196 5.595 5.788 6.387 6.173 6.588 

Alt.-7 5.788 6.000 6.395 5.779 5.797 3.194 5.797 4.171 5.797 5.586 

Alt.-8 4.393 3.391 5.196 6.595 6.197 4.561 5.394 6.387 6.387 5.779 

Alt.-9 3.271 6.197 6.797 5.779 6.993 2.366 2.757 5.394 5.595 6.387 

For example, the numerical value of 𝜂11that is the first element of the initial decision matrix is calculated 
by computing the Bonferonni mean of the preferences of the five decision-makers  [𝜂11 =
{𝑉𝐻, 𝑉𝐻, 𝐻, 𝑉𝐻, 𝐻} = {7,7,6,7,6}] with the help of Equation 2 as follows.  

𝜂11
𝑝=𝑞=1 = (

1

5(5−1)
(71. 71 + 71. 61 + 71. 71 + 71. 61+. . . +61. 71 + 61. 71 + 61. 61 + 61. 71))

1/2

= 6.595  

After the initial decision matrix is generated, these matrix elements are normalized with the help of 
Equation 3. For this purpose, characteristics of the criteria are considered, and the normalized matrix is 
presented in Table 5.  
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Table 5. Normalized decision matrix 

Alternatives 
Criteria 

1 
Criteria 

2 
Criteria 

3 
Criteria 

4 
Criteria 

5 
Criteria 

6 
Criteria 

7 
Criteria 

8 
Criteria 

9 
Criteria 

10 

Alt.-1 2.000 2.000 1.853 1.808 1.972 1.439 1.235 1.252 1.971 1.768 

Alt.-2 1.908 1.771 1.880 2.000 1.799 1.395 1.277 1.399 2.000 1.632 

Alt.-3 1.392 1.367 1.233 1.321 1.943 1.601 2.000 2.000 1.798 1.347 

Alt.-4 1.507 1.657 1.794 1.322 1.829 1.698 1.287 1.740 1.799 1.414 

Alt.-5 1.625 1.590 1.588 1.394 1.313 1.741 1.354 1.429 1.771 2.000 

Alt.-6 1.695 1.826 1.378 1.247 1.743 1.423 1.268 1.912 1.882 1.326 

Alt.-7 1.878 1.858 1.941 1.300 1.829 1.741 1.267 1.596 1.828 1.384 

Alt.-8 1.666 1.485 1.764 1.263 1.886 1.519 1.287 1.912 1.912 1.371 

Alt.-9 1.496 1.886 2.000 1.300 2.000 2.000 1.562 1.771 1.799 1.336 

The values of 𝛩11 and 𝛩14existing in the normalized matrix are calculated as follows.  

𝛩11 = (
(6.595+𝑚𝑎𝑥(6.595;5.992;2.588;3.347;4.123;...;3.271))

𝑚𝑎𝑥(6.595;5.992;2.588;3.347;4.123;...;3.271)
) = 2.000   

 𝛩14 = (
(2.145+𝑚𝑖𝑛(2.145;1.732;5.394;5.385;4.393;...;5.779))

2.145
) = 1.808 

Next, the weight coefficients of criteria are determined by decision-makers by considering the nine-
point scale given in Table 1. The determined linguistic evaluations are presented in Table 6. 

 Table 6. Evaluating the criteria by decision-makers 

Criteria 

Linguistic evaluations 

Criteria 

Numerical rating 

Decision makers evaluation 
(DM1,DM2,…,DM5) 

Decision makers evaluation 
(DM1,DM2,…,DM5) 

C1 [H;H;VH; H;H] C1 [4;4;4.5;4;4] 

C2 [VH; L;VH; VH; VH] C2 [4.5;2;4.5;4.5;4.5] 

C3 [H;H;M;M;H] C3 [4;4;2.5;2.5;4] 

C4 [M;VL; M;M;H] C4 [2.5;1.5;2.5;2.5;4] 

C5 [AH; AH; H;AH; AH] C5 [5;5;4;5;5] 

C6 [H;VL; H;VL; H] C6 [4;1.5;4;1.5;4] 

C7 [VL; M;M;AL; VL] C7 [1.5;2.5;2.5;1;1.5] 

C8 [H;M;H;VL; H] C8 [4;2.5;4;1.5;4] 

C9 [M;H;H;H;M] C9 [2.5;4;4;4;2.5] 

C10 [VL; M;M;H;H] C10 [1.5;2.5;2.5;4;4] 

After five priority vectors presented in Table 6 are formed, the relation between each element of these 
vectors and absolute anti ideal point (AIP) are identified. For this purpose, AIP is accepted as 𝛾𝐴𝐼𝑃=0.5, and 
calculated values are presented in Table 7.  

Table 7. The relation between each element of priority vectors and the 

absolute anti ideal point 

Decision 
Makers 

Priority vector elements Relation vector elements 

1 2 10: ( , ,..., )Cn C C C   
 1 2 10: ( , ,..., )   Cn C C C  

DM1 [4.0;4.5;4.0;2.5;5.0;4.0;1.5;4.0;2.5;1.5] [8;9;8;5;10;8;3;8;5;3] 

DM2 [4.0;2.0;4.0;1.5;5.0;1.5;2.5;2.5;4.0;2.5] [8;4;8;3;10;3;5;5;8;5] 

DM3 [4.5;4.5;2.5;2.5;4.0;4.0;2.5;4.0;4.0;2.5] [9;9;5;5;8;8;5;8;8;5] 

DM4 [4.0;4.5;2.5;2.5;5.0;1.5;1.0;1.5;4.0;4.0] [8;9;5;5;10;3;2;3;8;8] 

DM5 [4.0;4.5;4.0;4.0;5.0;4.0;1.5;4.0;2.5;4.0] [8;9;8,8;10;8;3;8;5;8] 

For example, the relation between priority vector elements identified by DM1 and the absolute anti 
ideal point is calculated as follows. 
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𝜃(𝜃𝐶1,𝜃𝐶2,...,𝜃𝐶10)
𝐷𝑀1

= [(
4.0

0.5
;

4.5

0.5
;

4.0

0.5
;

2.5

0.5
;

5.0

0.5
;

4.0

0.5
;

1.5

0.5
;

4.0

0.5
;

2.5

0.5
;

1.5

0.5
)] = [(8; 9; 8; 5; 10; 8; 3; 8; 5; 3)]  

Then, by applying Equation 5, each decision-maker determined weights coefficients of criteria, and 
these vectors are aggregated with the help of the Bonferroni aggregating function (Equation 6). Next, the 
final weight coefficient for each criterion is presented in Table 8.  

Table 8. The final criteria weight coefficients 

Weights  
Criteria 

1 
Criteria 

2 
Criteria 

3 
Criteria 

4 
Criteria 

5 
Criteria 

6 
Criteria 

7 
Criteria 

8 
Criteria 

9 
Criteria 

10 

𝜔1  0.114 0.121 0.114 0.088 0.126 0.114 0.060 0.114 0.088 0.060 

𝜔2  0.123 0.082 0.123 0.065 0.136 0.065 0.095 0.095 0.123 0.095 

𝜔3  0.115 0.115 0.084 0.084 0.109 0.109 0.084 0.109 0.109 0.084 

𝜔4  0.123 0.130 0.096 0.096 0.137 0.065 0.041 0.065 0.123 0.123 

𝜔5  0.106 0.112 0.106 0.106 0.117 0.106 0.056 0.106 0.082 0.106 

𝜔aggregated weights  0.1161 0.1115 0.1042 0.0874 0.1248 0.0910 0.0665 0.0973 0.1046 0.0931 

Rank 2 3 5 9 1 8 10 6 4 7 

For instance, 𝜔1 for DM1 given in Table 8 was computed as follows.  

𝜔1 = [(
𝑙𝑛(8)

𝑙𝑛(8𝑥9𝑥8...𝑥3)
) , (

𝑙𝑛(9)

𝑙𝑛(8𝑥9𝑥8...𝑥3)
) , (

𝑙𝑛(8)

𝑙𝑛(8𝑥9𝑥8...𝑥3)
) , . . . , (

𝑙𝑛(3)

𝑙𝑛(8𝑥9𝑥8...𝑥3)
)] = [(0.114,0.121,0.114, . . . , ,0.060)]  

For remain four decision-makers, Equation 5 is applied similarly, and the final weight coefficients 

𝜔2,𝜔3,𝜔4ve 𝜔5are computed. Then, the Bonferroni function was applied for aggregating the weight 
coefficients of criteria. For example, the final weight coefficient of the C1 criterion was computed as follows.  

𝜔1
aggregated weights

= (
1

5(5−1)
(0.1141. 0.1231 + 0.1141. 0.1151+. . . +0.1061. 0.1231))

1/2

= 0.1161  

Next, the weighted normalized matrix was constructed with the help of Equations 7 and 8 for 
determining the preference rating of the decision alternatives. The obtained results are presented in Table 
9.  

Table 9. Weighted normalized matrix 

Alternatives 
Criteria 

1 
Criteria 

2 
Criteria 

3 
Criteria 

4 
Criteria 

5 
Criteria 

6 
Criteria 

7 
Criteria 

8 
Criteria 

9 
Criteria 

10 

Alt.-1 0.855 0.859 0.862 0.901 0.834 0.859 0.892 0.824 0.858 0.886 

Alt.-2 0.851 0.847 0.863 0.909 0.825 0.855 0.897 0.843 0.859 0.879 

Alt.-3 0.811 0.813 0.805 0.866 0.833 0.871 0.934 0.880 0.850 0.855 

Alt.-4 0.824 0.840 0.859 0.867 0.827 0.877 0.898 0.868 0.850 0.862 

Alt.-5 0.834 0.835 0.846 0.874 0.777 0.879 0.904 0.846 0.848 0.896 

Alt.-6 0.838 0.850 0.827 0.856 0.821 0.858 0.896 0.876 0.854 0.852 

Alt.-7 0.849 0.852 0.866 0.864 0.827 0.879 0.896 0.860 0.851 0.859 

Alt.-8 0.837 0.826 0.857 0.859 0.830 0.866 0.898 0.876 0.855 0.857 

Alt.-9 0.822 0.853 0.868 0.864 0.836 0.890 0.918 0.870 0.850 0.853 

𝜁11, the first element of the weighted normalized decision matrix is calculated as follows.   

𝛿11 = [(
𝑙𝑛(2.00)

𝑙𝑛[(2.00)𝑥(1.908)𝑥...𝑥(1.496)]
)] = 0.149; 

𝜁11 = [(
2𝑥((0.149)0.1161)

(2−0.149)0.1161+0.1490.1161)
)] = 0.855  

In the final implementation step of the proposed model, the final index values of the decision 
alternatives were calculated by applying Equation 9. The computed final index values for decision 
alternatives are presented as follows.  

𝑄1 = (0.855 + 0.859 + 0.862+. . . +0.886) = 8.630  𝑄5 = (0.834 + 0.835 + 0.846+. . . +0.896) = 8.541  

𝑄2 = (0.851 + 0.847 + 0.863+. . . +0.879) = 8.628  𝑄6 = (0.838 + 0.850 + 0.827+. . . +0.852) = 8.529  

𝑄3 = (0.811 + 0.813 + 0.805+. . . +0.855) = 8.518  𝑄7 = (0.849 + 0.852 + 0.866+. . . +0.859) = 8.602  

𝑄4 = (0.824 + 0.840 + 0.859+. . . +0.862) = 8.571  𝑄8 = (0.837 + 0.826 + 0.857+. . . +0.857) = 8.561  
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𝑄9 = (0.822 + 0.853 + 0.868+. . . +0.853) = 8.625  

By considering these values, the final ranking performances of the options are obtained as presented 
in Table 10.  

Table 10.  Ranking the alternatives concerning the final index values 

Alternatives Alt.-1 Alt.-2 Alt.-3 Alt.-4 Alt.-5 Alt.-6 Alt.-7 Alt.-8 Alt.-9 

iQ
 

8.630 8.628 8.518 8.571 8.541 8.529 8.602 8.561 8.625 

Rank 1 2 9 5 7 8 4 6 3 

4.3. Validation Test 

In this section, a comprehensive sensitivity analysis consisting of two phases was performed to test 
the applicability and validity of the proposed approach and its obtained results. In the first stage, the impacts 
of changing the criteria weights on the ranking results were examined. Next, we applied five popular MCDM 
techniques and compared the results obtained using both the proposed approach and others. 

In the first stage, we changed the weight of each criterion in each scenario to examine the impacts of 
modification of criteria weights on the ranking results. For this purpose, we formed 100 different scenarios 
and reduced criteria weight at the rate of 10% in each scenario. Then, we continued to reduce the weight 
for the criterion till the criterion weight was equal to zero. Previous works suggested changing the weights 
of criteria in the first three ranks (Stankovic et al. 2020). This kind of approach can give a limited result 
since it did not consider the potential impacts of changes in the remaining criteria' weights. The current 
paper proposes to include all criteria into the analyzing process by following the implementation proposed 
by Görçün et al. (2021). According to the algorithm proposed by them, the criterion weight is changed at 
the rate of 10%. Then, the weights of the remaining criteria are corrected for providing the condition that 
the sum of weights should be equal to 1. The new weights of the criteria are identified by applying Eqs. 10, 
11, and 12. 

𝑤𝑓𝑣
1 = 𝑤𝑝𝑣

1 − (𝑤𝑝𝑣
1 . 𝑚𝑣)                        (10) 

𝑤𝑛𝑣
2 =

(1−𝑤𝑓𝑣
1 )

𝑛−1
+ 𝑤𝑝𝑣

2                         (11) 

𝑤𝑓𝑣
1 + ∑ 𝑤𝑛𝑣

2 = 1                         (12) 

Here, 𝑤𝑓𝑣
1 denotes the new value of the modified weight of jth factor, 𝑤𝑝𝑣

1 is the previous values of the 

criterion, 𝑚𝑣is the modification degree in terms of percentage (i.e., 10%, 20%,...,100%). Also, 

𝑤𝑛𝑣
2 symbolizes new values of remaining factors, 𝑛 is the number of factors, 𝑤𝑝𝑣

2  is the previous values of 

the remaining criteria. Then, we followed the basic algorithm of the first phase and obtained the new ranking 
results for all scenarios presented in Figure 2.  

 

Figure 2. Impacts of changing the criteria weights on the ranking results 
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As shown in Figure 2, Alt.-1, the best option, has remained the best alternative in 50 scenarios. It has 
been slight changes, which cannot change the overall results in ranking performances of the alternatives. 
The average similarity rate between the proposed model results and the results obtained by different 100 
scenarios is determined as 72%. In the second phase, we implemented five different popular MCDM 
approaches such as MARCOS (Stević et al., 2020), MAIRCA (Gigović et al., 2016), WASPAS (Zavadskas 
et al., 2012), MABAC (Pamučar and Ćirović,2015), and MAUT (Lopes and Almeida, 2015). According to 
the obtained results, ranking results of all popular techniques and the proposed approach are similar to a 
high degree. The ranking results of the techniques, including the proposed approach, are presented as 
follows. 

 

Figure 3. Comparison of the ranking results of the proposed approach and others 

As is seen in Figure 3, Alt.-1 has remained the best option for all popular implemented techniques and 
the LMAW technique, and the ranking position of the Alt.-7 has not also changed. Besides, it has been 
observed minor changes in the ranking positions of some alternatives; however, these changes cannot 
change the overall results. 

5. CONCLUSION 

Determining the primary areas in the heavy industries is crucial for policymakers since the appropriate 
investment decision and source utilization is essential for countries, individuals, and companies. It can allow 
creating more productive and efficient industries in countries. Moreover, evaluating and selecting 
appropriate fields in heavy industries is not easy for decision-makers. So indeed, no papers are dealing 
with this issue directly, and we noticed severe and surprising gaps in the existing literature. Furthermore, 
the previous paper existing in the literature did not propose an applicable and practical evaluation technique 
for assessing the suitability of the heavy industry branches to the CPS use in the production systems. The 
current paper proposes an applicable and practical MCDM framework to evaluate the heavy industry 
branches by keeping the industry's requirements and existing gaps in the literature.  

When the obtained results are evaluated in detail, it has been observed that the proposed approach 
has the potential to fill the gaps existing in the literature. Also, it is resistant to the rank reversal problem 
because it is maximally stable and consistent than other popular and traditional MCDM approaches 
(Pamucar et al., 2021). Hence, we can accept that the LMAW method is a reliable MCDM framework for 
decision-makers. It can process subjective and objective criteria. In addition, the paper has valuable 
contributions to the literature as follows. It helps identify the heavy industry's prior branches concerning 
digital transformation suitability in their production systems and processes.  

According to the obtained results, C5, Overall Equipment Effectiveness (OEE), is the most crucial 
criterion for evaluating the branches of the heavy industry. It is reasonable and realistic because OEE 
(Overall Equipment Effectiveness) is defined as the critical indicator for identifying the efficiency and 
productivity of a production system. It helps to detect and solve any problem that occurred in the production 
process, and it provides an opportunity to prepare a manufacturing system for digital transformation. It is 
impossible to create a well-functioned production system supported with CPSs if there are problems in the 
production systems. Therefore, it serves to construct an excellent production system for companies and 
industries. 
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C1 First Pass Yield has been determined as the second crucial factor in evaluating the industries 
concerning the suitability of using the CPS in production processes. It is meaningful since it is an essential 
metric for measuring a manufacturing system's performance, productivity, and efficiency. Also, it is a good 
indicator of the effectivity of a manufacturing system, and it can help eliminate waste of time and sources. 
Other criteria were ranked as C2> C9> C3> C8> C10> C6> C4> C7. 

When we evaluate the results of the proposed model for determining the preference ratings of the 
alternatives, Alt.-1, Aerospace industry is the best alternative, and Alt.-2 Shipbuilding industry is the second-
best option and follows to first alternatives. Remainders have been ranked as Alt.-9> Alt.-7> Alt.-4> Alt.-8> 
Alt.-5> Alt.-6> Alt.-3. These results are reasonable and realistic, as the Aerospace and shipbuilding industry 
respond to requirements to identify the priority of the heavy industry branches.   

In addition, the obtained results were tested with the help of a comprehensive sensitivity analysis, and 
the results of the analysis approve the validity and applicability of the proposed approach. Hence, the results 
of the proposed LMAW techniques can be accepted as accurate, reasonable, and reliable. 

The current paper proposes a methodological frame to solve very complicated and time-consuming 
decision-making problems. Also, the proposed LMAW technique can be implemented to solve various 
decision-making problems encountered in many fields and evaluate the suitability of the heavy industry 
branches to digital transformation and using CPS in their production processes. Decision-makers and 
policymakers who try to manage the technological industrialization policies of countries can apply this 
methodological frame in an evaluation process to assess the industries, as it has an efficient and applicable 
basic algorithm. In addition, it can be inspirational for authors who carry out future works on this issue.  

In addition to the methodological implications of the proposed MCDM approach, the paper has some 
valuable managerial implications. The managerial implications of the paper can be summarised as follows.  

• It provides opportunities for prioritizing which branches of the heavy industry should be supported 
and incented primarily for decision-makers and practitioners. Therefore, it can be a practical tool 
for evaluating the branches of heavy industry for suitability of the sectors for digital transformation 
and effectively using CPSs in these industries' production systems.  

• It also presents an applicable, robust, and powerful methodological frame to make self-evaluation 
for their companies comparatively. Thus, decision-makers can apply the proposed model for 
evaluating their companies concerning the property of these companies. 

The LMAW technique proposed in the current paper can be extended with the help of different fuzzy 
MCDM frameworks. Also, new criteria that occur in the future depending on changing industries' 
requirements can be included in the scope of the studies by future studies.  
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Appendix. Linguistic evaluations performed by DMs for the Alternatives 

Alternatives DMs C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Alt.1 DM1 VH H H AL H MH H L VH VL 
DM2 VH VH MH L VH MH H VL VH L 
DM3 H VH H L VH MH H VL H L 
DM4 VH VH H L VH H H AL VH L 
DM5 H VH H AL VH H VH AL VH L 

Alt.2 DM1 MH H MH AL MH MH H L VH M 
DM2 H H VH AL MH H MH VL VH M 
DM3 H MH MH L VH H MH L VH L 
DM4 VH MH VH AL MH VH H L VH L 
DM5 H MH H L H H H L VH L 

Alt.3 DM1 L L VL MH VH M AL VH VH MH 
DM2 L AL VL MH VH MH VL VH H VH 
DM3 VL L AL MH VH H L VH MH VH 
DM4 VL L VL H H L AL VH MH MH 
DM5 L L AL H H VL AL VH MH VH 

Alt.4 DM1 M M MH MH H M MH M H MH 
DM2 M M MH MH H L H H H MH 
DM3 AL MH MH VH H M MH H MH H 
DM4 M MH H MH H L MH M MH H 
DM5 M MH H MH MH L H H H M 

Alt.5 DM1 MH MH M MH VL L H L MH AL 
DM2 MH AL M MH VL M M L MH L 
DM3 MH MH M M L L M L MH L 
DM4 AL MH M M VL L M L H L 
DM5 MH MH M M VL L M L H AL 

Alt.6 DM1 H VH L VH MH H H VH H VH 
DM2 M MH L VH MH H MH VH M VH 
DM3 M MH AL VH MH MH H H VH VH 
DM4 M VH L VH MH MH MH MH VH MH 
DM5 MH MH L VH H H VH VH VH VH 

Alt.7 DM1 VH H VH MH H L MH M H H 
DM2 H H H VH H L H H H H 
DM3 H H VH MH MH M H M MH H 
DM4 MH H H VH H L H M H H 
DM5 MH H H MH H L H L H M 

Alt.8 DM1 MH M MH VH H M MH VH VH MH 
DM2 MH M MH H H M H VH MH VH 
DM3 M L MH VH H VH MH MH H VH 
DM4 M L H VH H M H H VH MH 
DM5 M L MH H VH M MH VH VH MH 

Alt.9 DM1 VH H H VH VH VL M MH H VH 
DM2 VL VH VH H VH VL VL MH H MH 
DM3 VL H VH H H M VL MH MH VH 
DM4 L H VH M H VL VL H MH VH 
DM5 L H VH H H VL M H H H 

 

 

 

 

 

 

 


