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Abstract: This article describes a parametric design and
fabrication workflow influenced by Frei Otto’s form-finding
experiments on soap films. The research investigates minimal
surface geometry by combining physical and digital experi-
ments in a computational framework. Operating on mesh
topology, various parametric design tools and plug-ins in
Rhinoceros/Grasshopper are presented to discuss the transla-
tion of minimal surfaces to flat strips suitable for planar
fabrication using flexible materials. These tools are tested
on a case study to show the automated design and manufac-
ture of double-curved surfaces as double-layered strips run-
ning in perpendicular directions that can be affixed at point
connections for structural stability. The development of the
parametric workflow, material constraints, and stripped fab-
rication of layers are discussed.

Keywords: form-finding, Frei Otto, minimal surface, digital
fabrication, parametric modelling

1 Introduction

Since the 1990s, architectural practice has been trans-
forming rapidly with the development of digital technolo-
gies that introduced computational workflows for advanced
modelling and manufacture of parametric surfaces [1]. A
key subject in this field is the use of parametric tools that
can combine design, optimization, and fabrication of non-
standard geometry through variables, principles, and con-
straints [2,3]. These systems are often driven by various
performance-based criteria ranging between material prop-
erties, structural behaviour, geometric optimization, or
fabrication constraints [4]. As designers are tasked with
developing optimal solutions for various structural, formal,

or geometric problems, the development of computational
workflows that can automate design and manufacture is
becoming an area of growing interest [5].

Current research for the design and manufacture of
parametric surfaces focuses on the physical production
and transformation of materials that establish a feedback
mechanism between design and fabrication [6]. This notion
of digital fabrication is tasked to develop techniques and
tools for the translation of digital geometric information
onto materials that can integrate numerous challenges for
manufacturing. For instance, if a parametric surface is
defined by a boundary condition or topology, then the
subdivision and geometric description of its constituent
parts can be interpreted according to various fabrication
protocols or material constraints [7,8]. The description of
this workflow requires parametric understanding of com-
putational geometry for seamless digital fabrication that
can automate decision-making during design development.

As mathematical descriptions of topology, minimal
surfaces offer a novel connection between parametric
modelling and the physical manufacture of forms [9]. Since
minimal surfaces present zero mean curvature in all direc-
tions, they offer suitable structural candidate forms for
stable architectural structures [10]. This key physical prop-
erty leads one of the pioneering architects of the 20th cen-
tury, Frei Otto, to research novel minimal surface forms
using soap film studies that are documented and translated
into tensile systems [11]. In his method, Otto used analogue
computation using architectural models at different scales
that can be used to translate experimental forms found in
soap films onto other materials and structural systems. This
translation became a point of interest for contemporary
parametric applications on minimal surfaces, where the
digital modelling and fabrication of curved and layered
structures are investigated in diverse materials ranging
from fabric and plastic to concrete formwork [6,8,12].

This article will present a parametric workflow and
case study to discuss an integrated approach for the design,
optimization, and manufacture of minimal surfaces as a
double-layered structure. The development of parametric
tools for the physics-based modelling of minimal surfaces
and their rationalization for digital fabrication will be
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presented using sample forms [13]. As a case study, an
installation project titled “Occa” will be presented as a
parametric application of minimal surfaces constructed
from double-layered strips. The novelty of this study is
the automated parametric translation of minimal surface
mesh geometry as double-layered curved strips that can be
manufactured out of planar flexible materials [6,8,12,14].
Key aspects of the parametric modelling of minimal sur-
faces and their transformation under digital fabrication and
material constraints are discussed with an emphasis on the
performance and construction of curved and layered struc-
tures [15,16].

2 Form-finding in computational
architecture

Recent advancements in architecture and engineering show
extensive interest in the use and development of computa-
tional tools for the design, optimization, and manufacture of
complex structural systems [2,17]. An emerging strategy
among computational designers is the integration of diverse
parametric tools in a dynamic, process-oriented workflow
for the automated production of a range of possibilities for
given problems [7]. More recently, designers began addres-
sing the need for the implementation of custom parametric
design software to provide solutions for multiple design
criteria, optimization protocols, material behaviour, and
structural constraints [3,16]. An area of focus among these
topics is “form-finding” strategies that can be explored
through various computational workflows, emergent
structural systems, and simulation-based constraint sol-
vers [12,14,18]. To achieve this task, architects com-
monly prefer Rhinoceros and Grasshopper tools, while
a physics-based particle solver – Kangaroo – is exten-
sively used for parametric form-finding studies [19].

In architectural design, “form-finding” signifies the use
of a material/mechanical or digital/computational system
to develop the design under various physical, material, or
performance-oriented constraints [3,20]. Historically, this
method has been attributed to the innovative structural
models developed by Gaudi, where the structural config-
uration of a building can be built as a network of hanging
chains in tension that can be directly translated into a
compression model built out of vaults following Hooke’s
law of inversion [21]. During the 20th century, this ana-
logue technique has been expanded by Frei Otto’s innova-
tive physical models where the mechanical behaviour of a
structural system can be tested using scaled models [22].

Today, these form-finding methods are replicated using
digital tools for the design exploration and behaviour ana-
lysis of architectural structures [18].

A common field of interest for form-finding in archi-
tecture is explored on vaults and tensegrity structures.
Computational exploration of compression-only vault forms
acquired via the multi-body rope approach can be simulta-
neously tested through thrust network analysis (TNA) for
structural validation [20]. Parametric exploration of ten-
segrity structures also shows alternative ways to combine
structural members working in compression and tension.
Palmieri et al. showed the development of a tensile-integrity
structural system using arches, cables, and membranes that
can be parametrically explored using T3 tensegrity modules
[23]. These emerging computational processes require digi-
tally integrated workflows combining multiple designs and
analysis tools that are used to simulate structural behaviour
and simultaneously give feedback on design configuration.

In architecture, form-finding experiments have been
associated with the generative modelling of “minimal sur-
faces” due to their differential geometry, novel mathema-
tical description, and generative possibilities [9,24]. One of
the early experimental uses of minimal surfaces can be
found in the work of Frei Otto, who developed soap film
studies for form-finding experiments to develop strategies
for the geometric design of lightweight, tensile, and cable-
net structures [11,25,26]. These structures are often trans-
lated into grid systems that are formed of triangles or
squares, to reduce material cost, waste, and labour. As
new structural systems emerge, the building components
in square and triangular grid systems become more indus-
trialized, prefabricated, and modulated to accommodate
ease of construction and design [27]. Today, non-standard
production of minimal surfaces can be found in contem-
porary digital and bespoke productions with examples of
fabric-based haptic pavilion structures [7], digital fabrica-
tion of cable-net and knitted form-work for concrete shells
[6], computation of concrete shell bridge structures [28],
and shell structures for architectural vaults [8].

Contemporary studies on form-finding design research
present novel digital workflows where multiple parametric
tools are integrated for the computational analysis and
further design development of structures [4,5,15]. Fenu et al.
revisited Musmeci and Nervi’s historical structures, particu-
larly concrete shell bridges to develop form-finding strategies
combining particle-spring system and TNA implementing
both vertical and horizontal forces to analyse structural beha-
viour under seismic loads [28]. Another interest in this area
focuses on combining computer-aided design and computer-
aided engineering methods inside an integrated parametric
framework for design development. In this domain, Basic
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Analysis of Taut Structures presents a custom plug-in devel-
opment to automate the calculation of taut structures and
funicular shells inside Grasshopper to enable a parametric
definition of boundary conditions for form-finding studies [5].
Structural optimization of free-form and multi-layered archi-
tectural envelopes feature complex computational workflows
and often use mesh geometry to develop parametric config-
urations of beams and tension-free nodes [15].

A physical component of form-finding research is its
applicability to materiality and the determination of digital
fabrication tools and processes for the manufacture of
parametric forms [6,8]. These often require developable
surface strategies that can be manufactured out of planar
elements or three-dimensional modular production, the former
offering a cheaper solution, while the latter requiring custom
formwork [4]. A surface-based strategy combining parametric,
mathematical, and physical investigation into the characteris-
tics of origami structures shows the advantage of rule-based
principles using scissor units for deployment strategies [29].
Menges explores the limits and capabilities of robotic manufac-
turing that transform digital models into flexible materials
using woven carbon fibre and wood [3]. With ongoing research
in this domain, form-finding strategies are being integrated
with digital fabrication tools to automatically transformdigitally
acquired geometries onto physical materials where curvature,
flexibility, and structural performance are considered.

3 Frei-Otto and form-finding using
soap films

Frei Otto was one of the pioneering architects of the 20th
century, often recognized for his innovative form-finding
approach towards the design of tensile structures [26]. A
Pritzker winner architect, he founded the Institute for Light-
weight Structures (IL) in Stuttgart, Germany, in 1964, where
he extended his innovative practice and research on natural
forms and material systems. In his research, Otto used phy-
sical form-finding experiments to influence the construction
of scaled physical models that can be built as cable-net,
membrane and lightweight structures [25]. This analogue
methodology offered a precursor to modern computation,
where physical systems were translated onto large-scale
material structures using experiments, photographs, and
scaled models.

Otto’s collaboration with tentmaker Peter Stromeyer
during the 1950s and 1960s resulted in the development of
various form-finding experiments to establish novel strate-
gies for the design and construction of tensile structures [11].

One of these methods used soap films to mimic the physical
behaviour of a pre-stressed and tensioned surface geometry
to find conditions of equilibrium. As a dynamic medium,
soap film uses a rationed mixture of soap, glycerin, sugar,
and water to produce a highly tensile and durable surface in
between various boundary conditions to observe the struc-
tural behaviour of the surface. The resulting “minimal”
surfaces would exhibit equal tensile forces running in all
directions, presenting optimal structural solutions for a
given boundary configuration [9,14].

Otto used minimal surface strategies throughout his
career on various structures such as German Pavilion in
Expo (1967), Munich Stadium (1972), and Mannheim
Multihalle (1974). In Mannheim, he developed a contin-
uous double-layered thin wooden lattice system that can
be adjusted to the double-curved surface geometry. This
“grid shell” structure was formed out of 50 cm × 50 cm
size squares that were interlocked using pin joints enabling
the deformation of square grid cells into rhombi [11]. The
initial design was first developed as an inverted hanging
chain model on a 1:100 scale that was later photographed
and processed to acquire the resting coordinates for grid
nodes. This information enabled further development of
architectural drawings and calculation of the structural
geometry, albeit no mathematical accuracy. This aspect
required the physical structure to be lifted and positioned
in situ where the pin joints were affixed at the calculated
positions to stabilize the gridshell.

Despite having a lack of computational rigour, Otto’s
revolutionary design approach enabled the use of model
building and experimentation as a strategy to document
and translate geometry onto material systems. In his prac-
tice, he was a follower of Hooke’s law of inversion, where a
scaled hanging chain model acting in tension can be trans-
lated into a rigid concrete arch working in compression
[21]. This required the speculative use of material systems,
like soap films, as a means of finding suitable forms of
design, but a further inquiry into the resulting geometry
leads to the deterministic calculation of lightweight struc-
tures in a similar equilibrium [26]. Thus, his contribution
provides two key lessons for the form-finding strategy in
construction: (i) a found form through experimentation
can be directly translated as a geometry input for design
(analogue computation) and (ii) a physical configuration in
equilibrium, such as minimal surfaces in soap film, can be
a guide for another material medium at a different scale,
such as tensile structures made of steel cables and mem-
branes [25]. Today, Otto’s methodology can be replicated
using various computational algorithms where a combina-
tion of abstract mathematical and geometrical models can
be used for digital form-finding experiments.
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4 Minimal surface tectonics

In mathematics, minimal surfaces are surfaces that present
minimum surface area for a given boundary condition.
These surfaces also present zero mean curvature among
all sampled surface points [30]. A common physical example
of the minimal surface is visualized using soap film where
the surface boundary is restricted by a wire dipped into the
solution produced by a mixture of soap, water, sugar, and
glycerin [31]. In this medium, the buoyancy of the film rests
in a temporary state where both compressive and tensile
properties of the solution appear to be balanced.

Classical examples of minimal surfaces include the
plane, the catenoid, and the helicoid. While the catenoid
and the plane are the only minimal surfaces of revolution,
the helicoid and catenoid are conjugated as their coordi-
nate functions are harmonically related [10]. First discov-
ered by Euler in 1741, the catenoid has a minimal surface
with finite topology and two fixed circular ends [32]. This
mathematical analysis was further simplified by Lagrange.
While the minimization and analytic solution of surface
area under a fixed boundary have historically been chal-
lenging for mathematicians, a few surface formulations
have been developed such as the Enneper surface, Scherk’s
surface, and Costa’s minimal surface. In 1970, Schoen dis-
covered the “gyroid,” a triply periodic minimal surface that
also arises naturally in biology and material science due to
its high surface area [33]. Minimal surfaces have since
become a point of interest for the chemical composition
of polymers and self-assembly of complex materials, due to
the spatial infilling capacity while exhibiting symmetrical
properties that are also observed in cellular structures and
crystallography [34].

For continuous treatment of minimal surfaces, the
soap film problem defines the minimal surface area that
can be derived using differential equations. Schwarz pro-
vided the analytical solution for continuous minimum
surfaces that have continuous derivatives for minimal sur-
faces bounded by skew quadrilaterals [35]. For minimal
surfaces that are not analytically solved, Pinkall offered a
method of triangulated discretization of surfaces that are
relaxed using small perturbations on vertex positions [24].
This method offered a real-life approximation of minimal
surface geometry where no closed mathematical expres-
sions can be found. Using this generative toolbox, many
tensile structures and free-form architectural surfaces can
be mathematically modelled where the physical assembly
and use of soap films appear limited [13].

The structural stability of minimal surfaces emerging in
liquid films is affected by the interaction between surface
stresses and the disjoining pressure, which act independently

from each other [36]. This physical property is numeri-
cally analysed for the catenoid minimal surfaces emerging
between two opposite rings separated along a horizontal
axis. As the distance is increased, the catenoid dips
towards the axis of separation, thus minimizing the area
reaching an absolute minimum measurement when the
distance is less than 1.056R, where R is the radius of the
rings. In 1831, Goldschmidt offered a coefficient where the
surface discontinuously jumps to two disconnected planar
discs at a separation ratio of 1.325R, thus providing a dis-
continuous solution for the minimization problem of a sur-
face of revolution [37]. This critical distance has also been
shown through an in situ observation where the maximum
distance between the disks to form a catenoid is defined in
relation to ring radius: hc ≃ 1.33R [38].

5 Methodology

This section will describe a computational workflow for the
design, development, and manufacture of minimal surfaces
using parametric tools. This research is completed as part of
an undergraduate parametric design seminar where students
learned about Frei Otto’s soap film experiments and carried
out analogue and digital experiments to explore minimal
surfaces for the design development and digital fabrication
of an installation project. For the analogue experiments, the
behaviour of soap films under various boundary conditions
defined by metal rods is observed. These are then captured
using a fixed camera and lighting setup to aid the develop-
ment of design forms. For the digital experiments, students
learned about Rhinoceros and Grasshopper tools and plug-ins
oriented towards the production of form-finding strategies
and parametric modelling of minimal surfaces. These plug-
ins featured the physics simulation engine Kangaroo [19],
mesh modeller Weaverbird [39] and mesh topology editor
Stripper [40], and custom Python scripts that automated the
digital fabrication process. These exercises lead to the produc-
tion of an installation project titled “Occa,”which is designed,
manufactured, and built through the use of parametric tools.
The computational process of minimal surface tectonics is
described in the following section.

5.1 Analogue computation: replicating Frei-
Otto’s soap film experiments for form-
finding

The first stage of the project focuses on replicating Frei
Otto’s from-finding experiments using soap films [25].
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Student groups experimented with a liquid mixture com-
posed of various percentages of sugar, soap, water, and
glycerin to develop minimal surfaces in various boundary
conditions. Experiments ranged from surfaces defined by
single metal rods in arbitrary shapes to documenting surface
formations occurring between double or triple boundary con-
ditions. Furthermore, additional metal rods as “spikes” are
used to develop holes bounded by wool thread rings. Each
experiment is captured with a digital camera and diagrammed
to understand how the bounding condition affects the physical
formation of the surface structure (Figure 1).

A common preference among these tests is the use of
rounded boundary conditions that allow for the stable
construction of minimal surfaces. When boundaries with
sharp edges or kinks are used the thin liquid films exhibit
spontaneous failure, preventing continuous observation of
surface construction and stability [37]. To avoid this issue,
circular bounding profiles are preferred to control the con-
sistent physical behaviour and formation of minimal sur-
faces. Another observation is the role of glycerin and sugar
content in the soap filmmixture, both of which improved the
consistency, buoyancy, and durability of surface tension that
enables continuous separation of metal rods and observation
of minimal surfaces [31]. While most of these experiments
are carried out intuitively, controlling the behaviour, dis-
tance, and alignment of boundary conditions is documented
through pictures, which further influenced the general
formal approach to the parametric development of surfaces.

5.2 Digital computation: parametric
modelling of minimal surfaces

The second stage of the project focuses on translating ana-
logue experiments on minimal surfaces as a continuous
parametric model. This process is achieved using mesh
modelling tools in Rhinoceros and parametric modelling
scripts developed in Grasshopper with multiple plug-ins.
A key component in this phase is the role of the physics
engine plug-in Kangaroo, which is used for interactive
simulation, form-finding, and constraint-solving problems
[12,19]. While Kangaroo offers a benchmark tool for form-
finding experiments, coupling this engine with other para-
metric tools for the automated manufacture of minimal
surfaces is explored. A novelty in this approach is the inte-
gration of the Stripper plug-in to rationalize curved mesh
surfaces into strips that can discretize minimal surface
geometry as strips running in perpendicular directions
(U and V) that allow digital fabrication using planar, flex-
ible materials [40]. This workflow is prepared in Grass-
hopper to automate parametric modelling, rationalization,
and fabrication of minimal surfaces.

The first phase of parametric modelling explores the
geometric description of a mesh geometry that can be used
for Kangaroo relaxation simulation. In Figure 2, this work-
flow is visualized using a four-legged mesh topology
parametrically developed from a tetrahedron. Using Grass-
hopper tools, each face of the tetrahedron is scaled down

Figure 1: Various analogue form-finding experiments using soap films and metal rods: (a) vault and hole, (b) folded, (c) vault and bent hole, (d)
triangular prism, (e) opposite holes, (f) flat hole, (g) pulled holes, and (h) catenoid.
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and connected to a smaller tetra located at the centre using
mesh quads defining three mesh quads per face (Figure 2a).
These are then subdivided into smaller quads to increase
mesh vertex and face count for physics-based form-finding
in Kangaroo (Figure 2b). For subdivision, both Catmull-
Clark (Weaverbird) and RefineStrips (Kangaroo) commands
are used and compared [19,39,41]. While the Catmull-Clark
subdivision divides a single quad face into four faces, the
RefineStrips component divides a quad into two faces along
the main curvature direction of the mesh strip. In this
model, the outer strips are oriented towards the open faces
of the mesh topology. After the quad mesh is recursively
subdivided, it is transformed into a mass-spring model
for Kangaroo simulation. During this operation, the outer
edge profiles of the mesh topology are kept fixed to allow
dynamic relaxation of inner quad vertices (Figure 2c). The
coloured mapping of the resulting geometry shows higher
displacement for vertices where mesh topology converges
onto a point (red), compared to shared edges where trans-
formation is mild (yellow), while green quads show the fixed
boundary conditions of minimal surfaces (Figure 2d). This
diagram provides general feedback on how the initial mesh
topology and subdivision are effected by the physics-based
relaxation (form-finding). The next step is to transform the
resulting mesh quads into linear strips organized in two
directions of curvature using Stripper tools [40]. These are
visualized using black andwhite colours. The black coloured
inner strips follow the U direction of quad mesh that are

defined as “rings” running perpendicular to the mesh
topology, while the white-coloured outer strips follow
the V direction connecting minimal surface open faces
(Figure 2e). Same colour strips in both directions are
offset from each other to leave gaps, while opposite colour
strips are offset along the mesh normals to separate and
stack black and white layers. This protocol establishes a
double-layered parametric construction of a minimal sur-
face developed from a mesh topology.

The following steps of the parametric workflow also
include a custom script written in Python that places a tag
onto each unique strip running along the topology in U and V
directions (Figure 2f) and unroll each mesh strip as a planar
boundary representation for laser cutting (Figure 2g). The
final geometry of the strips also requires the computation
of rivet joint locations that specify connections for black (U)
and white (V) strips. The location of these holes is computed
using the base mesh geometry to populate circular holes that
are perpendicular to the surface. These are subtracted from
the strips using cylinders to calibrate hole positions before
unrolling geometry. This operation both automates the part
generation and accurately marks the hole positions on each
strip using material thicknesses.

Figure 3 shows a detailed generation of strips using
mesh geometry. During subdivision, each mesh quad face
is recursively divided into four faces using the Catmull-
Clark algorithm. The resulting mesh faces have consistent
edge and vertex orders that can be traversed in

Figure 2: Parametric workflow of form-finding experiments in Grasshopper combining multiple plug-ins using a sample four-legged node.
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perpendicular directions using the Stripper plug-in. With
this tool, the V directions of the mesh topology can be
extracted by connecting even edges of mesh faces (0–2),
while the U directions connect odd edges (1–3). Both direc-
tions can be extracted as new mesh strips that be layered
and offset according to material thicknesses for the digital
fabrication of minimal surfaces.

Figure 4 shows the parametric modelling of various
minimal surface samples based on analogue experiments
from Figure 1 and other subsets of triply periodic minimal
surfaces such as gyroid and six-legged node – a subset of
Schwarz P surface. In every sample, the mesh topology is
generated using quad mesh faces that are recursively sub-
divided using the Catmull-Clark subdivision by averaging
neighbouring points to maintain surface topology while
adding more faces in the form of algebraic expression
[41]. This mesh is then used in the Kangaroo plug-in to
develop minimal surfaces where the naked boundary edges
of the meshes are kept fixed. In the final step, the minimal
surfaces are transformed into double-layered strips running
in perpendicular directions.

This parametric workflow poses some restrictions for the
design exploration of minimal surfaces suitable for digital fab-
rication. The stripped discretization of meshes requires quad
faces as triangular faces do not provide perpendicular UV
strips and consistency on edge loop calculation. Among the
sampled forms in Figure 3, meshes containing vertices with
an odd number (3 or 5) of neighbouring faces show disconti-
nuity in strips (folded, pulled holes, opposite holes), whereas

vertices with an even number of adjacent faces (4 or 6) show
consistency and continuous layering of strips (gyroid, 4-
legged node, and catenoid). As the strips need to run continu-
ously in perpendicular directions, this aspect restricts the
mesh topology to an even number of adjacent face counts
per vertex. Furthermore, the quad count in themesh topology
also becomes a focus of optimization for material and joints
since each quad features a single joint connecting black and
white strips. Additional remarks on key aspects of digital
fabrication are discussed using the production of a case study
below.

5.3 Physical computation: digital fabrication
of doubly curved surfaces in strips and
layers

This section discusses the digital fabrication of an installa-
tion project titled “Occa” using this parametric workflow
on minimal surfaces. The design of the project stems from
preliminary research on polyhedra geometries that are
used for the parametricmodelling ofmeshes and its form takes
inspiration from glass sponges documented by Haeckel et al.
(1998). For the installation, a branching topology defined by the
packing and shared edges of four dodecahedrons is used
(Figure 5a). This symmetrical topology is defined through
four-legged connections that form a closed pentagonal ring
in the middle. This line network is then transformed into a

Figure 3: Subdivision and strip generation of mesh geometry.
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Figure 4: Parametric modelling of minimal surfaces using various samples. Back faces of meshes are shown in grey. Strips are shown in white and
black.

Figure 5: Parametric modelling workflow using Weaverbird, Kangaroo, and Stripper tools for the production of the case study.
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subdivision surface using Rhinoceros native SubDMultiPipe
command that transforms the four-legged node network into
a mesh surface of quads (Figure 5b). The pipe function is con-
trolled using a thickening radius that calculates a hollow tub-
ular topology with open faces located at the end of open
branches. The resulting structure has 8(V) × 4(U) quad faces
per branch defining octagonal profiles along the topology.
Then, each strip is first subdivided using the Catmull-Clark
subdivision in Grasshopper to acquire 16(V) × 4(U) quads per
branch to increase the vertex count required for the accurate
computation of minimal surface using Kangaroo simulation
(Figure 5c) [42]. This decision also allows for the optimization
of total strips and rivet joints while developing a physical
model that accurately captures the design topology.

The next phase of the project focuses on the digital
fabrication of black and white strips running in perpendi-
cular directions along the structure (Figure 5d). A geo-
metric property of the design is the placement of four black
strips in each branch of the topology, while 16 white strips
connect multiple branches. This decision allows for the
reduction of joints and total pieces per branch as black
strips remain hidden inside the structure. In total, the
structure is composed of 84 black strips running perpendi-
cular to surface topology, all of which are connected end to
end to form closed rings, and 112 open-ended white strips
that are attached externally to black rings. A total of 1,344
rivet joints are shared between layered white and black
strips, while no connection between the same coloured
strips occurs. To place either coloured strip in the correct

order along the structure, it needs to be connected to the
opposing colour strip, black strips acting as a connector for
white strips, and vice versa.

Figure 6 shows a diagram of rivet joints for double-
layered strips calculated on resulting minimal surfaces.
The mesh is defined through quad panels formed by
groups of four vertices (Pi, Pj, Pk, and Pm) that are used
for the calculation of U and V strips running in perpendi-
cular directions using Stripper. The same quadmesh points
also act as inputs for the mass-spring model in Kangaroo,
where every edge of mesh faces is converted into a spring
that is relaxed for form-finding. Every quad face holds a
single connection between black (U) and white (V) strips.
The centre (C) of this rivet hole is computed by taking the
average geometric location of four vertices and projecting
the point onto the mesh surface. The vector direction (R) is
the perpendicular face normal of the mesh face. These
centre points and vectors are used to model a cylinder
with the radius of rivets protruding through strips to sub-
tract a circular hole on each mesh face before unrolling
and grouping operations. This operation enables the accu-
rate calculation of rivet joints and alignment for layered
digital fabrication of minimal surfaces (Figure 7).

The material selected for the construction of the pro-
ject is 3 mm thick PVC sheets ordered in two colours (black
and white) that are suitable for laser cutting. A key prop-
erty of this plastic material is its flexibility and durability
that when connected in the form of a ring provides rigidity
to the structure. During the digital fabrication process,

Figure 6: Details of calculation of strips and holes using mesh geometry.
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white and black strips are laid out on sheets, laser-cut, and
organized in groups. The structure presents white strips
that do not fit into the production bay of the used CNC
(100 cm × 160 cm), which are segmented and connected
with additional end-to-end joints. Before the installation,
all the pieces are joined into four pre-assembly groups in
the fabrication laboratory to allow separate transportation
and assembly at the final location of the installation.

Before the final assembly of the installation, the struc-
ture is temporarily kept in suspension to allow the connec-
tion of pre-assembled groups using rivets (Figure 8). During
this process, the installation acquired durability and stabi-
lity as more pieces and rivets are connected showing the
structural performance of double-layered fabrication. The
structure is then lifted in place and suspended from four
connections to the steel beams located in space using steel
cables running along two channels going through the topology
(Figure 9). Due to the balancing weight and symmetry of the
structure, four cable connections sufficed to hang and balance
the installation. The structure is placed in an exhibition space
with archaeological remains that can be seen from all sides
and a glass ceiling (Figure 10).

Figure 7: Construction of a part of the installation showing alignment
and connection of black and white strips using rivet guns.

Figure 8: Connecting white and black strips on suspended installation
using rivet gun.

Figure 9: Suspension of installation.
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6 Conclusion

This study presented a computational workflow for the
parametric modelling and digital fabrication of minimal
surfaces by integrating Rhinoceros and Grasshopper tools.
The overall aim and novelty of the research are to develop
an automated parametric workflow for the geometric ratio-
nalization and transformation of minimal surface geometry
into double-layered curved strips. This method can be used
for the construction of minimal surfaces as mesh topology
defined out of quads faces. While parametric modelling of
minimal surfaces is a well-documented area of research
[6,8,12,14] the transformation and rationalization of curved
surface geometry for digital fabrication require topology
optimization and consideration for material behaviour
and performance [2,16,20]. These aspects are tested and
shown using an installation project as a case study, where
the surface topology is transformed into flexible linear
strips built out of laser-cut PVC strips that are connected
using aluminium rivets.

Revisiting Frei Otto’s form-finding technique on soap
films within the digital age brings up novel challenges to
the parametric design and fabrication of curved structures.
This research project extended an analogue technique
towards a computational workflow that presents a novel
application of minimal surface geometry as double-layered
and curved structural construction. This protocol is addressed
with the use of strips running in perpendicular directions
along mesh topology with black (U) strips and outer white
(V) strips that are connected at single rivet joints on mesh
faces. While this aspect of fabrication poses challenges for the

part identification, rivet alignment, and overall construction
of strips, the minimal surface geometry offers a guiding
topology for intuitive fabrication as single rivet joints auto-
matically align when certain adjacent pieces are fixed in
place. This shows that a historical perspective on developing
a physical and intuitive approach based on Hooke’s law can
be replicated, simulated, and advanced with computational
tools in contemporary digital practice.

One of the key learning outcomes of this research
shows the potential of using consistent mesh topologies
that can be rationally divided into rings or linear strips
using edge loops. To achieve this, Rhinoceros subdivision
tools are used to transform line networks into meshes
made of quads. Transforming minimal surfaces into mesh
topology offers both consistent subdivisions of surfaces and
parametric extraction of strips that follow boundary edge
loops. This topological property led the research to focus on
structures that are formed out of four-legged joints, which
are suitable for parametric translation into strips. These
structures can be extracted from various polyhedra
parametrically or built using line networks that can be
transformed into subdivision surfaces in Rhinoceros/
Grasshopper. While this approach shows the potential
parametric exploration of minimal surface topologies,
inquiries into alternative subdivision methods, the inclusion
of triangular faces for mesh topologies, and the application
of other materials for constructions are defined as avenues
of future research.
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