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Abstract. Nuclear level densities are necessary input to the Hauser-Feshbach theory of

compound nuclear reactions. However, the microscopic calculation of level densities

in the presence of correlations is a challenging many-body problem. The configuration-

interaction shell model provides a suitable framework for the inclusion of correlations and

shell effects, but the large dimensionality of the many-particle model space has limited

its application in heavy nuclei. The shell model Monte Carlo method enables calcula-

tions in spaces that are many orders of magnitude larger than spaces that can be treated

by conventional diagonalization methods and has proven to be a powerful tool in the mi-

croscopic calculation of level densities. We discuss recent applications of the method in

heavy nuclei.

1 Introduction

Level densities play an important role in the Hauser-Feshbach theory [1] of compound nuclear re-

actions, but are not always accessible by direct measurements. The calculation of level densities in

the presence of correlations is a challenging many-body problem. Most approaches are based on

empirical modifications of the Fermi gas formula or on mean-field approximations [2] that can of-

ten miss important correlations. The configuration-interaction (CI) shell model approach accounts for

correlations, but conventional diagonalization methods are limited to spaces of dimensionality ∼ 1011.

The dimension of the many-particle model space increases combinatorially with the numbers of va-

lence nucleons and single-particle orbitals, hindering applications of the CI shell model approach to

mid-mass and heavy nuclei.

The auxiliary-field quantum Monte Carlo method, also known in nuclear physics as the shell

model Monte Carlo (SMMC) method [3–6], enables microscopic calculations in spaces that are many

orders of magnitude larger (e.g., ∼ 1030 in recent applications to rare-earth nuclei) than those that can

be treated by conventional methods.

ae-mail: yoram.alhassid@yale.edu

 

 
DOI: 10.1051/02001 (2016),2 epjconf/2016EPJ Web of Conferences 12 1220

CNR*15

2001

 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative  Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/). 

mailto:yoram.alhassid@yale.edu
http://creativecommons.org/licenses/by/4.0/


The outline is as follows. In Sec. 2 we briefly review the SMMC method. In Sec. 3 we discuss

the emergence of collectivity in heavy nuclei within the framework of the CI shell model. In Sec. 4

we present results for the state densities in families of lanthanide isotopes and find them to be good

agreement with experimental data. In Sec. 5 we benchmark finite-temperature mean-field approxima-

tions to level densities by comparing them with SMMC state densities. In Sec. 6 we discuss nuclear

deformation in the CI shell model. Deformation is an important concept for understanding heavy nu-

clei but it is usually introduced in a mean-field approximation that breaks rotational symmetry. Here

we discuss how the intrinsic quadrupole deformation distributions can be derived in a framework that

preserves rotational symmetry. We conclude in Sec. 7.

2 Shell model Monte Carlo method

2.1 Hubbard-Stratonovich transformation

The SMMC method is based on the Hubbard-Stratonovich (HS) transformation [7], in which the

Gibbs ensemble e−βĤ at inverse temperature β = 1/T for a nucleus described by an Hamiltonian Ĥ
can be viewed as an imaginary-time propagator and written as a functional integral over propagators

of non-interacting particles in external time-dependent auxiliary fields σ(τ)

e−βĤ =
∫
D[σ]GσÛσ . (1)

Here Gσ is a Gaussian factor and Ûσ is a many-particle propagator for non-interacting particles for a

given configuration of the auxiliary fields. The thermal expectation value of observable Ô is given by

〈Ô〉 = Tr (Ôe−βĤ)

Tr (e−βĤ)
=

∫ D[σ]Wσ〈Ô〉σΦσ∫ D[σ]WσΦσ
, (2)

where Wσ = Gσ|Tr Ûσ| is a positive-definite function, Φσ = Tr Ûσ/|Tr Ûσ| is the Monte Carlo sign

function and 〈Ô〉σ ≡ Tr (ÔÛσ)/Tr Ûσ. The grand canonical traces in the integrands of Eq. (2) can

be calculated in terms of the single-particle representation Uσ (an Ns × Ns matrix, where Ns is the

number of single-particle orbitals) of Ûσ. The trace of Ûσ is given by

Tr Ûσ = det(1 + Uσ) , (3)

while the grand canonical expectation value of a one-body operator Ô =
∑

i, j Oi ja
†
i a j is given by

〈a†i a j〉σ ≡
Tr (a†i a jÛσ)

Tr Ûσ
=

[
1

1 + U−1
σ

]
ji
. (4)

The grand canonical expectation value of a two-body observable can be calculated using Wick’s the-

orem.

2.2 Canonical projection

In the finite nucleus it is important to consider the canonical ensemble of fixed number of protons

and neutrons. The particle-projected partition function for A particles is given by a discrete Fourier

transform [8]

TrAUσ =
e−βμA

Ns

Ns∑
m=1

e−iϕmA det
(
1 + eiϕm eβμUσ

)
, (5)
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where ϕm = 2πm/Ns (m = 1, . . . ,Ns) are quadrature points and μ is a chemical potential introduced

to stabilize the numerical evaluation of the Fourier sum. Similarly for a one-body observable Ô =∑
i, j Oi ja

†
i a j

TrA
(
ÔÛσ

)
=

e−βμA

Ns

Ns∑
m=1

e−iϕmA det
(
1 + eiϕm+βμUσ

)
tr

(
1

1 + e−iϕm−βμU−1
σ

O
)
, (6)

where O is the matrix with elements Oi j.

2.3 Monte Carlo sampling

In SMMC we choose a set of uncorrelated auxiliary-field configurations σ(k) from the positive-definite

weight function Wσ. The expectation value of an observable in Eq. (2) is then estimated from

〈Ô〉 ≈
∑

k〈Ô〉σ(k)Φσ(k)∑
k Φσ(k)

(7)

The statistical error of 〈Ô〉 can be estimated from the variance of the “measurements” 〈Ô〉σ(k) .

3 Collectivity in heavy nuclei in the CI shell model

The single-particle model space we use for rare-earth nuclei is com-

posed of the orbitals 0g7/2, 1d5/2, 1d3/2,2s1/2, 0h11/2, 1 f7/2 for protons and

0h11/2, 0h9/2, 1 f7/2, 1 f5/2, 2p3/2, 2p1/2, 0i13/2, 1g9/2 for neutrons. The single-particle levels are

taken from a Woods-Saxon potential plus a spin-orbit interaction. The interaction includes attractive

monopole pairing plus attractive multipole-multipole terms with quadrupole, octupole and hexade-

cupole components. The interaction parameters are determined empirically as discussed in Refs. [9]

and [10].

Quantum Monte Carlo methods are often limited by the so-called sign problem, which leads to

large statistical errors. However, the dominant components of effective nuclear shell model interac-

tions [11] have a good sign (in the grand canonical ensemble) and are usually sufficient for realistic

calculations of statistical and collective properties of nuclei. Small bad sign components of the inter-

action can be treated using the extrapolation method of Ref. [4]. The interaction discussed above has

a good Monte Carlo sign in the grand canonical ensemble and the sign remains good in the canonical

ensemble for even-even nuclei. For even-odd nuclei there is a moderate sign problem at high and

intermediate temperatures that becomes more severe at low temperatures [12].

Heavy nuclei are known to exhibit various types of collectivity that are well described by empirical

models. An important question is whether such collectivity, and, in particular, rotational collectivity,

can be described in a truncated spherical shell model approach. Various types of collectivity are

usually identified by their characteristic spectra of low-lying states. However, it is a challenge to

obtain detailed spectroscopic information in SMMC. We found that the type of collectivity can be

characterized by the low-temperature behavior of the thermal observable 〈J2〉T , where J is the total

angular momentum of the nucleus. For an even-even nucleus, we find (at low temperatures)

〈J2〉T ≈
⎧⎪⎪⎪⎨⎪⎪⎪⎩

30 e−E2+ /T

(1−e−E2+ /T )
2 vibrational band

6
E2+

T rotational band
, (8)

where E2+ is the excitation energy of the lowest 2+ level.
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In Fig. 1, we show the low-temperature behavior of 〈J2〉T vs. T for 162Dy (left panel) and 148Sm

(right panel). The results are consistent with 162Dy being a rotational nucleus, and 148Sm a vibrational

nucleus (see figure caption for details).
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Figure 1. Left panel: 〈J2〉T vs. T for 162Dy. The SMMC results (solid circles) fit well the rotational model

(solid line) but not the vibrational model (dashed-dotted line). Adapted from Ref. [9]. Right panel: 〈J2〉T vs. T
for 148Sm are in better agreement with the vibrational model (solid line) than the rotational model (dashed line).

Taken from Ref. [13].

3.1 Crossover from vibrational to rotational collectivity
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Figure 2. 〈J2〉T vs. T for a family of even-even neodymium isotopes 144−152Nd. The SMMC results (open circles)

are compared with results extracted from experimental data (solid lines, see text).

The observable 〈J2〉T can also be used to describe the crossover from vibrational to rotational col-

lectivity a family of isotopes. Fig. 2 shows this observable vs. T in a family of even-even neodymium

isotopes. We observe a crossover from a soft response to temperature in the vibrational nucleus 146Nd

to a rigid behavior in the rotational nucleus 152Nd. The solid lines are determined from experimental

data using

〈J2〉T = 1

Z(T )

⎛⎜⎜⎜⎜⎜⎝
N∑
i

Ji(Ji + 1)(2Ji + 1)e−Ei/T +

∫ ∞

EN

dEx ρ(Ex) 〈J2〉Ex e−Ex/T

⎞⎟⎟⎟⎟⎟⎠ , (9)
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where the partition function Z(T ) is

Z(T ) =

N∑
i

(2Ji + 1)e−Ei/T +

∫ ∞

EN

dExρ(Ex)e−Ex/T . (10)

The summations in Eqs. (9) and (10) are over a complete set of experimentally measured levels with

energies Ei and spins Ji up to an energy of EN . Above EN we use a back-shifted Fermi gas level

density ρ(Ex) with parameters determined from level counting at low excitation energies and neutron

resonance data at the neutron separation energy.

4 State densities in lanthanide isotopes

SMMC has been a powerful method for calculating state densities in the presence of correla-

tions [9, 10, 14–18]. In SMMC we calculate the canonical energy vs. inverse temperature β as an

observable Ec(β) = 〈Ĥ〉. The canonical partition function Zc(β) is then determined by integrating the

thermodynamic relation Ec(β) = −∂ ln Zc/∂β. The level density is related to the partition function by

an inverse Laplace transform

ρ(E) =
1

2πi

∫ i∞

−i∞
dβ eβEZc(β) . (11)

The average state density is obtained by calculating Eq. (11) in the saddle-point approximation [19]

ρ(E) ≈
(
2π

∣∣∣∣∣∂E∂β
∣∣∣∣∣
)−1/2

eS c(β) , (12)

where S c(E) = ln Zc + βEc is the canonical entropy. The inverse temperature β is determined as a

function of E from the saddle-point condition Ec(β) = E.

In Fig. 3 we show the SMMC state densities (open circles) in families of even-mass samarium and

neodymium isotopes. They are in good agreement with level counting data at low excitation energies

(histograms) and neutron resonance data (triangles) [21] when available.

5 Mean-field approximations to level densities

In SMMC we take into account all correlations within the CI shell model space. However, these

calculations are computationally intensive and it is interesting to determine the accuracy of mean-

field approximations to level densities. Recently we used SMMC level densities to benchmark finite-

temperature mean-field approximations to level densities in a strongly deformed nucleus 162Dy and in

a spherical nucleus 148Sm with a strong pairing condensate [22].

A finite-temperature mean-field theory such as the Hartree-Fock (HF) and the Hartree-Fock-

Bogoliubov (HFB) approximations work in the grand canonical ensemble while the SMMC calcu-

lations are canonical with fixed numbers of protons and neutrons. It is therefore necessary to carry

out an approximate particle-number projection in the mean-field theory and this is usually done in the

saddle-point approximation. The saddle-point approximation leads to a three-dimensional Jacobian∣∣∣∂(E,Np,Nn)/∂(β, αp, αn)
∣∣∣ (where αp/β and αn/β are chemical potentials for Np protons and Nn neu-

trons) as a pre-exponential factor to the level density. We carried out this calculation in two steps;

in the first step we evaluated the particle-number projection by a saddle-point approximation with

respect to αp and αn, and in a second step we evaluated the canonical to micro-canonical integration
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Figure 3. State densities in even-mass samarium 148−154Sm and neodymium isotopes 144−152Nd. The SMMC

results (solid circles) are compared with experimental data: level counting at low excitation energies (histograms)

and neutron resonance data (triangles) [21]. The solid lines were computed using the empirical back-shifted

Fermi gas formula with parameters determined from the experiments. Adapted from Refs. [10] and [20]

in (11) by a saddle point approximation with respect to β. The level density is then approximated by

Eq. (12) in which the canonical entropy is

S c(β,Np,Nn) = S gc − ln ζ + βδE . (13)

with S gc being the grand canonical entropy. Here ζ is given by

ζ = 2π

∣∣∣∣∣∣
∂(Np,Nn)

∂(αp, αn)

∣∣∣∣∣∣
1/2

, (14)

and αp, αn are determined by the 2-D saddle-point conditions Ni = ∂ ln Zgc/∂αi (i = p, n). The

correction βδE with δE = −d ln ζ/dβ is absent in the usual 3-D saddle-point approximation.

5.1 Entropies

162Dy is a deformed nucleus with a weak pairing condensate and the appropriate mean-field theory is

the finite-temperature HF approximation. 148Sm on the other hand is a spherical nucleus with strong

pairing condensate, and the appropriate mean-field theory is the finite-temperature HFB approxima-

tion. In Figs. 4 and 5 we show the various entropy functions vs. β for 162Dy and 148Sm, respectively.

The saddle-point approximation to particle-number projection breaks down when the particle-

number fluctuations are small. This happens in 162Dy using the HF approximation for β above

∼ 5 MeV−1. We then replace the saddle-point expression by a discrete Gaussian approximation

discussed in Ref. [22]. In this approximation, ζ → 1 at large β values, and the entropy (13) van-

ishes approximately in this limit. In SMMC, the entropy at low temperatures (that are still above

∼ 0.05 MeV) is finite and is well described by the contribution from the ground-state rotational band

S rot = 1 + ln
(
IgsT/�2

)
.
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Figure 4. Entropy vs. inverse temperature

β in 162Dy. The SMMC entropy (solid

circles) is compared with the grand

canonical HF entropy (dashed line), the

approximate canonical entropy defined in

Eq. (13) (solid line), and the approximate

canonical entropy obtained in the 3-D

saddle-point approximation without the

βδE correction (dashed-dotted line). The

calculations use the discrete Gaussian

approximation [22]. The inset shows the

large β values. Adapted from Ref. [22].
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Figure 5. Entropy vs. inverse temperature

β in 148Sm. The SMMC entropy (open

squares) is compared with entropies

obtained in the HFB approximation. The

convention for the lines is as in Fig. 4

except that we use the finite-temperature

HFB approximation. Taken from

Ref. [22].

In 148Sm we use the HFB approximation, in which the pairing condensate violates particle-number

conservation and we find a negative approximate canonical entropy at low temperatures.

5.2 Level densities

Here we benchmark the finite-temperature mean-field level densities in comparison with the SMMC

densities. The SMMC results are exact (up to statistical errors) for our model Hamiltonian except for

the saddle-point approximation (12), which is also used in the finite-temperature mean-field approx-

imations. In Fig. 6 we show the SMMC state density of 162Dy in comparison with the approximate

canonical HF level density. We observe a large enhancement of the SMMC state density in compari-

son with the HF density that eventually disappears in the vicinity of the shape transition energy. The

HF density measures the density of intrinsic states while SMMC includes also rotational bands that

are built on top of the intrinsic band heads, hence the observed enhancement. A simple model that

estimates the contribution of rotational bands [23], leads to overestimating the SMMC density around

the neutron separation energy. Assuming a spin cutoff model [24] for the spin distribution with rigid-

body moment of inertia gives a mean level spacing of D = 0.5 eV for the s-wave resonances. The

SMMC result of D = 2.4 ± 0.3 eV is consistent with the experimental result of D = 2.4 eV [21].
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The single-particle HF spectrum at the neutron separation energy is similar to the ground-state HF

spectrum and a frozen potential model in which the single-particle spectrum is fixed (and taken from

HF at T = 0) gives a good approximation for the HF density at the neutron separation energy.
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Figure 6. State densities vs. excitation

energy Ex in 162Dy. The SMMC state

density (solid circles) is compared with

the HF density calculated from (12) using

the approximate canonical entropy

defined in Eq. (13) (solid line), and the

approximate level density obtained

without the δE correction in the

approximate energy and canonical

entropy (dashed-dotted line). The inset

shows lower values of the excitation

energy. Taken from Ref. [22].

In Fig. 7 we compare the SMMC state density of 148Sm with the HFB results. For the neutron

resonance spacing we find the HFB value of D = 4.1 eV to be in good agreement with SMMC value

of D = 3.7 eV and the experimental value of D = 5.7 eV. The neutron separation energy of ∼ 8.2
MeV is above the pairing transition where the HFB approximation reduces to the HF approximation

and the HFB just resets the scale of the ground-state energy by the pairing correlation energy. This

provides some justification to the back-shifted Fermi gas model.
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Figure 7. State densities vs. excitation

energy Ex in 148Sm. The SMMC state

density (open squares) is compared with

the HFB density calculated from (12)

using the approximate canonical entropy

defined in Eq. (13) (solid line), and the

approximate level density obtained when

ζ is calculated from particle-number

fluctuations (dotted line) [22]. The inset

shows lower values of the excitation

energy. Taken from Ref. [22].

6 Nuclear deformation in the CI shell model

The modeling of dynamical nuclear processes, such as fission, often requires knowledge of the level

density as a function of deformation [25]. Nuclear deformation, however, is a concept introduced in

the framework of a mean-field approximation that breaks rotational invariance of the nuclear Hamil-

tonian. The challenge is to study nuclear deformation and calculate statistical properties of nuclei
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as a function of deformation in an approach that preserves rotational invariance, such as the CI shell

model.

Here we focus on the quadrupole deformation. In Sec. 6.1 we discuss the distribution of the axial

quadrupole operator in the laboratory frame and show that it provides a model-independent signature

of nuclear deformation [26]. In Sec. 6.2 we describe how we can calculate the distribution of the

intrinsic quadrupole deformation within a framework that preserves rotational symmetry.

6.1 Quadrupole distributions in the laboratory frame

The axial quadrupole operator Q̂20 =
∑

i

(
2z2

i − x2
i − y2

i

)
does not commute with the Hamiltonian Ĥ.

Its distribution PT (q) in the laboratory frame at temperature T is given by

PT (q) =
∑

n

δ(q − qn)
∑

m

〈q, n|e,m〉2e−βem , (15)

where |q, n〉 are eigenstates of Q̂20 satisfying Q̂20|q, n〉 = qn|q, n〉 and similarly for |e,m〉. The spectrum

of Q̂20 in the truncated CI shell model is discrete.

6.1.1 Axial quadrupole projection

The distribution PT (q) can be calculated in SMMC using its Fourier representation

PT (q) ≡
Tr

[
δ(Q̂20 − q)e−βĤ

]
Tr e−βĤ

=

∫ ∞
−∞

dϕ
2π

e−iϕq Tr
(
eiϕQ̂20 e−βĤ

)
Tr e−βĤ

(16)

together with the HS representation (1). In practice we use a discretized version of the Fourier trans-

form, in which the interval [−qmax, qmax] is divided into 2M+1 intervals of lengthΔq = 2qmax/(2M+1).

For a given configuration σ of the auxiliary fields, we have

Tr
[
δ(Q̂20 − q)Ûσ

]
≈ 1

2qmax

M∑
k=−M

e−iϕkqm Tr(eiϕk Q̂20 Ûσ) , (17)

where qm = mΔq (m = −M, . . . ,M) and ϕk = πk/qmax (k = −M, . . . ,M) are quadrature points.

Since Q̂20 is a one-body operator we can use the group property to represent the Fock space

operator eiϕk Q̂20 Ûσ in the single-particle space by an Ns × Ns matrix eiϕkQ20 Uσ, where Q20 is the axial

quadrupole matrix in the single-particle space. In analogy with Eq. (3), the grand canonical traces in

Eq. (17) are given by

Tr(eiϕk Q̂20 Ûσ) = det
(
1 + eiϕkQ20 Uσ

)
. (18)

6.1.2 Results

In Fig. 8 we show the distributions PT (q) calculated with SMMC for 154Sm at three temperatures. At

a low temperature (T = 0.1 MeV) close to the ground state, the distribution is skewed and it becomes

Gaussian like at high temperatures (see, e.g., at T = 4 MeV). At T = 0.1 MeV the distribution is in

good qualitative agreement with that of a prolate rigid rotor with an intrinsic quadrupole moment equal

to the value found in the ground-state HFB solution (dashed line). The intermediate temperature of

T = 1.2 MeV is close to the shape transition temperature in HFB from a deformed to spherical shape.

This distribution is still skewed, suggesting that deformation effects survive above the mean-field

shape transition temperature.

In Fig. 9 we show such distributions PT (q) for 148Sm. In HFB, this nucleus is spherical in its

ground-state solution, and we observe a Gaussian-like distribution already at the low temperature of

T = 0.1 MeV. We conclude that PT (q) is a model-independent signature of deformation.
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Figure 8. Axial quadrupole distributions PT (q) in the laboratory frame for 154Sm at three temperatures.
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Figure 9. Axial quadrupole distributions PT (q) in the laboratory frame for 148Sm at three temperatures.

6.2 Quadrupole distributions in the intrinsic frame

The quadrupole deformation is described by a second-rank tensor with spherical components q2μ

(μ = −2, . . . , μ). In the intrinsic frame, characterized by a set of Euler angles Ω, the deformation

parameters are denoted by β, γ. Information on β, γ can be obtained from the expectation values of

rotationally invariant combinations of the quadrupole tensor, known as quadrupole invariants [27].

The distribution PT is invariant under rotations and therefore in the intrinsic frame it depends only on

β, γ. We expand − ln PT (β, γ) in the quadrupole invariants. These invariant are unique up to fourth

order and are given by β2, β3 cos(3γ) and β4. To this order we have

− ln PT (β, γ) = N + Aβ2 − Bβ3 cos 3γ +Cβ4 + . . . , (19)

where A, B,C are temperature-dependent parameters and N is a normalization constant. We can deter-

mine A, B,C from the expectation values of the above three invariants, which in turn can be calculated

from the moments of Q̂20 in the laboratory frame [26]

〈Q̂ · Q̂〉 = 5〈Q̂2
20〉 ; 〈(Q̂ × Q̂) · Q̂〉 = −5

√
7

2
〈Q̂3

20〉 ; 〈(Q̂ · Q̂)2〉 = 35

3
〈Q̂4

20〉 . (20)

The moments of Q̂20 in Eq. (20) can be directly calculated from the SMMC distributions PT (q). The

expressions for the expectation values of the invariants in terms of PT (β, γ) in Eq. (19) requires the
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metric
∏
μ dq2μ, which in the intrinsic frame parameters is given by

∏
μ

dq2μ =
1

2
β4| sin 3γ| dβ dγ dΩ (21)

with β ≥ 0 and 0 ≤ γ ≤ π/3. To test the accuracy of the expansion (19), we expressed the invariants

in terms of q2μ in the laboratory frame and integrated over q2μ for all μ � 0 to find the marginal

distribution PT (q20). We found this marginal distribution to be essentially indistinguishable from the

SMMC distribution PT (q).

In Fig. 10 we show − ln PT (β, γ = 0) as a function of β for 154Sm at three temperatures. We observe

that these curves mimic the deformed to spherical shape transition in the Landau mean-field theory

of shape transitions [28, 29], in which the quadrupole tensor q2μ is the order parameter. However, the

curves here are calculated within the CI shell model approach that preserves rotational symmetry.
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-0.3  0  0.3
β

T = 1.19 MeV

-0.3  0  0.3
β

T = 0.25 MeV

Figure 10. − ln PT (β, γ = 0) in Eq. (19) as a function of axial deformation β for 154Sm at three temperatures. The

parameters A, B,C are determined from the expectation values of the three lowest-order quadrupole invariants.

The quadrupole distributions PT (β, γ) can in principle be converted to level densities ρ(Ex, β, γ)
as a function of intrinsic deformation by using the saddle-point approximation.

7 Conclusion

The SMMC method is a powerful method to calculate statistical and collective properties of nuclei

in very large model spaces in the presence of correlations. We discussed recent applications of the

method in heavy nuclei for identifying various types of collectivity and for calculating state densities.

We also studied the SMMC distributions of the axial quadrupole operator in the laboratory frame

and showed that they provide model-independent signatures of deformation. Finally we outlined a

method to determine the quadrupole distributions in the intrinsic frame using the rotationally invariant

framework of the CI shell model. This method can be used to determine level densities as a function

of intrinsic deformation.
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