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Abstract. By applying the particle-number projection to the finite-temperature BCS the-

ory to the state densities in the rare-earth nuclei and comparing its results to the SMMC

ones, we investigate effects of the particle-number conservation on the collective en-

hancement factor for the state densities. Once we restore the particle-number conser-

vation, the rapid decay of vibrational enhancement disappears. This suggests that the

vibrational collectivity may survive up to higher energy and the relevant enhancement

factor is insensitive to the excitation energy.

1 Introduction

Nuclear level densities are one of the key quantities in understanding compound nuclear reactions.

Widely used conventional approaches to nuclear level densities are based on the mean-field (MF) the-

ories including the Fermi-gas model [1], which are suitable for global description covering almost the

whole region of the nuclear chart. However, it has been known that collective excitations are missed in

the MF approaches, and so-called collective enhancement factor (CEF) has been phenomenologically

introduced as complements. Although the CEF is considered to represent the vibrational and the ro-

tational collective degrees of freedom, microscopic understanding of the CEF has not been sufficient.

The shell model gives us a microscopic framework suitable for studying nuclear level densities, be-

cause it is a full quantum theory that can describe both collective and non-collective states in the model

space. Although the model space required for reasonable description of level densities is much larger

than tractable in the conventional diagonalization methods, the shell model Monte Carlo (SMMC)

methods [2] enables us to overcome this difficulty. Indeed the SMMC methods have successfully

been applied to the state densities of medium- to heavy-mass nuclei [3–9]. With respect to the col-

lective excitations, the SMMC methods have successfully described crossover from the vibrational to

the rotational collectivity in the rare-earth nuclei with a single class of Hamiltonians [10, 11]. On this

basis, the energy-dependence of the CEF has been investigated from microscopic standpoint, by com-

paring the SMMC densities to the corresponding finite-temperature (FT) Hartree-Fock-Bogolyubov

(HFB) densities [10]. It has been found that the decays of the CEF seem to correlate to the phase

transitions in HFB; the decay of the vibrational enhancement to the pairing transition and that of the

rotational enhancement to the shape transition. However, in MF approaches such as the HFB, certain

symmetries are broken due to phase transitions, although those symmetries should hold in actual nu-

clei. Therefore, restoration of the broken symmetry is important to investigate genuine effects of the

collectivity.
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We here focus on the breaking and restoration of the global gauge symmetry, which is connected

to the particle-number conservation. The FT-MF approaches are formulated in the grand-canonical

ensembles, in which the thermal average is taken in the entire Fock space. In contrast, the nuclear

level densities are argued for a specific nucleus with fixed proton and neutron numbers. Therefore

the canonical ensembles are more appropriate for describing level densities, as adopted in the SMMC

calculations. Reduction from the grand-canonical ensembles to the canonical ensembles in the FT-

MF theories is inspected recently [12]. However, in finite quantum systems such as nuclei, the phase

transitions observed in the MF regime are washed out in truth [3], and full restoration is often desired

to investigate influence of the existing symmetry. In the present study, we apply the particle-number

projection [13–15] to the FT Bardeen-Cooper-Schrieffer (BCS) theory, and investigate effects of the

symmetry restoration.

2 Particle-number projection in FT-BCS theory

2.1 Thermodynamical quantities

For canonical ensembles with a given Hamiltonian H, the statistical density operator at temperature

T = 1/β is defined by

w(C) =
e−βH

TrC(e−βH)
, (1)

by which the thermal expectation value of an observable O is calculated as

〈O〉(C)
β = TrC(Ow(C)) . (2)

Here TrC denotes the canonical trace.

The statistical density operator for grand-canonical ensembles is defined by

w(GC) =
e−β(H−

∑
τ μτNτ)

TrGC(e−β(H−
∑
τ μτNτ))

, (3)

where TrGC denotes the grand-canonical trace, Nτ is the number operator and μτ represents the chem-

ical potential, with τ (= p, n) distinguishing protons and neutrons. The thermal expectation value of

an observable is obtained by

〈O〉(GC)
β = TrGC(Ow(GC)) . (4)

In the FT-MF theories, the Hamiltonian in w(GC) is approximated by the MF Hamiltonian H0, giving

w(GC)
MF
=

e−β(H0−∑τ μτNτ)
TrGC(e−β(H0−∑τ μτNτ)) , (5)

The MF Hamiltonian has the form

H0 = E0 +
∑

k

εkα
†
kαk , (6)

where E0 is a constant, k stands for a quasiparticle (q.p.) state and α†k (αk) the corresponding creation

(annihilation) operator. The thermal expectation value in the FT-MF approximations is

〈O〉(GC)
β,MF
= TrGC(Ow(GC)

MF
) . (7)
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In any case above, the energy expectation value is calculated by E(β) = 〈H〉β = Tr(Hw), and the

heat capacity by C = dE/dT = −β−2dE/dβ. The entropy can be represented as

S = −Tr(w lnw) . (8)

Within the FT-MF framework, this is reduced to

S (GC)
MF
= −
∑

k

[ fk ln fk + (1 − fk) ln(1 − fk)] , (9)

where (assuming the q.p. state k belongs to the particle type τ)

fk = 〈α†kαk〉(GC)
β,MF
=

1

eβ(εk−μτ) + 1
. (10)

At thermal equilibrium, the free energy F = E − TS takes minimum for a given temperature T in

the canonical ensembles, while the grand potential Ω = F − ∑τ μτNτ does in the grand-canonical

ensembles. H0 in the FT-MF theories is determined so as to minimize Ω
(GC)
MF

.

2.2 Particle-number projection

In Ref. [12] an approximate method of reducing the grand-canonical ensemble to the canonical en-

semble is proposed and applied to the FT-MF theories. To restore the particle-number conservation

exactly, it is desired to apply the projection operator on the proton and neutron numbers (np, nn),

P(np,nn) =
∏
τ=p,n

∫ 2π

0

dϕτ
2π

eiϕτ(Nτ−nτ) . (11)

We can then handle w(C) and 〈O〉(C)
β in the grand-canonical ensembles,

w(C) =
e−β(H−

∑
τ μτnτ)

TrGC(P(np,nn)e−β(H−
∑
τ μτNτ)P(np,nn))

=
e−βH

TrGC(P(np,nn)e−βHP(np,nn))
, (12)

〈O〉(C)
β = TrGC(P(np,nn)Ow(C)P(np,nn)) . (13)

In practical calculations the integral in Eq. (11) is implemented by a finite sum of the ϕ variables.

Particularly when we work in a finite model space as below, the integral operator is identical to the

operator represented by the discrete sum,

∫ 2π

0

dϕ
2π

eiϕ(N−n) =
1

D + 1

D∑
m=0

eiϕm(N−n) ; ϕm =
2mπ

D + 1
, (14)

where D is the number of the single-particle states in the model space.

In the FT-MF theories, H0 is determined by variation as mentioned above. In the variation-before-

projection (VBP) method, H0 is determined by the variation of Ω
(GC)
MF

in the grand-canonical ensem-

ble, and the projection is applied when computing physical quantities (〈O〉β). It should be noted,

however, the VBP method violates the thermodynamical consistency [12]. Although the variation-

after-projection (VAP) is a more desirable method, in which H0 should be determined by minimizing

the free energy F(C)
MF

in the canonical ensemble, the VAP has not been well formulated for the following

reasons.
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The nuclear Hamiltonian satisfies [H,Nτ] = 0, and therefore [H, P(np,nn)] = 0. Suppose that this

also holds for the FT-MF Hamiltonian H0; [H0,Nτ] = 0. It is then straightforward to apply P(np,nn) to

the FT-MF theory, by defining the canonical density operator by

w(C)
MF
=

e−β(H0−∑τ μτnτ)
TrGC(P(np,nn)e−β(H0−∑τ μτNτ)P(np,nn))

=
e−βH0

TrGC(P(np,nn)e−βH0 P(np,nn))
. (15)

The VAP is formulated by minimizing the free energy F = E − TS , with the entropy

S (C)
MF

= −TrGC([P(np,nn)w
(C)
MF

P(np,nn)] ln[P(np,nn)w
(C)
MF

P(np,nn)])

= β
TrGC(P(np,nn)H0e−βH0 P(np,nn))

TrGC(P(np,nn)e−βH0 P(np,nn))
+ ln TrGC(P(np,nn)e−βH0 P(np,nn)) . (16)

However, the FT-MF Hamiltonian does not satisfy [H0,Nτ] = 0 when the pairing correlation exists.

Without this commutability, it is prohibitively difficult to use S (C)
MF

[16], as the equality of the second

line of Eq. (16) is lost. Whereas an approximate VAP method has been proposed by respecting the

Pierls inequality [16], assuming an approximate entropy

S ′(C)
MF
= β

TrGC(P(np,nn)H0e−βH0 P(np,nn))

TrGC(P(np,nn)e−βH0 P(np,nn))
+ ln TrGC(P(np,nn)e−βH0 P(np,nn)) , (17)

it again violates the thermodynamical consistency, leading to negative entropy at T ≈ 0.

Despite the problems mentioned above, the particle-number projection is still useful in investi-

gating influence of the particle-number conservation qualitatively. As mentioned above, the sharp

transitions in the FT-MF theories do not remain in actual nuclei, closely connected to restoration of

the broken symmetry. To investigate behavior around the critical temperature, the quantum-number

projection provides us with a indispensable tool. In the present study, we shall apply the approximate

VAP, which we shall abbreviate as VAP′, as well as the VBP methods, keeping in mind their defects

and limitations.

2.3 State density in the saddle-point approximation

The state density ρ is quite relevant to the thermodynamics. It can be represented by the inverse

Laplace transform of the partition function. By applying the saddle-point approximation, ρ is approx-

imately expressed in terms of the thermodynamical quantities. From the canonical partition function

we reach [3]

ρ(C) � eS (C)

√
2πβ−2C(C)

, (18)

while from the grand-canonical partition function

ρ(GC) � eS (GC)

√
(2π)3(ΔNp)2(ΔNn)2β−2C(GC)

, (19)

with (ΔNτ)2 = 〈(Nτ − nτ)2〉(GC)
β .

It is recently argued that there could be an additional contribution to the denominator of Eq. (19)

in the FT-MF framework, due to the proton- and neutron-number violation [12], because of H0 itself

depends on μτ. In the present study, we do not take it into account for the sake of simplicity.
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We compute the heat capacity C by numerical differentiation of E(β) = 〈H〉β, either in the canon-

ical or the grand-canonical ensemble. The entropy S (GC) is given by Eq. (9) in the usual FT-MF

theories in the grand-canonical ensembles. In the SMMC, S (C) is calculated by integrating E(β),
using the relation of the thermodynamical consistency

S (C) = βE + ln Z(C) ; ln Z(C)(β) = ln Z(C)(0) −
∫ β

0

dβ′ E(β′) . (20)

In the particle-number projected MF approaches, the incommutability of H0 and Nτ causes a problem

again. If [H0,Nτ] = 0, Eq. (16) provides S (C)
MF

. If [H0,Nτ] � 0, Eq. (20) loses its ground. Even in that

case, we again apply S ′(C)
MF

in Eq. (17) to ρ(C)
MF

as an approximation.

The state density will be presented as a function of the excitation energy Ex, which is obtained by

Ex = E(β) − Eg.s. with Eg.s. = limβ→∞ E(β).

2.4 Model space and effective Hamiltonian

In this study we take several rare-earth nuclei as examples. For them the SMMC state densities are in

good agreement with the experimental data [8, 10, 11]. The model space in the SMMC calculations

is the full Z = 50 − 82 shell plus 1 f7/2 for protons, and the full N = 82 − 126 shell plus 0h11/2, 1g9/2

for neutrons. The Hamiltonian is comprised of the monopole pairing and the quadrupole, octupole,

hexadecupole interactions, by which dominant collective features are well taken into account. See

Ref. [10] for details of the Hamiltonian. This SMMC setup is a good starting point to investigate CEF.

In Ref. [10], the CEF was argued by comparing the state densities obtained in the FT-HFB frame-

work to those obtained from the SMMC calculations. The model space and the Hamiltonian in those

FT-HFB calculations is identical to those in the SMMC. For most nuclei the FT-HFB approaches gives

three phase transitions; the proton and neutron pairing transitions which occur at Ex � 5 MeV, and

the deformed-to-spherical transition which takes place at Ex � 8 MeV. To the best of our knowl-

edge, there are no FT-HFB plus particle-number projection computer codes available for the shell

model Hamiltonian. For this reason, we introduce the following effective Hamiltonian, to which the

particle-number projection is applicable on top of the FT-BCS:

H′ =
∑

k

ε′ka†kak −
∑
τ=p,n

g′τP
†
τPτ ; P†τ =

∑
k>0 (∈τ)

a†ka†
k̄
. (21)

Here ε′k is fixed by the HF results at T = 0. Although this ignores energy-dependence of the nuclear

shape, it is not significant at energies below the critical temperature of the shape transition. g′τ is

adjusted so as to reproduce the FT-HFB state densities. In practice, it is enhanced from the pairing

strength gτ in the original shell model Hamiltonian as g′τ = cτgτ, with cp = 1.4 and cn = 1.6.

The enhancement factor cτ should partially represent contribution of the multipole interactions to the

pairing. We implement the FT-BCS calculations with H′, and investigate influence of the restoration

of the particle-number conservation by applying the VBP or the VAP′ method.

3 Collective enhancement factor for state densities

It has been known that the nuclear level densities calculated from MF theories underestimate the

experimental data. This originates from the collective excitations which is not well described within

the MF theories. To correct the influence of the collective excitations, the collective enhancement

factor (CEF) K is customarily introduced [1],

ρ(Ex) = K(Ex) ρMF(Ex) . (22)
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Figure 1. State densities ρ(Ex) for 148Sm and 154Sm. See text for details.

The MF density ρMF(Ex) is calculated by the FT-MF theory or by the combinatorial methods of count-

ing the q.p. excitations [17]. The CEF contains effects of the collective vibration and the rotation, and

may be factorized as

K(Ex) = Kvib(Ex) Krot(Ex) . (23)

For stable nuclei, experimental data on the state densities are obtained from direct counting of

levels at low Ex and from the neutron resonance around the neutron separation energy. The SMMC

densities ρ(C)
SMMC

(Ex), which are available in the Nd-Sm region [10, 11, 18], are in good agreement

with them. Since ρ(C)
SMMC

(Ex) gives state densities in wider energy range than the data, we shall use it

as ρ(Ex) in the lhs of Eq. (22).

It has been suggested in Ref. [10], by defining the CEF by K(Ex) = ρ(C)
SMMC

(Ex)/ρ(GC)
HFB

(Ex), that

the vibrational enhancement decays rapidly, in well correlation to the pairing phase transitions in the

FT-HFB theory. Whereas it is difficult to separate the vibrational and rotational effects by comparing

the MF density to the SMMC density, violation and restoration of the particle-number conservation

should mainly be connected to the vibrational enhancement. At Epair < Ex < 10 MeV in the rare-earth

nuclei, where Epair is the pairing energy, we have Kvib � 3 from an empirical formula [1].

4 Numerical results of particle-number projection

4.1 State densities

We take 148Sm and 154Sm as typical examples. 148Sm is spherical with strong pairing correlation at

T = 0, while 154Sm has quadrupole deformation with weak pairing [10]. In Fig. 1 several types of

MF densities are compared with one another and with the SMMC densities. Among the MF densities,

ρ(GC)
HFB

(blue dotted lines) is the FT-HFB results with the same Hamiltonian as in the SMMC. In the FT-

HFB calculations, the pairing transition occur at Ex ≈ 6 MeV (1 MeV) for protons and Ex ≈ 4 MeV

(2 MeV) for neutrons in 148Sm (154Sm). ρ(GC)
BCS

(blue solid lines) is the results of the FT-BCS calculation

with H′ in Sec. 2.4. We observe ρ(GC)
BCS

≈ ρ(GC)
HFB

to reasonable precision, at Ex � 6 MeV (Ex � 10 MeV)

for 148Sm (154Sm). On this basis we use the FT-BCS results in place of the FT-HFB ones to investigate

influence of the particle-number conservation. Red solid lines in Fig. 1 represent ρ(C)
BCS

, which are

obtained by applying the VBP when calculating E(β) in the FT-BCS. We do not show the VAP′
results because they are very close to the VBP results.
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hancement in this spherical nucleus. In the deformed nucleus 154Sm, most of the HFB levels should

correspond to the lowest states of the rotational bands, not including other members of each band.

Thereby ρ(GC)
HFB

underestimates the state densities even above the pairing transitions, and the discrep-

ancy stands for the rotational enhancement.

A notable effect of the particle-number projection is the suppression of the kink in the state densi-

ties at the pairing transition. This suggests much weaker energy-dependence of the CEF than reported

in Ref. [10], if we properly take into account the conservation laws in the MF theories. We shall return

to this point in the subsequent subsection.

If absolute values of ρ(C)
BCS

(Ex) is compared to ρ(GC)
BCS

(Ex), the particle-number conservation seems

to reduce the state densities at all excitation energies under observation. This reduction might be

attributed to elimination of the spurious states that have wrong particle numbers. In particular, the one-

q.p. states give dominant contribution to the lowest-lying densities in the grand-canonical ensembles,

but should not be present in practice. However, we should also keep in mind the negative entropy

(S ′(C)
MF

≈ −2 at T ≈ 0), which may reduce the densities fictitiously. This problem obscures effect of

the particle-number conservation on the absolute values of the state densities. It is noted as well that

the MF densities have been shown to agree with the SMMC densities fairly well after appropriate

corrections [12].

The particle-number projection lowers Eg.s., by which the projected densities have shifted toward

rhs in Fig. 1. To view influence of this energy shift, we also plot ρ(C)
BCS

by the VBP but as a function

of E′
x = E(C)

BCS
(β) − E(GC)

BCS
(∞) (red dot-dashed line), namely by taking Eg.s. to be the value without the

projection. Quite interestingly, we have ρ(C)
BCS

(E′
x) ≈ ρ(GC)

BCS
(Ex) above the pairing transitions. Below

the transitions, ρ(C)
BCS

(E′
x) is greater than ρ(GC)

BCS
(Ex), in complete opposite to ρ(C)

BCS
(Ex). ρ(C)

BCS
(E′

x) is close

to ρ(C)
SMMC

below the transitions in 148Sm. Thus the particle-number projection gives improvement on

the state densities, if the ground-state energy is properly shifted. These results seem consistent with

those in Ref. [12].

4.2 Collective enhancement factors

The CEFs defined by K(Ex) = ρ(C)
SMMC

(Ex)/ρMF(Ex) are shown in Fig. 2, for a number of even-even

nuclei in the Nd-Sm region. To confirm effects of the particle-number conservation, we take ρ(GC)
BCS

(Ex)

and ρ(C)
BCS

(Ex) (with the VBP) for the MF densities and compare the resultant CEFs.

As is expected from the state densities, the energy-dependence of the CEFs comes weaker after

the particle-number projection. This indicates that the vibrational collectivity around the ground state

remains up to high energy region. ρ(C)
BCS

(Ex) significantly lower than ρ(C)
SMMC

(Ex) gives high CEF.

However, the problems for the absolute values of ρ(C)
BCS

(Ex) is inherited for the absolute values of

K(Ex), which prohibit us from making quantitative predictions based on the present calculations. The

present results suggest that the CEF evaluated around the ground state will be important, not varying

much up to relatively high energy.

The combinatorial methods based on the MF state at T = 0 are sometimes applied to global

description of the level densities. The combinatorial methods give a reasonable basis in evaluating

the number of low-lying states. They could be suitable for estimate of the CEF around the ground

state. Although they may miss energy-dependence of the nuclear mean fields as typified by the phase

transitions, effects of the energy-dependence seem milder than predicted by the FT-MF theories. This

may account for a part of the reasons why the combinatorial methods work moderately well.
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HFB

agrees well with ρ(C)
SMMC

above the pairing transitions, indicating no rotational en-
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5 Summary and outlook

We have investigated effects of the particle-number conservation on the nuclear state densities, par-

ticularly on their collective enhancement, by applying the projection to the finite-temperature (FT)

mean-field (MF) theories. Although there remain problems in consistency in the projected FT-MF

theories, qualitative effects can be observed from the projected results. It is found that the energy-

dependence of the vibrational enhancement comes significantly weaker than the usual FT-MF results,

almost washing out the decaying features of the collective enhancement factor (CEF) at the pairing

transitions. This indicates that the vibrational collectivity around the ground state persists up to rela-

tively high energy, in contrast to the unprojected FT-MF results.

Energy-dependence of the pairing correlation, which is manifested by the pairing transitions in the

FT-MF theories, substantially affects the spin distribution of the level densities, as supported by the

SMMC studies [19]. Even if the pairing transitions do not influence the state densities significantly

after the particle-number conservation is restored, it is still of interest how they affect the spin distri-

bution. Simultaneous implementation of the angular-momentum projection and the particle-number

projection on the FT-MF theories [15] will enable us to investigate this point, though it is beyond

scope of this paper and we leave it as a future subject.

The loss of the thermodynamical consistency has been a serious obstacle against quantitative

arguments. It seems impractical to restore the consistency in the projected FT-MF theories. Still, there

is a room of improvement. In the present study, we have adopted a simple effective Hamiltonian which

is fitted to the FT-HFB state densities at low energy. This restricts the energy region of investigation.

By applying the projection to the FT-HFB observables, it will be possible to extend the energy region

and to investigate effects of the rotational symmetry in a similar manner, at least in a qualitative

respect.

As mentioned above, the present results indicates significance of evaluating the CEF around the

ground state. The combinatorial methods seem suitable for this purpose, and may help quantitative

arguments, complementary to the FT-MF approaches, although they are unable to incorporate the

energy-dependence of the pairing correlation appropriately.
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