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Abstract—In order to meet future communication system
requirements, channel estimation over fast fading and frequency
selective channels is crucial. In this paper, Space Alternated
Generalized Expectation Maximization Maximum a Posteriori
(SAGE-MAP) based channel estimation algorithm is proposed for
Orthogonal Frequency Division Multiplexing (OFDM) systems
for Autoregressive (AR) modeled time-varying sparse channels.
Also, an initialization algorithm has been developed from the
widely used sparse approximation algorithm Orthogonal Match-
ing Pursuit (OMP), since the performance of SAGE algorithm
strictly depends on initialization. The results show that multipath
delay positions can be tracked successfully for every time instant
using the proposed SAGE-MAP based approach.

Index Terms—OFDM, Autoregressive model, Fast Time-
Varying, SAGE-MAP, OMP, sparse channel estimation.

I. INTRODUCTION

IRELESS communication systems operate over fre-
unency and time selective channels, which need to
be equalized at the receiver side. Also, increasing demand
for high data rates in high mobility environments has let the
researchers look for more durable wireless communication
systems to time variation. Orthogonal Frequency Division
Multiplexing (OFDM) has been widely accepted by many
communication standards because of its spectral efficiency and
capability to mitigate frequency selectivity of the channel.
OFDM converts frequency selective channel to be flat for
each subchannel, dividing available bandwidth to subchannels.
On the contrary to the advantages of OFDM systems, it
needs strict time and frequency synchronization for reliable
communication. In order to equalize channel effects at the
receiver side, many estimation algorithms have been proposed,
(11 - [3].

Recent studies showed that wireless communication chan-
nels exhibit a sparse structure. In other words, channel impulse
response (CIR) consists of a few dominant randomly located
impulses. Also with the advances in compressed sensing
(CS) techniques [4], [5], it is shown that sparse signals can
be reconstructed using less observations than sparse signal
dimension under some conditions. As a result, exploited sparse
channel structure can help to design more energy efficient and
less complex algorithms.

Sparse channel estimation algorithms have been proposed
for OFDM systems in the literature. In [6], a sparse channel
estimation algorithm is proposed based on Matching Pursuit
(MP) algorithm for non-mobile systems. Thus, channel coeffi-
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cients are assumed to be constant over a symbol duration and
the number of observation samples are greater than the channel
length. In [6], MP algorithm performances are compared with
Least Squares (LS) channel estimation performances. In [7], a
theorem is proposed for the sufficient number of observations
to obtain sparse signal. Corresponding to proposed theorem in
[7], simulation results are presented. In [1], sparse multipath
channel definition is made in the concept of compressed
sensing, and LS and Lasso realization of sparse signal recon-
struction is given. However, in [1] the channel is assumed
to be time-invariant since non-mobile case is investigated as
in [6]. On the other hand, [3] assumed that the channel is
sparse and fast time-varying, where frequency dispersiveness
of the channel is modeled with a few sparse basis expansion
coefficients. Using Space Alternating Generalized Expectation
Maximization (SAGE) algorithm these coefficients are esti-
mated, where also an MP initialization algorithm has been
proposed. In [8], a sparse AR process has been tracked by
Kalman Filter and sparsity change has been estimated with
CS algorithm. In [8], defining a threshold level for filtering
error, channel sparsity pattern changes have been estimated
with Dantzig Selector (DS) algorithm. In practical systems
DS is too complex to realize.

In this paper, for fast time-varying and frequency selective
environments such as high speed trains and aeronautical sys-
tems, a channel estimation algorithm exploiting sparsity has
been developed. Time variation of multipath coefficients has
been modeled as an AR process. Multipath delay positions are
tracked for every time instant, which has not been studied in
the literature to the best of our knowledge. SAGE algorithm
based approaches need good initialization, therefore, OMP
based estimation algorithm is adopted to estimate initial chan-
nel coefficients and delays. The proposed model is important
for tracking fast time-varying sparse channels.

The remainder of the paper is organized as follows. Section
II presents the system model of an OFDM based wireless mo-
bile communication system over rapidly varying sparse chan-
nels and describes the main parameters. Section III proposes
a new channel estimation algorithm based on SAGE-MAP
method and an initialization algorithm using OMP. Section
IV presents performance results of the proposed SAGE-MAP
based channel tracking algorithm. Finally, Section V concludes
the paper.

Throughout the paper following notations will be used.
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Vectors are represented as boldface lowercase letters, e.g., x,
and matrices as boldface uppercase letters, e.g., X. For vectors
and matrices (.)7, ()%, ()" and E{.} denote the transpose,
conjugate, Hermitian transpose and expectation, respectively.
lymxn and O, x, represents ones and zeros matrix with
m rows and n columns. To take the diagonal of a matrix
or diagonalize a vector diag{.} is used. (?) means that all
elements in the set L except [, where [ € L. Re{x} and T m{x}
represent real and imaginary part of x. The symbols © and
® denote Hadamard and Kronecker product, respectively. /-
norm represents ||z|| = Ve x for complex valued & column
vector.

II. SYSTEM MODEL

OFDM systems with N subcarriers have been considered
and all subcarriers are occupied by pilots. Even for the data-
aided estimation, there are N-sample observation r[n] and
(N + 1)L unknowns, which are a®[n] and 7©, where
n=0,12,...N-1,1=0,1,2,...,L — 1, and L is the number
of multipaths. Discrete-time channel coefficient and delay of
the /th path are represented with ’[n] and ", respectively.
In this paper, it is assumed that /th multipath coefficient at nth
time-sample, a![n], changes for each sampling time and the
delay sample of the /th multipath, 7, is constant.

An OFDM signal in discrete-time domain can be expressed

as
1 N/2-1 2
sl = ) dIk] e %", (1)
k=—N/2

where d[k] is digitally modulated OFDM data symbol which
is sent from kth subchannel, n represents each time sample
over one symbol duration, Ty, = NTy and T, are the symbol
duration of one OFDM symbol and the sampling period,
respectively. Cyclic prefix (CP) is added in front of the OFDM
symbol to avoid inter-symbol-interference (ISI), which occurs
due to time dispersiveness of the channel. Received signal is
the convolution of OFDM signal and CIR, where the discrete-
time channel impulse response can be expressed as

L-1

hlnl = aPmis[y -0, @

=0

When wireless communication channels are modeled, it is
widely assumed in the literature that normalized path delays
are integer values. That is the multipath delays are at the
sampling times.

Channel maximum delay spread 7,,,, should be less than
cyclic prefix duration (T¢p), where multipath delays can be
modeled as uniformly distributed. Therefore n!) € [0,N,,—1],
where T., = N, T, and shows the /th normalized path delay,
which is in the interval of cyclic prefix length N,,.

Using (1) and (2), CP removed received signal sample at
time nTg can be written as

Nep-1
rln] = Z h(n,n)s(n —n) +wln] 3)
n=0
| L=l Np2- o l
= — Z Z d[k]evk("—ﬂ( ))a(l)[n] + w(n]
1=0 k=—N/2
= c[nlaln] + wln],
where
cHinl =F"'n1D®
¥~ '[n] d:'% [e%"<—N/2)n’ e%(N/z—l)n]

)] & [¢(0>’ oW, ¢(NC,,—1)]

o def [e—%(—l\//z)q”) e-%(/\//z—l)q(”]T
def . N/2-1
D = diag {d1k11 2}

“)

Here a[n]n,,x1 is the L-sparse channel coefficient vector.
wln] ~ CN (O,crgv) is the additive channel noise. In other
words only L elements of a[n] are dominant coefficients,
where L < N, implies sparseness of the channel.

Channel coefficient variation over time is modeled as an AR
process as

a(l)[n] =a a(l)[n - 1]+ p® u(l)[n]. 5

Here a")[n] is the Ith path channel coefficient at time instant
n. uPn] ~ CN(0,1) is the driving channel noise. AR
process coefficients a and b") determine variation of the
process and can be found using autocorrelation function of
channel coefficients. It is straightforward that each path obeys
Jakes’ spectrum with the following autocorrelation function

o —n'1 = E{a®[nlaV[n'1*) (6)
=QD Jy QrfpTy(n—n"))

with ") is given Ith path channel power

QO p® = Nep 120, )

where A is multipath power decaying constant and fp is the
maximum Doppler frequency. [2] By applying Yule-Walker
equation and with the help of Jakes’ autocorrelation function
in (6), AR coefficients a and b") are determined as follows

a=JoQ2rfpTs), 3
b = \/Q(” (1- 2 @rfpTy)).

III. CHANNEL ESTIMATION

In the literature, if path delays are known, channel coef-
ficients can be tracked by Kalman filtering easily. However,
for unknown path delay case, Kalman filtering approach can
not be applied. In this work, we propose a SAGE based
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algorithm to find sparse channel coefficients sequentially as in
[2] and [3]. SAGE algorithm, first proposed in [9], has faster
convergence rate than Expectation Maximization (EM) algo-
rithm. SAGE algorithm is the generalization of EM algorithm
through updating unknown parameters sequentially rather than
completely. When updating parameters in one subspace other
parameters are held fixed. This process repeats for all sub-
spaces. Unknown parameters’ dependency on observation was
introduced with admissible hidden data concept, where y
represents admissible hidden data. Also, SAGE algorithm is
computationally more feasible for practical systems. SAGE-
MAP first proposed in [2] is for highly mobile OFDM systems
and simulated for LTE and mobile WIMAX systems.

In [9], it is stressed that choosing subspaces determines
algorithm convergence. The current study deals with this
problem defining unknown sets and subspaces as follows:

8ln] = {axln].n) ©)
0@n] = @ V[n].y ")

where 6[n] represents unknown parameter set and 6)[n] is
the /th subspace, which will sequentially be estimated. SAGE-
MAP algorithm was applied to OFDM systems in [2]. The
main contribution of this paper to literature is that channel
coefficients are estimated using AR process information and
observation. SAGE-MAP algorithm consists of expectation
and maximization steps.

Expectation Step:

0(0"[n] 16" [n]) (10)
= Ellog p(@© (], xO 190" " (nl) | 0, 611[n])
Maximization Step:
Wl [p] = argmax Q(OV[n] | OUI[n])  (11)

0D[n]

ad)[inm[n]: ad)[in][n]
n(l)[in+1] = T’(Z)[in]

As a result, multipath channel coefficients and delays can be
sequentially found with the following expressions

_[in"’l]

_[ln]
10) ] =00 "[n] =

-1
. 1 e, [
Dlin+1]7,,7— n
@ [n]= + (12)
[||b<l>||2 )
(CUU)[n]Xm] aa(l)[i"][n - 1]
| 16D
with
n(l)[in"'l] = argmax G(l)[i”][n(l)] (13)

n®

where GVlinl[(D] is the objective function, given as

||a,(l)lin+1][n] _ aa,(l)linl[n _ 1]“2

Dlinlp, (D7 _
: v 16O |2 (14)
Z": (ZR @ Omlintle, o, [m] x Dlinl[m]
+ e
m=0 O-%v
llc* , [mlalin+1[m]12
- : 2 )— log (”b(l)||2).
O-W

Expectation of admissible hidden data can be represented as

L-1
XOCn] = i) = 3 yanpennl”alal. (15)
1’=0

I"#l

A. Initialization of the Algorithm

Error performance of SAGE algorithm highly depends on
initialization errors. Therefore, we need to apply a suitable
algorithm to initialize channel estimation. Since the channel
coefficients are sparse, it is appropriate to select the sparse
approximation algorithm OMP to find initial estimates. OMP
is a widely accepted practical and fast sparse signal recovery
algorithm compared to other sparse signal recovery algorithms.
In [7], steps of the OMP algorithm are outlined. To employ
OMP, every channel coefficient can be represented in terms of
initial channel coefficients. Therefore, using AR process the
relation between initial and other channel coefficients can be
expressed as

n
a®P[n) = a"+la(l)[—1]+2akb(l)u[n— kl. (16)

k=0
Received samples can be expressed using (16). It should
be noted that, using all observations cause more complexity
despite no additional performance contribution. Therefore,
using M observations to find initial estimates of channel

coefficients and path delays is enough for initial estimation:

r=Da[-1]+v
D = CH @(a@llchp)

a7

r Z[r[0], r[1], ---, r[M - 1717
cH Z[c[0], c[l], -, e[M - 1717
ad:cr[al’ az’ DR aM]T,

Here, D is the dictionary matrix with size M X N., and v
represents noise, which includes AWGN and driving noise.
Mean and variance statistics of v are not necessary for the
OMP algorithm.

The algorithm steps are outlined in Algorithm 1. When the
algorithm is first initialized, it takes first M received signal
samples to process OMP and to find initial channel coefficients
and delays. In [7], it is assumed that the number of non-
zero coefficients in the sparse signal is known, however, in
this paper, we used energy threshold as a stopping criterion.
Then for every time sample, algorithm will sequentially find
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Algorithm 1: SAGE-MAP Based OFDM Sparse Channel
Tracking

Data: received signal sample r[n], fp, SNR
Result: tracked a“[n]’s and n)’s
« Initialization through OMP;
for n=11t N do
o aDlin=0[,] = g gOlin=imaxl[, — 1];
. 77(l)[in:()] — n(l)[in:imux];
« Calculate Cﬁ,>[in][n]’s and yOlinl[n]s;
for SAGE-MAP Step: i, =1 t0 i,,qx do
for [=0to L-1do
for V' =01 N, -1 do
« Find QO from (7), b from (8)
and C”;{”[n] from (4)
« Find a®linl[n] from (12)
« Find objective function GVlinl[p®)]
from (14)
end
e Find nOlin*11 through maximizing (14);
o Recalculate QO p®), Cﬁl)[in][n]
e Find a®n*[n] at i, + Ith step in (12)
end
« Update all y®Uinl[n]’s using (15);
end
end

the channel coefficients and delays jointly with SAGE and
Matching Pursuit (MP) based approach. For each SAGE-MAP
iteration all stacked admissible hidden data sets )(l [n]) will
be updated, and each multipath channel coefficient and delay
will be estimated.

IV. SIMULATION RESULTS

Performance of the proposed algorithm will be assessed
considering initialization and channel coefficients tracking.
Simulation parameters are presented in Table 1.

TABLE I
SIMULATION PARAMETERS

Number of subcarriers (N) 1024
Cyclic prefix duration 1287
Bandwidth 5 kHz
Maximum Doppler Frequency (fp) 50 — 100 Hz
Number of multipaths (L) 3
Modulation mapping QPSK
Number of received signal samples 64
for initialization (M)
Number of SAGE Iterations Imax =3
Signal to Noise Ratio SNR= 10, 20 dB

Proposed algorithm takes Doppler frequency and SNR
value in addition to received signal as an input to estimate
channel coefficients. After AR process coefficients are
determined, OMP algorithm is employed. Then proposed
SAGE-MAP tracking algorithm finds the channel coefficient
and delay of /th path sequentially. The advantage of the
proposed algorithm is that channel coefficients and delay
positions are tracked real-time, which is different from
the proposed algorithms in the literature. In the following,
performance results will be provided.

Initialization Part Performance Results: Here, H[n,k] is
the channel frequency response (CFR) at the nth time sample
and it is defined as

L-1
Hinkl= P O (18)
=0

Estimated discrete channel frequency response H[n,k]
can be found by substituting a®[n] = a@Plmaxl[n] and
n® = pOlimax] Initial estimations of CIR and CFR are
plotted in Fig. 1 for fp = 50 Hz and SNR= 20 dB.
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Fig. 1. Initial estimation of CIR and CFR

Increasing number of received signal samples and lowering
maximum Doppler frequency values will
initialization algorithm performance.

improve the

SAGE-MAP Tracking Performance Results: Channel track-
ing results are presented in Figs. 2 to 5 for different fp and
SNR values. It can be inferred from the figures that the channel
variation over time is tracked successfully for instantaneously
changing channel coefficients and delays. Note that while the
channel tracking is successful for all fp and SNR values
tested, the channel coefficients are estimated with some errors
at SNR= 10 dB. This is mainly due to coefficients varying
every time instant. It should also be noted that initialization
errors are compensated while the channel tracking algorithm
is running.

427



15 -
. —True al[n]]
—Estimated |a-"[x]| N
O.EWW
|

o
(=)

[ I i

100 200 300 400 500 600 700 800 900 1000
Discrete Time (n)

T T T T

—True o7 |
—Fstimated a(u!:um WW;

i | i | i i
100 200 300 400 500 600 700 800 900 1000
Discrete Time (n)

n

o
o

=

—True (| fe]

—Estimated (jal"[r]])

o
o
T

o

| i i i
300 400 500 600 700 800 900 1000
Discrete Time(n)

(=)
=
S
]
=1
S

>

sty TR oo,

i i i
0 100 200 300 400 500 600 700 800 900 1000
Discrete Time (n)

— True ([a®[u]])

=)

Absolute Values of Path Coeffs
n

o
o o

—True o] ‘ ‘
1) — Estimated al[n]| }

| \ 1
0 100 200 300 400 500 600 700 800 900 1000

Discrete Time (n)

Fig. 2. SAGE-MAP algorithm channel tracking performance for fp = 50
Hz, SNR= 20 dB
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Fig. 3. SAGE-MAP algorithm channel tracking performance for fp = 100
Hz, SNR= 20 dB
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Fig. 4. SAGE-MAP algorithm channel tracking performance for fp = 50
Hz, SNR= 10 dB

V. CONCLUSION

In this paper, a SAGE-MAP based channel estimation algo-
rithm is proposed for tracking channel coefficients and delays
at every iteration. The proposed algorithm is a solution for
sparse AR process tracking. Since multipath delay positions
are also tracked, any change on delays can be estimated in
more extended models. This work can be extended to non-
integer normalized delay positions and pilot-aided symbol
detection and channel estimation case. For future work, mean-
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| | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Discrete Time (n)

Fig. 5. SAGE-MAP algorithm channel tracking performance for fp = 100
Hz, SNR= 10 dB

square error (MSE) performance results will be analyzed
for the proposed tracking algorithm. In addition, complexity
analysis will be pursued and complexity reduction will be
investigated.
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