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Emergent hypernetworks in weakly coupled
oscillators

Eddie Nijholt1, Jorge Luis Ocampo-Espindola2, Deniz Eroglu3, István Z. Kiss2 &
Tiago Pereira 1,4

Networks of weakly coupled oscillators had a profound impact on our
understanding of complex systems. Studies on model reconstruction from
data have shown prevalent contributions from hypernetworks with triplet and
higher interactions amongoscillators, in spite that suchmodelswere originally
defined as oscillator networks with pairwise interactions. Here, we show that
hypernetworks can spontaneously emerge even in the presence of pairwise
albeit nonlinear coupling given certain triplet frequency resonance conditions.
The results are demonstrated in experiments with electrochemical oscillators
and in simulations with integrate-and-fire neurons. By developing a compre-
hensive theory, we uncover the mechanism for emergent hypernetworks by
identifying appearing and forbidden frequency resonant conditions. Further-
more, it is shown that microscopic linear (difference) coupling among units
results in coupled mean fields, which have sufficient nonlinearity to facilitate
hypernetworks. Our findings shed light on the apparent abundance of
hypernetworks and provide a constructive way to predict and engineer their
emergence.

Networks of weakly coupled oscillators are prolific models for a
variety of natural systems ranging from biology1,2 and chemistry3,4 to
neuroscience5,6 via ecology7 to engineering8. Such networks serve as
stepping stones to understand collective dynamics9–12 and other
emergent phenomena in networks13,14. In these models, the interac-
tions aredescribed in apairwisemanner and the collective dynamics of
a network can be predicted by the superposition of such pairwise
interactions.

Recent work, however, suggests that many networks described as
pairwise interactions can be better described in terms of hypernet-
workswith triplet andquadruplet interactions amongnodes15–18. In fact,
hypernetworks appear as suitable representations of certain dynamical
processes found in physics19,20, chemistry21 and neuroscience22,23. This
has ignited research aimed at understanding the impact of higher-
order interactions on the dynamical behavior of complex systems24–27.
Moreover, besides considering hypernetworks as a gooddescription of

such models, we observed that hypernetworks could be revealed in
data-driven model reconstructions when the original model is a net-
work. Therefore, a major puzzle is why hypernetworks emerge as the
fitting description of actual network data.

Here, we show that hypernetworks can describe experimental
data of networks of electrochemical oscillators with nonlinear cou-
pling. We uncover a mechanism that generates higher-order interac-
tions as a model to describe oscillator networks from data. First, we
show that sparse model recovery from data reveals higher-order
interactions. We then develop a theory for the emergence of such
higher-order interactions when the isolated system is close to a Hopf
bifurcation. We provide an algorithm to reveal emergent hypernet-
work and its emergent coupling functions for any network in dis-
ciplines ranging from neuroscience to chemistry. The emergent
hypernetworks provide a dimension reduction that allows the char-
acterization of critical transitions.
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Results
Emergent hypernetworks in electrochemical experiments
We designed an experimental system with four oscillatory chemical
reactions coupledwith nonlinear feedbackanddelay arranged in a ring
network (see Fig. 1a). The set-up consists of a multichannel potentio-
stat interfaced with a real-time controller and connected to a Pt
counter, a Hg/Hg2SO4 sat K2SO4 reference, and four Ni working elec-
trodes in 3.0 M sulfuric acid electrolyte. At a constant circuit potential
(V0 = 1100mV with respect to the reference electrode) and with an
external resistance (Rind = 1.0 kohm) attached to each nickel wire, the
electrochemical dissolution of nickel exhibits periodic current and
electrode potential oscillations with a natural frequency of 0.385Hz.

Without coupling, we adjusted the natural frequency of each
oscillator to have a ratio with respect to oscillator 1 as ω2/ω1 = 2.53
(≈2.5), ω3/ω1 = 1.56 (≈1.5) and ω4/ω1 = 2.53 (≈2.5) with a set of resistors
and capacitors (Cind), see Supplementary Note 1.) The natural fre-
quencies create opportunities for triplet resonances, as there are small
detunings for ω1 −ω2 +ω3 and ω1 −ω4 +ω3, as well as pairwise reso-
nances ω2 ≈ω4.

The individual electrode potentials (Ek) were recorded and
rescaled and offset corrected

~Ek =Ok ½Ek � ok �, ð1Þ

where ok and Ok are the time-averaged electrode potential and
amplitude rescaling factor, respectively. (The rescaling factors, Ok =
0.5, 1, 0.5, 1 were applied to counter the different amplitudes of the
slow oscillators.) A ring-coupling can be introduced with external
feedback (see Fig. 1b, c) according to

VkðtÞ=V0,k +K ∑
4

‘= 1
Ak‘h½~EkðtÞ,~E‘ðt � τÞ�, ð2Þ

where Vk(t) and V0,k are the applied and the offset circuit potential of
the kth electrode, respectively, K is the coupling strength, Akℓ is the
adjacency matrix, τ is a time delay, and

h½~EkðtÞ,~E‘ðt � τÞ�= ð~EkðtÞ+ ~EkðtÞ2Þ~E‘ðt � τÞ: ð3Þ

This delayed nonlinear feedbackmodulates the impact of the coupled
unitswith abias towardspositive values (similar to adiodeoperation in
the (−1, 1) interval). Note that this form of feedback is fundamentally
different from previously applied nonlinear schemes4 in that it does
not produce obvious synchronization patterns, for example, one and
multi-cluster states.

Figure 1d shows the time series of the electrode potential for
K = 5.2 and τ = 1.65 s. The slow oscillators (1 and 3) have larger ampli-
tudes and the time series exhibit nonlinear waveform modulations
without any obvious synchronization pattern (one-cluster state).

From the potentials ~Ek we extract the frequencies _θk and apply a
first-order Savitzky-Golay filter with a time window of 45 s to remove
the in-cycle and short-range phase fluctuation, as shown in Fig. 1e
(solid line). For eachoscillator, a slowvariation is seen as the oscillators
slow down and speed up on a timescale of about 100 s (or 40 cycles);
notably, the elements 1 and 3 exhibit similar _θk oscillations, which are
different from those in elements 2 and 4.

To describe the nature of the phase dynamics, we consider the
slow triplet phase differences

ϕ1 = θ1 � θ2 +θ3
ϕ2 = θ1 � θ4 +θ3,

ð4Þ

which correspond to the triplet frequency detunings.
The impact of triplet interactions on the dynamics can be

extracted with a LASSO fit to

_θk = ω̂kðtÞ+ ∑
2

j = 1
Ck
j sinðϕjÞ+Dk

j cosðϕjÞ ð5Þ

where ω̂kðtÞ= ω̂0
k + ω̂

1
kt + ω̂

2
kt

2 is the fitted, slowly drifting (up to quad-

ratic variation in time) natural frequency, and Ck
j and Dk

j are the

amplitudes of the sin and cos phase coupling functions corresponding
to the appropriate triplet phase differences. The strength of the triplet
interactions j = 1, 2 (for ϕj) on oscillator k is given by the ampli-

tudes Hk
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCk

j Þ
2
+ ðDk

j Þ
2

q
.

Fig. 1 | Emergent hypernetworks in an electrochemical network experiment.
a Experimental setup. b Schematic illustration of the electrochemical experiment
with thenonlinear feedback. Theblue, orange, yellow, andgreen lines represent the
elements 1 to 4, respectively. The electrodepotential signals (Ek) of the four (nearly)
isolated electrodes are nonlinearly modulated and fed back with a delay τ to the
corresponding circuit potential (Vk), which drives themetal dissolution. (The delay

is implemented by storing the past data in the memory of the computer.)
c Representation of the in a ring network topology used in the experiment.
d Electrode potential time series. e Filtered and fitted (dark red line) instantaneous
frequency using LASSO for hypernetwork reconstruction corresponding from top
to bottom to oscillators 1 to 4, respectively. f Experimental recovery of the phase
interactions given by a hypernetwork.
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The dynamics of oscillators 1 and 3 are impacted by both triplet
interactions; ϕ1 impacts oscillators 1 and 3 with amplitudes
4.9 × 10−3 and 4.4 × 10−3, and ϕ2 with 2.3 × 10−3 and 3.2 × 10−3,
respectively. However, the dynamics of oscillators 2 and 4 are only
impacted by triplet interactions ϕ1 (with amplitude 1.33 × 10−2) and
ϕ2 (1.7 × 10−2), respectively. These triplet interactions describe
phase fluctuations over the long time scale (red curves in Fig. 1e).
Therefore, we can conclude that the phase dynamics of the oscil-
lators coupled in a ring can be described by a hypernetwork shown
in Fig. 1f.

The fact that model recovery provides triplets as the best
description is rather puzzling. Also given that the resonant behavior
ω2 ≈ω4 did not appear in the model recovery from data. This suggests
an interplay between the resonant frequencies and the network
topology. The question arises, which resonances/triplet interactions
emerge froma large number of possibilities in a given network, natural
frequencies, and nonlinear coupling? An outstanding question is what
is the origin of these triplet interactions that were generated by pair-
wise physical coupling?

A theory for emergent higher-order interactions
To answer these questions, we develop a theory that captures the
important characteristics of the experiments: nonlinear coupling and
triplet resonance conditions. We consider the networks

_zk = f kðzkÞ+α ∑
n

‘ = 1
Ak‘hkðzk ,z‘Þ ð6Þ

where zk 2 C is the state of the kth oscillator, hk : C×C ! C is the
pairwise coupling function, Akℓ is the adjacencymatrix, and α > 0 is the
coupling strength. When the isolated system is close to a Hopf bifur-
cation, the dynamics is described by fk(zk) = γkzk + βkzk∣zk∣228. The Hopf
bifurcation is a common route to oscillations in nonlinear systems and
describes the appearance of oscillations in applications2,3,5,6,8. Our
proofs are valid for γk = λ + iωkwith small λ andωk satisfying resonance
conditions. We fix βk = − 1, but this value is immaterial. We develop a
normal form theory to eliminate unnecessary terms of h(zk, zℓ) and to
expose higher-order ones that predict the dynamics. To a network of
the formof Eq. (6)we associate non-resonanceconditions that allowus
to get rid of the leading interaction terms in α.

Since h(zk, zℓ) is a linear combination ofmonomials and the theory
can be applied to each monomial independently, we assume first that
h(zk,zℓ) is a single monomial of the form

hðzk ,z‘Þ= zd1
k
�zd2
k zd3

‘
�zd4
‘

ð7Þ

for non-negative numbers d1,…,d4. Our major theoretical result is a
formulation of a non-resonance condition given by

ðd1 � d2 � 1Þωk + ðd3 � d4Þω‘ ≠0: ð8Þ

This condition shows up naturally in our approach, as a monomial Eq.
(7) can only be eliminated by a transformation that divides by the left-
hand side of Eq. (8). Hence, an interaction term in the coupling
function h given by Eq. (7) can only be removed if the non-resonance
condition is satisfied. The non-resonance condition is defined as the
union over all non-resonance conditions of its monomial terms. The
network non-resonance conditions are given by the union over all non-
resonance conditions of h(zk, zℓ) for which Akℓ ≠0. Our result is the
following:

In Methods, we show that given Eq. (6) with h : C×C ! C a
smooth map with vanishing constant terms, under the network non-
resonance conditions, there is a coordinate transformation that

eliminates pairwise interaction terms and reveals the higher-order
interactions. The proof consists of two main steps:

(i) Existence of a polynomial change of variables. Consider

uk = zk � αPk ð9Þ

for some polynomials Pk. The goal is to design Pk such that in the
variables uk interaction terms linear in α vanish. We obtain higher-
order interactions of order α2. For Eq. (6) we use

PkðzÞ= ∑
n

‘= 1
Ak‘

~hk‘ðzk ,z‘Þ , ð10Þ

where ~hk‘ðz,wÞ is the function obtained from h(z,w) by transforming
each monomial according to the following replacement rule:

zd1�zd2wd3 �wd4 7! zd1�zd2wd3 �wd4

ðd1 � 1Þγk +d2�γk +d3γ‘ +d4�γ‘
ð11Þ

Note that the imaginary part of the denominator in Eq. (11) is
precisely the left-hand side of Eq. (8). While bringing the equations to
the new form, we face a major challenge to understand the combina-
torial behavior of the Taylor coefficients during the transformation.
We define a bracket on the space of polynomials to track these
coefficients.

(ii) Dealing with transformed isolated dynamics. The second
major challenge lies in the fact that another coordinate transformation
is needed to eliminate terms coming from the isolated dynamics fk.
Indeed, as we eliminate coupling terms linear inα, other terms linear in
α appear due to the isolated dynamics. A remarkable fact is that the
same non-resonance conditions also ensure that the second transfor-
mation exists.

Our theorem is applicable to a much broader class of coupling
functions and network formalisms than what is described by Eq. (6). A
rich variety of new interaction rules can emerge, depending on the
specifics of the set-up (see Supplementary Note 2).

Applying the replacement rule Eq. (11) we obtain

_uk = f kðukÞ � α2 ∑
n

‘= 1
∑
n

p= 1
Ak‘Akp

1G‘p
k ðuk ,u‘,upÞ � Ak‘A‘p

2G‘p
k ðuk ,u‘,upÞ

h i� �
,

ð12Þ

up to higher-order terms in α and u. In Methods, we discuss the new
coupling functions 1Gk and

2Gk some their properties. The coupling is
now α2 explaining anomalous synchronization transitions that appears
in networks (see Supplementary Note 3).

Emergent hypernetworks explain experimental data
Similar to the experiments we consider a ring of four oscillators with
coupling function

hðz,wÞ= z �w+ z2 �w: ð13Þ

Instead of delay, the oscillators are coupled through a con-
jugate variable that enables a streamlined theoretical treatment.
Close to a Hopf bifurcation, the delay would have an effect of
advancing the oscillations over half a period. As before, we con-
sider ω1 −ω2 +ω3 and ω1 −ω4 +ω3 to be close to zero, so, capturing
the triplet resonance in the experiments. We apply our theory to
this case to unravel how higher-order interactions appear in
the data.

The coupling function is a combination of z �w and z2 �w, providing
d1 = 1 andd4 = 1 for thefirstmonomial andd1 = 2 andd4 = 1 for the latter.
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The resonance condition Eq. (8) is satisfied for both. Using the repla-
cement rule Eq. (11), we find

uk = zk +α
zk�1zk
�γk�1

+
zkzk + 1
�γk + 1

+
z2k�1

�zk
γk�1 + �γk

+
z2k�zk + 1
γk + �γk + 1

 !
ð14Þ

Eachnode equation contains 16 interaction terms as in Eq. (12).We
discuss someof these terms for the first node. 2G23

1 appears as node 1 is
connected to node 2 and 2 to 3. This interaction is resonant, see Fig. 2a.
2G43

1 appears because node 1 is connected to 4 and node 4 to 3. This
term is also resonant, see Fig. 2b. 1G24

1 is nonzero and nonresonant.
This term appear as 1 is directed connected to 2 and 4, see Fig. 2c.
Finally, the term 2G24

1 is a forbidden, the term would appear from an
interaction of 1 to 2 and from 2 to 4, however, in the original network
the later interaction is absent, see Fig. 2d. Remarkably, not all inter-
actions are relevantwhen the goal is to describe slowoscillations in the
phases.

Indeed, once we analyse the phases in the new equations, the
coupling term coming from 2G23

1 will lead to oscillations with fre-
quency close to ω1 −ω2 +ω3 while the term coming from 2G43

1 leads
to a frequency close to ω1 −ω4 +ω3. This implies that both terms are
slowly varying. In contrast, the term coming from 2G24

1 leads to
oscillations with frequency ω1 −ω2 +ω4 ≈ω1 and is fast oscillating in
comparison to the slow terms with small frequencies. In virtue of
the averaging theory, such fast oscillating terms can be neglected.
In fact, only resonant terms connected by local trees in the original
graph will survive such as the resonant ones involving ω1 −ω2 +ω3

and ω1 −ω4 +ω3. This yields

_u1 = f 1ðu1Þ � α2η12u
2
1 �u2u3 � α2η14u

2
1 �u4u3

_u2 = f 2ðu2Þ � α2ζ 231u
2
2�u1�u3

_u3 = f 3ðu3Þ � α2η32u
2
3�u2u1 � α2η34u

2
3�u4u1

_u4 = f 4ðu4Þ � α2ζ 431u
2
4�u1�u3

ð15Þ

where ηpq =
1

γp + �γq
and ζ pqr =

2
γp + �γq

+ 2
γp + �γr

+ 1
�γq
+ 1

�γr
. Writing u = reiθ we

obtain equations for the phases θ. The averaging theorem gives

_θ1 = ω1 � α2r30 ρ12ðϕ1Þ+ρ14ðϕ2Þ
� �

,
_θ2 = ω2 � α2r30σ231ðϕ1Þ
_θ3 = ω3 � α2r30 ρ32ðϕ1Þ+ρ34ðϕ2Þ

� �
,

_θ4 = ω4 � α2r30σ431ðϕ2Þ,

ð16Þ

where the phases ϕ1 and ϕ2 are given in Eq. (4). The functions ρ and σ
are provided in the Supplementary Note 4. The emergent hypernet-
work explains the experimental fitting found in Eq. (5). These functions
represent hyperlinks as shown in Fig. 1f.

The phase triplets ϕ1 and ϕ2 are revealed from phase reduction in
the normal form and they are not obvious from the original Eq. (6).We
confirm these predictions by direct simulations of Eq. (6) (Supple-
mentary Note 5). We present examples for a three-node path in Sup-
plementary Note 6 and a six-node network in Supplementary Note 7.

Predicting the slow phase interactions in experiments
In Supplementary Note 3, we show that the experimental recovery of a
hypernetwork is not an artifact. Rather, we prove that imposing spar-
sity unavoidably leads to the recovery of the normal form instead.
Indeed, as the recovery allows for a small least square deviation
between the data and the model, the recovery finds the hypernetwork
as a simpler description of the system. So, by measuring the original
variables and attempting a model recovery while imposing sparsity,
model recovery learns only the higher-order interactions. We now use
the emergent network prediction for the ring network with the cor-
responding resonance conditions as in the experiment to explain the
slow phase dynamics.

From the data we extract the slow phases ϕ1 and ϕ2 as shown in
Fig. 3 in solid lines. Using our theory, from Eq. (16), we obtain that

_ϕi =Ωi + ∑
2

j = 1
aij cosϕj + bij sinϕj ð17Þ

where a’s and b’s are given in terms of the functions σ and ρ in Eq.
(16) see Supplementary Note 5. We treat a’s and b’s as fitting para-
meters from the vector field in Eq. (17) obtained from first princi-
ples, since the corresponding coupling parameter and amplitudes
are unknown. The resulting solutions agree with the experimental
data as seen in Fig. 3. Our findings are not strictly limited to elec-
trochemical oscillators. As shown in Supplementary Note 9, we

Fig. 2 | Emergent higher-order interactions from the original ring network.
Coupling functions appearing in Eq. (12) of node 1. Colors correspond to signs in
the phase combination with blue standing for positive and orange for negative.
a Resonant interaction term appearing as 2G23

1 . b Resonant interaction term

appearing as 2G43
1 . Finally, c is a nonresonant termandd 2G24

1 is a forbidden term (it
does not appear). These new interaction terms can be predicted from the combi-
natorics of the original network and coupling function.

Fig. 3 | Normal form theory explains the experimental results.Weshow the time
series of the slowphaseϕ1 andϕ2 fromexperimental data (solid) and theprediction
of the emergent hypernetwork (dashed) capturing higher-order interactions. The
vector field describing the phase interaction is obtained from first principles. The
coefficients of the vector field are obtained by least-square minimization.
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detected the same hypernetworks in nonlinearly coupled integrate-
and-fire neuron models.

Emergent hypernetworks among network modules coupled
through mean-fields
The requirement of a nonlinear coupling, at first sight, seems to be a
limitation for practical applications. However, here we analyze how
hypernetworks emerge in modular networks with microscopic pair-
wise coupling through phase differences.

We consider four subpopulations of N interacting Kuramoto
oscillators13. Nodes in each subpopulation interact strongly among
themselves with coupling strength μ and weakly between sub-
groups with coupling strength α, see Fig. 4. As we will show at the
macroscopic mean-field level, the interaction is nonlinear. Accord-
ing to our theory, although the mean-fields have a pairwise inter-
action, their model recovery will be in terms of hypernetworks. We
first consider the microscopic description; each oscillator is
described by

_ψkm =ωkm +
μ
N

∑
N

n= 1
sinðψkn � ψkmÞ+ ∑

4

‘= 1
Akl

α
N

∑
N

n= 1
sinðψln � ψkmÞ

� �
ð18Þ

or in terms of mean-fields _ψkm =ωkm + Im μzk +α∑Aklzl
	 


e�iψkm

where

zk =
1
N

∑
N

m= 1
eiψkm ð19Þ

is the mean-field of the subpopulation k. The frequencies ωkm are
distributed according to a Lorenzian ρ(ω, Ωk, σk) where Ωk is the
mean subpopulation frequency and σk is the frequency dispersion.

Applying the Ott-Antonsen ansatz15, we obtain the macroscopic
equations describing the mean-fields in the limit N→∞ as

_zk = f kðzkÞ+ ∑
4

l = 1
Aklhðzk ,zlÞ ð20Þ

where fk is the Hopf normal form with constants γk = (iΩk + μ − σk) and
βk = − μ and

hðzk ,zlÞ=αzl +α�zlz2k , ð21Þ

thus, in the macroscopic description the coupling is nonlinear. We
interpret α as a bifurcation parameter and deal with αzl as a nonlinear
termas in bifurcation theory.We consider the ensemble frequencies to
satisfy the resonance conditions Ω1 +Ω3 ≈ 2Ω2 and Ω2 +Ω4 ≈ 2Ω1. At
α = 0 each subpopulation will have an order parameter behaving as
zkðtÞ= rkeiθk ðtÞ where rk =

ffiffiffiffiffiffiffiffiffi
μ�σk
μ

q
and _θk =Ωk . To obtain the phase

model, we bring the network to its normal form and apply the phase
reduction. In Supplementary Note 10, we perform the calculations of
such resonance conditions to obtain the new normal form equations.
After discarding nonresonant terms the phase equations of the mean-
fields read as

_θ1,3 = Ω1,3 + F1,3ðφ1Þ
_θ2,4 = Ω2,4 + F2,4ðφ2Þ

ð22Þ

where Fi is a linear combination of sine and cosine.
Next, we fix the ensemble frequencies as Ω1 = 2,Ω2 = 3,Ω3 = 4 and

Ω4 = 1 as well as the coupling strengths μ = 0.5, σk =0.48 yielding rk =
0.15 and α =0.1 for all subpopulations. We numerically integrate the
mean-field equations and obtain the complex fields z1(t), z2(t), z3(t) and
z4(t) which enables us to extract the phase dynamics θ1(t),θ2(t),θ3(t)

α

α

α

α

μμ

μμ

φ i

time (s)
0 1000 2000 3000

0.0

2.0

-2.0

-4.0

φ1
φ2

a b

c

Fig. 4 | Interacting subpopulations lead to higher order interaction of mean-
fields. a The original network of coupled subpopulations (with four distinct col-
ours, namely, red, yellow, blue and orange). Oscillators are interacting by an
internal coupling constant μ and inter-subpopulations coupling constant α.
b Higher order phase interaction of the mean-fields represented with the same
colors as in a (red, yellow, blue and orange). Applying our approach we uncover

that the phase interaction between themean-fields is described by a hypernetwork.
c The mean-field slow phase variables φ1 (green) and φ2 (purple) were computed
from the data collected from the simulations of mean fields on the associated
network. The dashed curve is the simulation of the vector field of the slow phases
φ1,2 reconstructed from data using the Lasso method.
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and θ4(t). Performing a Lasso regressionwe recover the vectorfields of
Eq. (22) confirming the theoretical prediction of higher order inter-
actions, see Supplementary Note 10.

As before, we introduce the slow phases

φ1 = θ1 � 2θ2 +θ3,

φ2 = θ2 � 2θ1 +θ4:
ð23Þ

The theory predicts the higher order interaction between the slow
phases as _φk = εk +Gkðφ1,φ2Þ, as shown in Supplementary Note 10. The
fitting the predicted vector field of φ to the data is excellent as can be
observed in Fig. 4c.

For these four subpopulation on a ring, the condition on the fre-
quencies is close to the subspace Vres = {Ω1 +Ω3 = 2Ω2, Ω2 +Ω4 = 2Ω1} ,
forming a co-dimension 2 resonance surface. That is, the emergence of
hypernetworks is generic in a two parameter family of frequencies.

Discussion
We have uncovered a mechanism by which nonlinear pairwise inter-
actions with triplet resonance conditions result in nontrivial phase
dynamics on a hypernetwork. Such interactions traditionally were
attributed in brain dynamics to synaptic transmission between two
neurons mediated by chemical messengers from a third neuron (het-
erosynaptic plasticity)29. Our findings provide an alternative mechan-
ism. On one hand, this finding shows that phase dynamics can be
mediated through ‘virtual’ interactions not physically present in the
system. On the other hand, such a mechanism could be leveraged to
design interactions between remote components not directly con-
nected but instead having correlations in natural frequencies.

The experimental systemwith a generic networkmotif with a ring
of four electrochemical oscillators presented here was an example,
where a relatively simple nonlinear modulation of the coupling
induced a hypernetwork driven phase dynamics. Networks with a ring
topology are selected for the experiment since they are common for
many network based complex systems, e.g., in lasers, biological sys-
tems, neuronal dynamics and many disciplines30,31. Such nonlinear
modulation of the coupling can be quite general in gene expressions;
for example, it wasused todescribe the coupling among circadiancells
through Michaelis-Menten mechanism where coupling from one cell
modulated the maximum gene expression rate in the other32.

Strikingly, we showed that the coupling resulting in mean-field
coupling among network modules has sufficient nonlinearity to
facilitate hypernetwork interactions. In particular, event related
modulation of spectral responses of magnetoencephalogram
(MEG) recordings (i.e., modulation of frequency-specific oscilla-
tions in the motor network established by a handgrip task) have
shown very strong evidence for nonlinear, between-frequency
coupling of remote brain regions33. Our results strongly suggest
that in theseMEG recordings, given the appropriate resonances and
nonlinearities, hypernetwork description could facilitate the long-
range modulation of frequencies. In conclusion, the findings open
new avenues for hypernetwork based description and engineering
of complex systems with heterogeneous frequencies and nonlinear
interactions.

Methods
Our results give an algorithmic procedure for obtaining a hypernet-
work that accurately describes the observed behavior of the original
system. This emergent higher order system depends on details of the
given network, the original coupling function and the resonance
relations among the phases.

Normal form calculations
In Supplementary Note 2, we consider ODEs of the general form

_zk = γkzk � βkzk ∣zk ∣
2 +αHkðz1, . . . ,znÞ, k 2 f1, . . . ,ng, ð24Þ

with zk 2 C and α 2 R. The numbers βk ,γk 2 C are assumed non-zero,
and we furthermore write γk = λ + iωk. Here λ 2 R is seen as the bifur-
cationparameter for aHopf bifurcation, andweassume the interaction
functions Hk : Cn ! C to be smooth (i.e. C∞) for convenience. More-
over, we initially assume each Hk satisfies Hk(0) = 0 and DHk(0) = 0,
though the condition on its derivative is later dropped.

Our main result shows that the ODE (24) can be put in a normal
form that allowsus topredict thephasedynamics of theoscillators.We
do this by using two successive transformations:

wk = zk � αPkðzÞ; ð25Þ

uk =wk � αQkðwÞ, ð26Þ

for some appropriately chosen polynomials Pk and Qk. The first of
these coordinate transformations is used to remove the term αHk(z)
from the Eq. (24). This will generate additional terms in α2 that may be
expressed in the coefficients of Hk and Pk following certain combina-
torial rules. We manage this combinatorial behavior by introducing a
special bracket [•∣∣•] on the space of polynomials. In addition to these
new interaction terms, the transformation will also produce terms in α
involving Pk and βkzk∣zk∣2, which obscure an interpretation of the sys-
tem as a (hyper) network. We therefore remove these additional terms
using the second coordinate transformation. A crucial observation
here is that the non-resonance conditions needed for the first
transformation are sufficient to ensure the second. We are able to
prove this using the precise bookkeeping enabled by the aforemen-
tioned bracket.

When dealing with the case where DHk(0) ≠0, we instead remove
only the non-linear terms inHk using the transformations (25) and (26).
This reveals higher order terms as before. Even though DHk(0)
accounts only for nonresonant terms by assumption, this linear term
will nevertheless cause an overall frequency shift that has to be
accounted for. More precisely, if we denote by Ω the diagonal matrix
with entries the frequencies ω1,…,ωn, then the natural frequencies in
the coupled casewill be given by the imaginary part of the eigenvalues
of iΩ + αDH(0). Here we have set H = (H1,…,Hn). These new fre-
quencies can be approximated by standard eigenvalue perturbation
techniques.

Properties of the coupling functions 1G‘p
k and 2G‘p

k
Applying the transformation of the theorem to Eq. (6) yields a new
system of the form Eq. (12). In Supplementary Note 2, we show that

1G‘p
k ðuk ,u‘,upÞ = ∂~hk‘ðuk ,u‘Þ

∂uk
hðuk ,upÞ+ ∂~hk‘ðuk ,u‘Þ

∂�uk
hðuk ,upÞ

2G‘p
k ðuk ,u‘,upÞ = ∂~hk‘ðuk ,u‘Þ

∂u‘
hðu‘,upÞ+ ∂~hk‘ðuk ,u‘Þ

∂�u‘
hðu‘,upÞ:

ð27Þ

In Eq. (27) a term of degree d in h and a term of degree ~d in ~hk‘

combine to form a term of degree d + ~d � 1 in 1G‘p
k . As both h and ~hk‘

have terms of degree 2 and higher, we see that 1G‘p
k only has terms of

degree 3 and higher. The same holds true for 2G‘p
k , whichmeans that a

classical network description involving directed edges is no longer
possible.

The third order terms are moreover easily found by replacing h
and ~hk‘ in Eq. (27) by their quadratic terms. Likewise, the fourth order
terms are found by replacing h by its quadratic terms and ~hk‘ by its
cubic terms and vice versa in Eq. (27). We may also argue that these
higher order terms in 1G‘p

k and 2G‘p
k are non-vanishing in general.
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Indeed, the coefficients in front of these terms are rational functions of
γk and the coefficients of h. Such functions are either identical to the
zero function (which Eq. (27) excludes) or non-vanishing on an open
dense set.

New terms emerge that have an interpretation as higher-order
interactions. The two double sums in Eq. (12) have a combinatorial
interpretation. The first double sum counts all pairs of nodes (ℓ, p) that
both influenced node k in the original network. The second double
sum counts all pairs (ℓ, p) where ℓ influenced k and p influenced ℓ and p
need not influence k directly in the old network, so that new node-
dependency is formed.

An explicit algorithm for predicting the emergent
hypernetwork
We present an algorithm for obtaining an emergent hypernetwork
froma given network system. Its input consists of the adjacencymatrix
A, the function h and the phases ω1 through ωn, and we assume the
nonresonance conditions of the theorem to hold. The algorithm is as
follows:

Algorithm 1. Emergent Hypernetworks
Input: Adjacency matrix A, coupling function h, frequencies and
amplitudes γi’s
Output: Hypernetwork and Coupling functions

1: for each k 2 S do
2: for each ‘ 2 S do
3: if Akℓ ≠0 then
4: form thepolynomials ~hk‘ðuk ,u‘Þ by the replacement rule

zd1�zd2wd3 �wd4 7! zd1 �zd2wd3 �wd4

ðd1�1Þγk +d2�γk + d3γ‘ +d4�γ‘
5: for each p 2 S do
6: if AkℓAkp≠0 then
7: Compute 1G‘p

k
8: if AkℓAℓp ≠0 then
9: Compute 2G‘p

k
10: procedure RESONANT TERMS IN THE COUPLING FUNCTIONSG
11: for each ud1

k
�ud2
k ud3

‘
�ud4
‘ ud5

p �ud6
p monomial of 1G‘p

k and 2G‘p
k do

12: if (d1 − d2 − 1)ωk + (d3 − d4)ωℓ + (d5 − d6)ωp ≠0 then
13: discard term
14: procedure REMAINING MONOMIALS ARE THE COUPLINGS OF NODE k

Data availability
We provide the experimental time-series and the extracted phases of
the oscillations (Fig. 1) at ref. 34. Source data are provided with
this paper.

Code availability
The source code for reconstructing the functions representing
hypernetwork dynamics from oscillatory networks dynamics is avail-
able ref. 35.
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