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Abstract—This paper is concerned with a challenging problem
of channel estimation and equalization for amplify-and-forward
cooperative relay based orthogonal frequency division multi-
plexing (OFDM) systems in sparse underwater acoustic (UWA)
channels. The sparseness of the channel impulse response and
prior information for the non-Gaussian channel gains, modeled
by an exact continuous Gaussian mixture (CGM), are exploited
to improve the performance of the channel estimation algorithm.
The resulting novel algorithm initially estimates the overall sparse
complex-valued channel taps from the source to the destination as
well as their locations using the matching pursuit (MP) approach.
The effective time-domain non-Gaussian noise is approximated
well as a Gaussian noise in the frequency-domain, where the esti-
mation takes place. An efficient and low complexity algorithm is
developed based on a combination of the MP and the maximum a
posteriori probability (MAP) based space-alternating generalized
expectation-maximization technique, to improve the estimates
of the channel taps and their locations in an iterative manner.
Computer simulations show that the UWA channel is estimated
very effectively and the proposed algorithm exhibits excellent
symbol error rate and channel estimation performance.

Index Terms—AF relaying, continuous Gaussian mixture,
matching pursuit, OFDM, SAGE, underwater acoustic channel
estimation.

I. INTRODUCTION

EMANDS for underwater communication systems are
increasing due to the on-going expansion of human
activities in underwater environments such as environmental
monitoring, pollution control and tracking, underwater explo-
ration, scientific data collection, maritime archaeology, offshore
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oil field exploration, port security and tactical surveillance
[1]-[4]. Wire-line systems, particularly fiber optical systems,
can be deployed to provide real time communication in under-
water applications. However, their high cost and operational
disadvantages due to the lack of flexibility become restrictive
for most practical cases. This triggers the growing demand for
underwater wireless links.

Radio, optical, or acoustic waves can be used for wireless
transmission underwater. The transmission ranges of radio and
optical underwater systems are limited to short distances. With
relatively favorable propagation characteristics of acoustic
waves, acoustic systems achieve longer transmission ranges (on
the order of kilometers) underwater and are widely deployed
in practice. This technology however suffers from a very small
available bandwidth and data rates are limited to a few tens of
kilobits/sec (kb/s) [1]. With the emerging bandwidth-hungry
underwater applications and the concept of “Underwater In-
ternet of Things” [5], demanding requirements are further
imposed on underwater acoustic (UWA) systems. To address
these new challenges, innovative physical layer designs such
as multiple-input multiple-output (MIMO) communication and
orthogonal frequency division multiplexing (OFDM) have been
used in UWA systems (see e.g., [6]-[10]) to exploit spatial and
multipath diversities.

Another promising research direction to take advantage from
diversity benefits in UWA systems is relay-assisted (cooper-
ative) communication. Originally introduced in the context
of terrestrial radio systems [11], cooperative communication
has also been applied to UWA systems [12]-[17]. In [12],
Choudhuri and Mitra have derived capacity bounds for UWA
relay channels and investigated optimum power allocation.
Through the comparisons with the rates achievable via direct
transmission and two hop communication, it is concluded that
cooperative relaying increases the rates significantly. In [13],
Carbonelli et al. have considered a multi-hop system with
decode-and-forward (DF) relaying and demonstrated that it
outperforms the direct transmission since path loss degradation
is much better addressed with the use of relays. In [14], Zhang
et al. have considered a similar scenario in [13] and investi-
gated the performance of multi-hop underwater systems taking
into account practical constraints such as the frequency de-
pendent signal attenuation, inter-hop interference, half-duplex
constraint, and large propagation delay. In [15], Vajapeyam
et al. have investigated a distributed space-time block coding
scheme with amplify-and-forward (AF) relaying and reported
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diversity gain improvements over direct transmission via sim-
ulations and experimental results. In [16], Rahmati and Duman
have considered a cooperative underwater OFDM system and
addressed asynchronism problems. They have proposed a delay
diversity structure at the destination and, through the analysis
of pairwise error probability, they have demonstrated that the
proposed system achieves full spatial diversity. In [17], Jalil
and Ghrayeb have proposed a distributed coding scheme that
aims at achieving a good diversity-multiplexing trade-off in
UWA cooperative networks. They have considered a network
with multiple source nodes, multiple relay nodes, and a single
destination and derived the end-to-end error performance of
this scheme.

A common underlying assumption in most current works on
cooperative UWA systems is the availability of perfect channel
estimation at the receiver side with few exceptions [18]—[20].
In a practical coherent system, the fading channel coefficients
should be estimated during the training period and then used
in the detection process. The channel estimation problem in a
cooperative system with DF relaying involves the individual
estimation of source-to-relay and relay-to-destination chan-
nels. This estimation problem is essentially the same as in
point-to-point links and the existing results on channel estima-
tion for point-to-point UWA links (see e.g., [21]-[24] and the
references therein) can be used for this purpose. On the other
hand, for a cooperative system with AF relaying, the channel
estimation problem involves the estimation of a cascaded
channel consisting of source-to-relay and relay-to-destination
links. Channel estimation for AF relaying has been studied ear-
lier in the context of RF communications, see e.g., [25]-[28],
but those results are not directly applicable to UWA systems
since the underlying channels are much different. Particularly,
the impulse response of the UWA channel is often sparse as the
multipath arrivals should become resolvable. Furthermore, the
effective noise entering the system between the source and the
destination through the relay is correlated and non-Gaussian.
The cascaded channel structure with the combination of spar-
sity and correlated non-Gaussian noise creates a challenging
estimation problem for UWA AF relaying systems, which is
the motivation for our work.

In this paper, we present a pilot assisted channel estimation
technique for relay networks that employ the AF transmission
scheme in UWA channels. Our main contribution in this work
is two-fold. First, we exploit the sparse structure of the UWA
channel impulse response to improve the performance of the
channel estimation algorithm, due to the reduced number of taps
to be estimated. The resulting algorithm initially estimates the
overall sparse channel taps from the source to the destination as
well as their locations using the matching pursuit (MP) approach
[29]. The overall time-domain non-Gaussian noise, affecting the
system from source to destination, is approximated well in the
frequency domain by a Gaussian noise where the channel esti-
mation is employed. We also model the prior probability den-
sity functions (pdfs) of the overall cascaded complex channel
gains, from source-to-relay and relay-to-destination, as contin-
uous Gaussian mixtures (CGMs) and show that an exponential
type of mixing pdf admits this representation exactly. Second,
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Fig. 1. Underwater cooperative system with amplify-and-forward relaying.

based on the CGM model, we develop an efficient and low
complexity novel channel estimation algorithm by combining
the MP and the space-alternating generalized expectation-max-
imization (SAGE) techniques, called the CGM-MP-SAGE al-
gorithm which relies on the concept of the admissible hidden
data, to improve the estimates of the channel taps and their lo-
cations as well as the channel prior distribution parameters in
an iterative manner. We demonstrate that by suitably choosing
the admissible hidden data on which the SAGE algorithm relies,
a subset of parameters is updated for analytical tractability and
the remaining parameters for faster convergence [30], [31].

The remainder of the paper is organized as follows.
Section II presents a system model for an OFDM-based under-
water cooperative wireless communication system and descries
the main parameters of the UWA channel. Section III proposes
the new sparse channel estimation and equalization algorithms
and Section IV provides the basic initialization techniques for
the iterative algorithm proposed. Section V includes a compu-
tational complexity analysis and provides performance results
based on simulations. Finally, Section VI contains concluding
remarks.

II. SYSTEM MODEL

We consider an OFDM-based cooperative wireless commu-
nication scenario in which the source node .S transmits infor-
mation to the destination node D with the assistance of a relay
node R each of which is equipped with a single pair of transmit
and receive antennas. The cooperation is based on the receive
diversity (RD) protocol [32] with single-relay AF relaying with
half-duplex nodes. In our work, we assume that the relay node
does not perform channel estimation in order to keep its com-
plexity as low as possible. As shown in Fig. 1, in the broad-
casting phase, the source node transmits to the destination and
the relay nodes. In the relaying phase, the relay node forwards
a scaled noisy version of the signals received from the source.
The UWA channel between each node pair is characterized by
multipath propagation, typically with a few significant paths, re-
sulting in a sparse multipath channel model [33]. This type of
channel can be represented by a parametric channel model, con-
sisting of a limited number of distinct paths parametrized by the
path delays and path gains. The parametric channel model effec-
tively reduces the dimension of the signal estimation problem,
and the corresponding channel estimation can achieve better
performance than that of non-parametric channel model-based
estimators.
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Time-varying UWA channel impulse responses (CIRs) for S
— R, R — D and S — D links are sparse and characterized
by

Lsr
BSR( ) = > ASR@)S(r — TSR (1) (1)
=1
D AFP1)s(r - TEP (1) )
p=1
Lgp

> ATP()s(r

where, for x € {SR, RD,SD}, Ly, A)(t) and 7, (t) denote
the number of non-zero paths, the real channel path amplitudes
and the time-varying path delays, respectively. We assume that
the path gains on each link remain constant over one OFDM
symbol transmission and vary independently from symbol to
symbol. That is, A (1) =~ A, p=1,2,..., L.

The continuously time-varying delays 7, (¢) are caused by
motion of the transmitter/receiver as well as scattering of the
moving sea surface or reflection due to sound speed variations
[33]. For the duration of an OFDM symbol, the time variations
of the path delays can be approximated well by a Doppler rate
as 7, (t) = 7, — 7,'t. We assume that the path delays, 7,° are
constant over an OFDM symbol duration and all paths have a
similar Doppler scaling factor, that is v, = +*. Note that, in
general the Doppler scaling factor can be different for each path
[34]. However, it was stated in [35] that as long as the domi-
nant Doppler shift is caused by direct transmitter/receiver mo-
tion, this assumption can be justified. On the other hand, in [43],
the problem with the path-specific Doppler scaling distortions
in OFDM receiver designs were investigated and new receiver
structures proposed to cope with these kinds of distortions. Also
an efficient solution has been proposed in [44] for the challenges
imposed by the different Doppler scaling factors by computing
an average Doppler scaling factor. Consequently, we can in this
case operate our channel estimation and equalization algorithm
with this single (average) Doppler value as if it represents the
fixed dominant Doppler scalar factor.

Taking these assumptions and approximations into account,
the time-varying continuous-time multipath UWA channel im-
pulse response models above are simplified to
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The baseband equlvalent channel impulse response of
h*(t,7) in (4) can be determined as follows [36]:
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» 75 . Note that the model in (4) deals
only with real channel path amplitudes, A, obtained from a ray
tracing technique. However, there are many diffuse multipath
components diffracted or scattered by the rough sea and bottom
surface. Consequently, assuming high carrier frequency, multi-
path components will have random phases uniformly distributed

where o
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over [0, 27), and by the central limit theorem, we can assume
that the channel coefficients ;' in (5) are uncorrelated, zero-
mean complex Gaussian random variables each having variance
012). The average power of the channel is normalized to unity,
that is, Zﬁ:l O'Z = 1. Depending on the sea conditions, each
channel gain |a,‘| can be assumed to have a different distri-
bution. When the receiver is in shallow water and close to the
transmitter, diffuse random multipath contributions are negli-
gible and the channel tap gains may be assumed to obey the
Rician distribution. On the other hand, with increasing distance
between transmitter and receiver, large sea dynamics prevent di-
rect path contributions and mostly the diffuse multipaths domi-
nate, resulting in the channel gains obeying a Rayleigh distribu-
tion. In our work we assume a priori that the channel path gains
obey a Rayleigh distribution.

At the source node, the OFDM based relay system with N
subcarriers employs actively K subcarriers to transmit data
symbols and nothing is transmitted on the remaining N — K
carriers. During any OFDM symbol, each active subcarrier is
modulated by a data symbol d. [k], where < and k represents the
OFDM symbol index and the subcarrier index, respectively.
After taking an N -point inverse fast Fourier transform (IFFT)
of the data sequence and adding a cyclic prefix (CP) of duration
Tcp before transmission, to avoid inter-symbol interference
(ISI), the baseband-equivalent, continuous time-domain trans-
mitted signal can be expressed as

M-1K/2-1

)= \/;gL%/ dfk }exp(j—z%rk (t*CTWM*TOP)) ®grit)
2
0 <1t <Tsyp,
(6

where ® denotes linear convolution and gr(t) is the impulse
response of the transmitter filter. Tsypy = T + T¢op is the
total OFDM symbol duration and Af = 1/T is the OFDM
subcarrier spacing.

The received passband signals in the broadcasting phase (first
time slot) at the relay and the destination nodes are given as

7R (t) = 3(t) @ BOR(t, ) + 7R (1) =

Lsr
{<Z S <1+f%t—7;f’*>> ’ f} 2
(7)
and

7P () =350t) @ K0 (t, 1) + 7P (1) =

{(ijagDeyZﬂfﬁ [ ].+"/5D)t TS%) ejZﬂ'fC } NSD(t)
®)

respectively. In the relaying phase (second time slot), the re-
ceived passband signal at the destination node is shown in (9)
the normalization factor and y{*(+) is the baseband equivalent of
gR(). 798 (1), nRP(t) and 7P (t) represent the additive white
Gaussian noises (AWGNSs) in the channels S — B, R — D and

at the bottom of the next page, where w =
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S — D, respectively, each with one-sided power spectral den-

sity Ny. To ensure that the power budget is not violated, the

relay node normalizes the receive signal gjf (t) by .
Substituting (7) into (9) and neglecting the second order prod-

ucts, (9) can be expressed as
Z Z aSRQBD oi2m e TR RP)

p2(t) = { (

s (1+75 R+t — 0 +7 D) >612”fct}+ﬁg(t)
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T2 TSR + 7' (13)
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and
1
a(t) = 5ﬁSR(t) & AP (1, 7) + 7P (¢). (15)

There is a one-to-one relationship between £ and (p, ¢) in (12)
and (13), and conversion between them can be easily obtained
as follows:

Given (p,q) = ¢ =q+ Lgrp(p —

-1
given {=p= VL—J +1,¢= ({ — 1)mod(Lgrp)+1,
(16)

1), and

RD

where |.]| denotes the floor operator.

Note that in typical UWA communications systems, the
receiver directly samples the passband signal due to a rel-
atively low carrier frequency. Consequently, resampling,
passband-to-baseband downshifting as well as Doppler shift
estimation, compensation and channel estimation are often
performed in the digital domain. As specified in [33] and [34],
to mitigate the frequency dependent Doppler effect in the
received signal (11), the following three operations are carried
out on the sampled received passband signal to obtain the final
discrete frequency-domain samples.

1) The main Doppler scaling effect is removed through re-
sampling of the operation on the samples of the passband re-
ceived signal taken at discrete times ¢ = mTs with a sampling

rate 1/T; as 9jz[m] = 52 (mT), with a resampling factor 1 + 7,
leading to the resampled signal Z3[m] = Fa(mTs/(1 + 7)).
From (11) it follows that

IRV N L
Za[m] = —NRe eJZ”meTSeﬂﬁfcmeSZ hes((l+bmTs —T4)
=1
+nalm],  (17)

where

-7

—=- 18
1+7% (18)

The Doppler effect, v, is divided into a non-zero valued
Doppler rate, caused by relative movement of the transmitter,
the relay and the receiver, and a Doppler spread, centered
around zero caused by different travel paths and receiver angle
shifts. As can be see from (17), the non-zero mean of « is
removed by the resampling. Consequently, the new residual
Doppler shift b on each path is spread around zero between
[~ Vmax, Vmax), after compensation by 5. vymax can be chosen
based on the Doppler spread, with resolution Av = 2,5 /N,
N, is the number of grid points on the Doppler spectrum.

2) The sampled version of the baseband-equivalent received
signal z5(t) is obtained from (17) via a demodulation process.
Demodulation is implemented digitally by passband-to-base-
band down shifting followed by a lowpass filtering with the
sampling rate 1/T; = B. At the sampling instants ¢t = nT, +
T p, the baseband discrete-time signal can be expressed as fol-
lows:

L
1 .
Balp Rt Z hes ((1—|—b)t77’g)

w
£=1

+ va[n],
t=nT,+T,
CcP (19)

where v = f.b, represents the residual carrier frequency offset
(CFO) and v3[n] is the baseband equivalent discrete-time noise
signal of the resampled 72[m] as in (17). Finally compensating
the residual mean Doppler shift by its estimated value 7 and sub-
stituting (6) in (19), fort = nT;+Tp, the baseband equivalent
received discrete-time signal can be expressed as (see e.g., [33])

z3[n]=

z[n] :e*ﬂ””tzz[n]
M-1 K/2-1
[ 763271'(1/ V)t Z he Z Z d
\/_ s=0 ¢g=—K/2

X exp <ﬂ$ t—<sTsyrr— TGP)) exp (%(bt - Tg))
® g1 (1 4 b)t — 7¢) 4 v[n], (20)

where v[n] = iy, [n].
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We assume that the cyclic prefix, T p, is greater than or equal
to the maximum channel path delay to prevent the inter-car-
rier-interference (ICIT) from entering the system, that K active
subcarriers are within the flat region of the frequency filters, and
that the residual Doppler shift v is fully compensated, that is v
= V. Also, since the time varying-channel impulse response is
assumed to be constant over the duration of one OFDM symbol,
and that the number of channel paths and the path delays do
not change during an OFDM symbol, it is sufficient to consider
channel estimation only symbol by symbol. Therefore, omitting
the OFDM symbol index for notational simplicity, the nth time
sample within any OFDM symbol after the CP removal can be
expressed as

= Zhe

K/2-1

v 2 ddex

q: K/2

< ((1 +onTs+0Tep— 7@))

+vn], (21

where T' = NT,, and the hg’s represent the overall discrete
equivalent channel complex-valued path gains. They are
non-Gaussian distributed random variables with zero-means

and variances o7 = 0’2'SR x ojRL a priori, since for each
, _ SR RD , . :
= (pq), he = " x aq D and ap £ and o, are indepen-

dent, complex Gaussian random variables with means zero and
variances az’SR 2RD (Z 0’2’SR I AP —
representing the complex channel gains on links S —> R and R
— D, respectively.

Similarly, overall additive additive noise samples in the
cascade channel on the S — R — D link are denoted by
v[n],n = 0,1,...,N — 1. From (15) it follows that these
are also non-Gaussian random variables with zero-means and
variances BNy (1 + 1), since the additive noise signals n°%(.)
and n*7(.) on links § — R and R — D are zero-mean, white
complex Gaussian processes with one-sided spectral density
N, and the complex channel multipath gains, aRD and aS B
on these links are also independent Gaussian as spec1ﬁed in the
paragraph above.

An N—point fast Fourier transform (FFT) is applied to trans-
form the sequence z[n] into the frequency domain. By the as-
sumption that the K subcarriers on which data is transmitted
are within the flat region of the transmitter and receiver filters
of unity gains, the kth subcarrier output of the FFT during one
OFDM symbol can be represented by

and o

zm%z‘ ] exp ( — 1 275)
Z Alk, €] + V[k], k fg,. g 1, (22)
where
K/2—-1
Z dlq]Fy(k. ¢
=—K/2
Fe 4= — ZGXP(J—(b +b——7'e>e><p<j%(q—k)>,
(23)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 1, JANUARY 1, 2016

where 7y = 74/T; is the normalized ¢th path delay. Fre-
quency domain noise samples V[k] in (22) are determined
from V[k] = (1/v/N) En 70 v[n] exp(—j2Z*%). Note that
although the time-domain noise samples, v[n], are generated
from a wide-sense stationary, non-Gaussian random process, as
explained earlier, the complex frequency-domain noise samples
V'|k] are approximately zero-mean Gaussian distributed due to
the statistical independence of carriers (via the central-limit the-
orem). It can be easily shown from (15) that the frequency-do-
main noise samples V[k] are uncorrelated and consequently
independent since they are approximately Gaussian with zero
means and variances 2, = o, = NyB( 213). Conse-
quently, by inserting (23) into (22), the vector form of (22) can
be expressed as

Z—=Ah+V, (24)
where
= [Z[-K/2], Z[-K/2+1],...,Z]K/2 = 1]]" e C¥
= [h1,hay...,hy]" €CE
= [V[-K/2],V[-K/2+1],...,V[K/2—1]]" eC¥

and the [k, ¢]th element of A € CX > is determined from (23).

In this work, we are mainly interested in estimation of a fast
time-varying, cascade UWA channel in a cooperative system
with amplify-and-forward relaying, based on the observation
model (24). As explained earlier, the overall continuous-time
channel impulse response is represented by a parametric model
in which each distinct path is characterized by a few significant
complex-valued path amplitudes, {h¢}£_, , the normalized path
delays {7; £ 7,/T;}L_, and the Doppler spread b, resulting in
a sparse multipath channel model. Note that the overall cascade
channel parameters h;, 7 and b are determined by means of the
individual parameters of the channels from the source to relay
and the relay to destination in (12), (13) and (18), respectively.

Conventional matching pursuit algorithms have been applied
to sparse channel estimation [37]. However, in practice, the
sparsity assumption does not always hold due to the non-in-
teger normalized path delays in the equivalent discrete-time
baseband representation of the channel. Therefore, such an
estimated channel may differ substantially from the original
channel. To improve the channel estimation performance,
the analog-to-digital (A/D) conversion at the input of the
OFDM receiver is implemented with an oversampling rate
R(°> o/Ts,0 = 1,2,. .., leading to finer delay resolution,
where p is the oversampling factor, and 1/T is the baseband
Nyquist sampling rate. Consequently, the real-valued normal-
ized path delays 7¢,£ = 1,2,...,L, can be discretized as
ne = | o7¢| and take values from the set of the possible discrete
path delays:

nﬂET:{071727"-7N771}7

where N; = oLop, Lop = Teop/Ts and Tep is the duration
of the CP. Note that ¢ = 1 is typically chosen in MP-based
channel estimators.

Similarly, the real-valued Doppler spread b can be discretized
as 8 = [(b + vmax)/Av]| and takes values from the set of
possible discrete Doppler rates:

(25)

3eB={0,1,2,...,N, — 1}, (26)
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where N, = (2Umax)/Av.

Based on the associated discrete Doppler rates and the
random channel tap positions, /3, {77@}%:1, the received signal
in (24) can be rewritten as

L

Z=>) a,h+V,
=1

@7

where, a,, is the ryth column vector of the finer resolution
matrix A@ ¢ CKXN-No called a dictionary matrix, whose
columns correspond to the (3, n¢)th discrete multipath channel
taps and Doppler rate positions, respectively. For a given r; <
(3,n¢), the kth component of a,, is determined from (23) as

ar,[k] = A[k, (28)

(b=—Vinax+8AV,7e=14/ 0)

Note that for 8 € {0,1,... N, —1},andn, € {0,1.... N, —
1}, the total number of columns of A g NN, and they are
labeled as v, = 1,2,..., N, N,. The conversion between ry
and (83, 7¢) can be easily obtained as follows:

re=0+None+1,

B =remod(N,) —1and, n, = {F—EJ —1.
NI/

Since L <« NN, the overall cascade channel can be as-
sumed to be sparse and the channel estimation problem can
be solved as a sparse signal recovery problem. The MP or or-
thogonal MP algorithms are popular sparse recovery methods
and can be used for channel estimation problems. However, the
overall discrete equivalent cascade channel impulse response
in UWA cooperative communication systems may not repre-
sent a truly sparse channel impulse response even though the
individual channels are perfectly sparse. Thus, the channel es-
timation performance of these algorithms based on compressed
sensing may degrade substantially.

To improve the channel estimation performance, we propose
a new technique that combines the MP and the maximum a pos-
teriori probability (MAP) algorithms, using the CGM pdf as
prior information for the channel gains, under the SAGE frame-
work, which we call the CGM-MP-SAGE algorithm. We incor-
porate priors for the unknown complex valued channel gains,
he, € =1,2,..., L, in a Bayesian framework, which are defined
in (12) as hy = a5 x o' where aJ® ~ CN(0,05") and
al? ~ CN(0,07%). Since the bivariate probability density
functions of a;? % and afD have spherical symmetry, it can be
clearly seen that the h,’s are also spherically symmetric having
non-Gaussian pdfs. Consequently, they can be represented by a
CGM f(he) = [;~ ¢(he | oFve)p(ve)dve, where ¢(z|o?) de-
notes the zero-mean Gaussian pdf with variance o2, and where
p(ve) represents the mixing probability distribution [38].

In the following section, we demonstrate how the CGM-MP-
SAGE algorithm estimates the sparse complex-valued channel
gains, channel path delays and Doppler spread in an iterative
way. We assume the CGM model, as mentioned above, for the
a priori pdfs of hy,£ = 1,2, ..., L. The initial channel gains as
well as the path delays and the Doppler shift are estimated by an
MP algorithm and they are updated within the SAGE iterations

to improve their estimation performance. Computer simulations
show that the improvement in the estimation performance re-
sulting from this approach is very substantial.

III. SPARSE MULTIPATH CHANNEL ESTIMATION WITH THE
CGM-MP-SAGE ALGORITHM

We now propose a new iterative algorithm, called the CGM-
MP-SAGE algorithm, based on the SAGE and MP techniques
for channel estimation employing the signal model given by
(27). The SAGE algorithm, proposed by Fessler and Hero [39],
is a twofold generalization of the so-called expectation maxi-
mization (EM) algorithm that provides updated estimates for a
set @of unknown parameters. First, rather than updating all pa-
rameters simultaneously at iteration (z), only a subset of Og
indexed by S = SJ[i] is updated while keeping the parame-
ters in the complement set @+ fixed; and second, the concept of
the complete data  is extended to that of the so-called admis-
sible hidden data x s to which the observed signal R is related
by means of a possibly nondeterministic mapping. The conver-
gence rate of the SAGE algorithm is usually higher than that of
the EM algorithm, because the conditional Fisher information
matrix for each set of parameters is likely smaller than that of
the complete data, given for the entire space. At the ith iteration,
the expectation-step (E-step) of the SAGE algorithm is defined

Qs(Os|8) = {logp (X’syes | 9?) | R,G[i]} :
In the maximization step (M-step), only 6 is updated, i.e.,
6[51}1] = argmax Qs(0s | 6
s

el — el

S S

On the other hand, the MP algorithm is an iterative procedure
that can sequentially identify the dominant channel taps and es-
timate the associated tap coefficients by choosing the column
agf) of A9 that best align with the residual vector until all the
taps are identified. Our proposed CGM-MP-SAGE algorithm
implements the MP algorithm at each SAGE iteration step by
updating all the dominant channel taps and the associated tap
coefficients sequentially. The details of the algorithm are pre-
sented below.

The unknown parameter set to be estimated in our problem is

®— (h,r,9}, (29)
where h = hi,ha, ..., hr]T, T = (B,m),
n=[n,n,....,nc] . and ¥ = {o},..., 0% }. The first step

in deriving the CGM-MP-SAGE algorithm for estimating ®
based on the received vector Z in (27) is the specifications
of complete data and admissible hidden data sets whose pdfs
are characterized by the common parameter set ®. To obtain
a receiver architecture that iterates between soft-data and
channel estimation in the CGM-MP-SAGE algorithm, we
decompose ® into L 4 1 subsets, representing the parameters,
h, r and 4, as follows:
 The first L subsets of ® are chosen as ®; = {hg,r¢},
£=1,2,...,L, representing h and r = (3,9). For each
subset, we define &, = ®\ &, = {hy, 7,9}, hy; = h\ hy,
Fo =1\ r¢, where \ denotes the exclusion operator.
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e The (L + 1)st subset of ® is chosen as 74, = & and
B, =8\ B =B\ 9= {hr}

At SAGE iteration (%), only the parameters in one set are up-
dated, while the other parameters are kept fixed, and this process
is repeated until all parameters are updated. According to the
above parameter subset definitions, each iteration of the SAGE
algorithm for our problem has two steps:

1) ®,,¢=1,2,..., L, are updated with the CGM-MP-SAGE

algorithm while ®.4 is fixed.

2) &1, is updated with the SAGE algorithm while ®,,( =
1,2,..., L, are fixed and this process is repeated until all
parameters are updated.

We now derive the CGM-MP-SAGE algorithm as follows.

A. Estimation of Soft Data Symbols

Suppose now that we employ P known data symbols (pilots)
in each OFDM symbol. We assume they are are evenly inserted
into the K subcarriers. Let P = {iy,i2,...,ip} denote the
set that contains the position indices of the P pilots, denoted
by dp(q),q € P. During the computation of (23), in the iter-
ative channel estimation algorithm as descried shortly, we use
P pilot symbols and replace the K — P unknown data symbols
by the soft symbols that are obtained from an equalizer output
determined in the previous iteration. This enables us to obtain
refined channel estimates as the soft symbols become more reli-
able from iteration to iteration. Initially, the unknown data sym-
bols dp(q) are set to zero [33]. From (22) and (23), it can be
easily shown that Z can be expressed as

Z=Gd+V, (30)
where the [k, g]th element of the matrix G € CK*¥ can be
written as

€2))

L
kol =Y heFylk, (]
=1

and Fylk,¢] is given by (23). The data vector d =
(do,di,...,dg_1]F in (30) is a superposition of the pilot
vector, dp, and the vector of the unknown data symbols,
dp, asd = dp + dp. Note that the vectors dp,dp € C¥
contains nonzero components only at the pilot positions P
= {i1,i2,...,ip} and at the data positions P, respectively.
Consequently, (30) can be expressed as

Zp 27— Gdp

—Gdp +V. (32)

At the ith SAGE iteration step, then, the soft data
symbols dp are recovered at the output of a linear min-
imum-mean-square-error (MMSE) equalizer as

~ps . . . -1 4

aw = gt (G@GT(” + 7*11,() z¥. (33
where v is the signal-to-noise ratio (SNR). The [k, g]th element
of G is computed from (31) by replacing the channel esti-
mates {h( 2 NGIOR 7 ))} 1> obtained at the previous iteration,
and ZSD) is calculated from (32) as Z W 7z G()dp. Note that
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although the MMSE equalizer outperforms other linear equal-
izers, the matrix inversion in (33) requires O(K?3) flops which
represent significant burden when K is large. However, as al-
ready documented in [33], the UWA channels produce nearly-
banded channel matrices G and this property can be exploited
to reduce the complexity substantially by means of the factor-
ization of Hermitian banded matrices [40].

Finally, the matrix A in (24), formed by the column vec-
tors {ar§i> 1805800 }, that is necessary for the next esti-

mation step, can be computed easily from the estimates r() =
PO e80T and A9 = dp + A from the previous

iteration.

B. Estimation of ¢, = {he,re = (B,ne) },£=1,2,..., L

First, we state the prior information about the channel coef-
ficients h = [hy, ha,...,hz]T. From (12) and as shown ear-
lier, for £ = 1,2, ..., L, the pdf of the complex-valued, cascade
channel &, is distributed as a multiplication of two independent
complex Gaussian random variables oy ® ~ CN(0, 025%) and
ol ~ CN(0,02%P). Consequently, hy is non-Gaussian and,
it can be shown that the pdf of hy = a5 ® x affP is

) = 2o (221,

¢ ar

(34

where oy = 5% P and Ko(-) is the zeroth-order modified
Bessel function of the second kind. The spherical symmetric
non-Gaussian pdf of the complex channel gains, {h;}, can be
represented a priori by a CGM distribution

flhe) = /0 d(heloive)p(ve)dve, (35)
where §(z]s?) £ (1/ws?)exp (—|z|?/s®) denotes a
zero-mean, complex Gaussian pdf with variance s?. The pdf
p(v¢) represents a mixing distribution on [0, 00). It is interesting
to see that the non-Gaussian pdf of f(h,) in (34) admits this
representation exactly with o7 = crg‘s Rag'RD for the mixing
pdf p(-) having an exponential form as follows [41]:

plvg) =e 74,1, > 0. (36)

Taking then into account the prior distribution of the channel
coefficients specified above, a suitable approach for applying
the CGM-MP-SAGE algorithm for estimation of ®, is to de-
compose the kth sample of the receive signal in (27) into the
sum

_ K K
Z[k]:XZ[k]+XZ[A]7k:737737]-7 (37)
where
L
Xo[k] = ar [kl + VIEL Xkl = > ar, Kk, (38)
p=1,p#¢L
and a,,[k] denotes the kth element of the a,,. We de-

{X¢, v}, where
Xo[K/2 -1])" and

fine the admissible hidden data as x;
Xy = [Xe[-K/2], X[[ K/2+1],...,
Vv = [Vl,l/z,.. VL} .

To perform the E-Step of the CGM-MP-SAGE algorithm, the
conditional expectation is taken over x, given the observation
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Z and given that ® equals its estimate calculated at the ith iter-
ation:

Qu(®//8") = F {log» (xe,

8, |z,8"}

~F {logp ()(glhg7 Te, V, i’él)) ‘Z, i)(l) }
+E {logp (e|va) \z,i“)} (39)
where, from (38)
» | Kot
togp (Xelhe, e, 87 = 37 1Xulk] - an Klhel,
Ty k=—K/2
(40)

and, since under the condition that v, is given, hg is a zero-

. . . . ()
mean Gaussian random variable with variance equal to af vy,
it follows from (35) that

5(i)
log p (he | ve) = log ((he | 07" 12))

hel?
‘2( )|V . (41)
g 4

Inserting (40) and (41) into (39) and taking expectations it
follows that

Q)= Ij/ZR/( 7T s i )

~ (@)

Vz
P
gy

hel®,  (42)

where SR(-) and (-)* denote the real part and the conjugate op-

—=(4)

(1)
erators, respectively and X g[k] . 1" are defined as

5 2 e { x| 2,29

vl éE{— | z,<I>“>}. (43)
144
Recalling (37), it follows that
AT - (i)
X[k =2Zk - ) a0 [K]R{). (44)
p=1,p#L
The vector form of (42) can be expressed as follow:
i 2 o),
Qe(®:/@) = —-R{al X, hi}
9y
) ~—3 (1)
VZ 2
| ozt | bl @)
where from (44),
=) — ) — )7 L A
X, =|X{K/2 ... . XdK/2-1 ]:z > aT;i)hg).
p=1,p#L

In the M-step of the CGM-MP-SAGE algorithm,
estimates of ®, —
£=1,2...

the
{hg,r¢} are updated sequentially for
, L, at the (i 4 1)st iteration according to

@é“’l) = arg max Qg(tI)A(I)(i)), (46)
f)

where Qg(<1>¢|<l>(i)) is given by (45). So, taking the derivative of
Q. (®,|®) with respect to hj and equating it to zero, we find
the final SAGE estimates of (r¢, h¢) at the (i 4 1)st iteration as
follows:

. . al %,
i = (3(i+1),‘77$+1)> = argmax — ——,
r ala,
<)
(i+1) _ fzai“+”)(£
he = ‘ = (47)
61;2 aT(”'l)a (7+1) + 2(1)
where r = (ﬁ, ), 8 € {0,,,...,N, — 1} and 7
€ {0,1,..., N, — 1} withy ¢ [l ¥ 60y

C. Computation 0f1/[1
From (43) it follows that

~ 1
v, ! :/ p(ve | 2,0 p)), (48)
4]

Note that
1 )
o (r" | 03" ve) ple)
F(rE)

where p(r;) and f(hff)) were given earlier by (36) and (34),
respectively. Inserting (49) in (48) we have

( ) 1 oo 1 (1) 2 0_2(7")
= ﬂ/ —26Xp — M—'—Vﬁ dl/g .
ray " flh,)Jo Vi Ve

(50)
The integral in (50) can be computed with the aid of a formula
given in [41] as follows:

—6) g0 K (2Ih§”\/0§”)
v, b = fi) T 4=1,2,...,L
11 Ko (20 /o)

P (ue | Z,h(®, r(")) - . (49)

vy

(5D

D. Estimation of ¢, = 9 = {c%,...,0%}

We define the admissible hidden data as xr+1 = {h, ¥} to
estimate the mixture parameters ¢ = {07, ...,0%}. To perform
the E-Step of the algorithm, the conditional expectation is taken
over xr+1 given the observation Z and given that ® equals its
estimate calculated at the ith iteration:

QL+1(¢L+1|¢(i)) :E{IOgP(XLHl‘I’LH ¢L+1) \ Z,‘I’(i)}
= {IngMh“",r“")IZh %%, 9}
~B{log it 1, b") | Z D, ), 97} (52)

Note that the last expression in (52) follows since r
and v are independent of 4 = [0%,03,...,02]T. Also,
since the condition that » is given, the components of
h = [hy,ha,...,h]T are zero-mean, complex Gaussian with
variances 07, =1,2,. .. L.Consequently, from (35) we have

2
Z (1060,3 + ks NL ) . (53)

£

log p(h|d, v, h®)
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Inserting (53) in (52) and taking the expectation with respect
to v, we obtain

L 1)1
lgl |hg)|2
2: o2 ’

=1 L
(54)

Qri1(®r4118Y)

— (2
where 1/[1 is given in (51).
In the M-step of the algorithm, the estimates ®7,,1 = 9 are
updated at the (¢ + 1)st iteration according to the following
constrained maximization problem:

i+1 i
811 = argmax Qrys (8r41/2)

subject to :

L
Z o =1.
=1

(55)

It is straightforward to show that the solution of the above op-
timization problem, yielding the variance estimator of the CGM
components, hy, at the (¢ + 1)th iteration is

Yy o ‘h )|2

(03)+D) =
Sy Vin' RO

4=1,2,...,L. (56

IV. INITIALIZATION

A. Initialization of{hgo), réo)} With the Matching Pursuit
Algorithm

The initialization of the SAGE algorithm is a critical issue
since the algorithm may not converge if the initial values of the
parameters to be estimated are not chosen properly. We apply
the matching pursuit algorithm to determine the initial ®* =

hg]) O = = (8O, p, Oy r=1,2,. L} considering the ob-
servatlon model in (27). It is well known that as the MP algo-
rithm can estimate the positions 7“20) quite well, its estimation
performance of the complex channel gains would not be suf-
ficiently good. However, following the initialization step, the
SAGE algorithm is able to com;))ensate for this weakness by
using those rough estimates, h to enable the algorithm to
converge to an optimal MAP solutlon. The details of the MP
algorithm are given below as follows:

From (27) we compute the observation vector Z at the pilot
subcarriers, P = {i1,42,...,ip}, of the OFDM symbol which
leads to the new reduced-dimensional observation model

L
Zp =Y 8,h+Vp, (57)

=1
where Zp = [z(i1),2(i2),...,2(ip)]¥ € C¥, Vp =
[w(i1),v(iz),...,v(ip)]T € CF and &,, € C¥ is the lower

dimensional 7,th column vector of the dictionary matrix
AEDQ) € CP*NeNv The kth component of &,, is evaluated
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from (23) by replacing the index & with ¢y, fork =1,2,..., P,
and setting the unknown data symbols to zero [33] as follows:

v, K] :Ap[k q

N—-1 P

L (bn — Tg))

1
dli,] exp<
n=0 p=1

2nn . .
X exp T(zp — i)

As a first step in the MP algorithm, the column in the dic-
tionary matrix, Agf) = [4y,a1,...,aNn.N, 1], associated with
the observation (57), that is best aligned with the residue vector
pPo = Zp is found and denoted by a,.,. Then the projection of
pq along this direction is removed from p, and the residual p,
is obtained. The algorithm proceeds by sequentially choosing
the column that is the best match until a termination criterion
is met. At the /th iteration, the index of the vector from Agf)
most closely aligned with the residual vector p, ; is obtained
as follows [33]:

(58)

(b= vmax 880, 7="2L)

=1 2
a;
ry?) = argmax‘f;%”,j —0,1,...,N,N, — 1,
J aa;
. 0) (0 0
it (59)
and a coarse channel path amplitude estimation at r( )i
a ©Pr—1
0
h = o5 (60)
A (0.
Tl £
from which the new residual vector is computed as p, = p,_; —

h( Ja OB The iteration is repeated until a specified number of

channel taps, L, have been selected or the residual becomes suf-
ficiently small, i.e., ||pp]] < e.

B. Initializations of the Gaussian-Mixture Parameters
9= {(6))0 ¢ =1,2,...,L}

We use the reduced dimensional observation model given by
(57) to estimate the Gaussian mixture parameters 4 of the com-
plex-valued channel gains hys, £ = 1,2. ..., L. For notational
simplicity, we re-write (57) in the following form:

z=Th+v, (61)

where z = Zp,T = Jej,es,...,er],e = 5T(01,
£

h = [h1, ha,..., k1] and v = Vp. We also use the notation

se = (62)©,8 = 1/6% and ay = 1/(v4s,) in the following
derivations. The maximum likelihood (ML) estimate of the
variances s = [s1, 82,...,sr]7 is given by

o~

§ = argmax p(z|s). (62)
E}

In (62), p(z|s) can be evaluated by first averaging it over h,
conditioned on the mixing parameters v = [vy,va,...,vp]7,
and then taking the average over the exponential mixing distri-
bution in (36) as

plals) = | { / p<z|h,a>p<h|a>dh}p<v>dv.

(63)
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From (61) and, since the components of h and v are indepen-
dent, it follows that

p(z|h, a) wexp{—ﬁHz—Tth}, (64)
L

p(hja) = [[(ae/m) exp {—ache®},  (65)
Zzl

v) = [ exv{-ve}. (66)
=1

Substituting (64) and (65) into (63), the inner integral of (63)
with respect to h is computable and given by

1®)2 [ plalh,cop(hia)dh
— 7K ot (‘rA'rT + (1/,3)1K) o
X exp {zf (TATT + (1/6)IK) o z} . (67)

OéL) .
Using the matrix inversion lemma, (TATT +(1/9)1 K)
in (67) can be expressed as

where A = diag (a1, 09, . ..,
—1

-1 -1

(TATT +( //3)1K) — 8Ly~ 5Y (TTT+(1 /ﬂ)A) T,

(68)

Taking into account the fact that Y'Y is a banded matrix, it
can be approximated as

TIY = diag ([les]|, ez ... lec]?) . (69)

where ey is the £th column vector of Y. Substituting (68) into
(67), after replacing (69) in (68) and after some algebra, (67)
can be computed as

2]1%) }

Iv= (ZH (leoff+ >) exp{ Z Eshe —
- | (70)

=1
where & = (z'ey)? and A\, = ([le]|® + (l/ﬁ)a’g)fl. Substi-
tuting (70) into (63), discarding the terms independent of s and
then performing the integration with respect to v, after some al-
gebra we have

plzls) ~

ﬁ exp {1/(s:8lec|?)} K, (

sellee]?

2(51&/5,2)1/2) G

1 [ec?

Finally, the ML variance estimates s are found by solving the
following constrained optimization problem:

§ = arg max log p(z[s)

subject to
L
ZSg:L and s, >0 for £=1,2,...,
=1

L. (72)

It can be easily shown that each term in the product of (71) is
a convex function of vy, £ = 1,2, ..., L. Consequently, (72) is
a convex optimization problem whose solution can be obtained
by a water filling algorithm [42]. The details of the derivations

CGM-SAGE-MAP Algorithm h(+D), p(41), (g2) Y
Egs. (47), (56)
Z N
" | YES
' MP Converges ?
dp(pilot) : Algorithm No
- |Egs. (59), (60)
1
L—»| Mixture
V|| Variance
, Estimation
' Eq. (78)
_______________ Ll
Initialization

Fig. 2. Block diagram of the CGM-MP-SAGE channel estimation and equal-
ization algorithm.

TABLE I
COMPUTATIONAL COMPLEXITY DETAILS
INITIALIZATION

Eq. No | Variable | CMs CAs
(59, 60) |2, K |~(P+1)LN.N, |~(P—1LN.N,
(78) so=02” | ~31L ~SL
CGM-SAGE-MAP ITERATION
(33) dy) ~3N2(L+A+2HNL| ~ 2N2(L+ A +2)+N(I—1)
(51) ! “ ez 0
(47 @“) )W ~NL(N,N, +3) |~NL(N,N, +3)
(56) 07 )<7+1> ~5L/2 ~L/2

and the resulting optimal estimates {3 }Z_, for the mixture vari-
ances are given in the appendix.
The final CGM-MP-SAGE algorithm is summarized in

Fig. 2.

V. COMPLEXITY ANALYSIS AND SIMULATION RESULTS

The computational complexity of the proposed algorithm is
presented in Table 1. Note that, the initial values, T£0)7 h&o) in
(59) and (60), are obtained by the MP algorithm and require
approximately (P + 1) LN, N,, complex multiplications (CMs)
and (P — 1)LN, N, complex additions (CAs) as given in
Table 1. Also, the initial values, s; = 03(0), are obtained by a
water filling (WF) algorithm which requires 31L CMs and 8L
CAs for each step of the WF algorithm.

We now present the computation complexity of the main
CGM-MP-SAGE algorithm. In the computation of d(

in (33), the channel matrix G and the Hermitian ma-
G(”)G(i)T +7’1IK> can be approximated as nearly
banded whose total number of diagonal and subdiagonals
is A. This property results in a substantial reduction of
the computational complexity. Namely, the computation of
55;) requires approximately 3N*(L + A + 2) + NL CMs
and 2N*(L + A + 2) + N(L — 1) CAs. Consequently,

for updating of v, * ,Té”l),hy“) and (02)0FD, we
need approximately NL(N,;N, + 3) + 7L/2 CMs and
NL(N;N, + 3) + L/2 CAs. As a result, it follows from
Table I that the total computational complexity per iteration
of the CGM-MP-SAGE channel estimation algorithm is ap-
proximately 3N?(L + A + 2) + (N + P)LN,N, CMs and
2N*(L + A + 2) + (N + P)LN,N, + N(L — 1) CAs

trix (
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TABLE 11
CHANNEL AND SIMULATION PARAMETERS OF THE SPACE’08 EXPERIMENT

carrier frequency (fc) 13 KHz

channel bandwidth (BW) 2.442 KHz

number of subcarriers (V) 256

number of occupied subcarriers (K) |224

OFDM symbol duration (T) 104.8 ms

Subcarrier spacing (Af :=1/T) 9.54 Hz

cyclic prefix duration (Tcp) 12.4 ms

number of paths on each link (L) |3,6,9,12

maximum Doppler rate (bymaz) 1073,5x1073,1072 5x 10~ 2
Doppler spread resolution Av 10-3

modulation formats BPSK, QPSK, 16QAM
number of CGM-MP-SAGE iterations| 5

pilot spacing (Ap) 1,2,4,8
oversampling factor (o) 1,2, 4,8, 16

~ O(NZL). Consequently the complexity of the algorithm is
on the order of @(N L) per OFDM subcarrier.

In this section, we now present computer simulation results
to assess the performance of OFDM-based cooperative commu-
nication systems in UWA channels with the proposed channel
estimation algorithm. The UWA OFDM specifications in the nu-
merical simulation are chosen to match the settings used in the
SPACE’08 Experiment as given in [33]. The experimental data
of the SPACE 08 Experiment, which included stormy days with
strong wind and wave activity leading to severe Doppler spread,
was recorded off the coast of Martha’s Vineyard, MA, from Oct.
14 to Nov. 1, 2008. Channel and simulation parameters, associ-
ated with the UWA channel, are summarized in Table II.

Channel delays on each link of the cascaded channel,
{r }5:1, are assumed to be independent of each other and
uniformly distributed within the interval [0,7,,]. The am-
plitudes {AX})_, are assumed to be Rayleigh distributed
with the average power decreasing exponentially with delay,
E{(A;)Z} =Q, = Ce v /Ter where C is the power nor-
malization constant such that 25:1 Q, = 1. The Doppler rate
b is assumed to be uniformly distributed within [—buax, bmax )
where b, 1S chosen as in Table II.

We consider a comb-type pilot structure with equally spaced
pilot subcarriers. We measure the performance of the system in
terms of the frequency-domain mean square error (MSE) of our
proposed channel estimator and the corresponding symbol error
rate (SER). The initial estimates of the complex-valued channel
gains and the corresponding positions used in the water filling
algorithm to determine the initial values of the CGM parameters
are obtained using the reduced complexity MP algorithm.

Figs. 3 and 4 show MSE and SER performance curves of
the MP and CGM-MP-SAGE algorithms for binary phase
shift-keying (BPSK), quadrature phase shift-keying (QPSK)
and 16-ary quadrature amplitude modulation (16QAM) sig-
naling formats. As seen from these curves, the CGM-MP-SAGE
algorithm, having excellent channel estimation performance
and symbol error rate, outperforms the MP estimator although
the MP algorithm uses the linear MMSE equalizer to detect
the data symbols. We conclude from these curves that the
CGM-MP-SAGE algorithm exhibits superior performance in
the estimation of channel tap positions, tap coefficients as well
as the CGM parameters that model the a priori pdf of the tap
coefficients of the cascaded channel.
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- |-8-MP Algorithm (16QAM)

- |-#-CGM-MP-SAGE Algorithm (16QAM)
-*-MP Algorithm (QPSK)
-+CGM-MP-SAGE Algorithm (QPSK)
-e-MP Algorithm (BPSK)
--CGM-MP-SAGE Algorithm (BPSK)

Average MSE

5( 20 25 30

Fig. 3. MSE vs. SNR performance comparisons of the CGM-MP-SAGE and
MP algorithms for different constellations: g = 8, bmax = 5x 1073, A, = 4,
L = 3.

-2||-a- MP Algorithm (16QAM)
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Symbol Error Rate (SER)
>

=)

Fig. 4. SER vs. SNR performance comparisons of the CGM-MP-SAGE and
MP algorithms for different constellations: 9 = 8, bmax = 5x 1073, A, = 4,
L = 3.

In Figs. 5 and 6, the MSE and SER performance of the CGM-
MP-SAGE algorithm is plotted as a function of SNR for over-
sampling factors of ¢ = 1,2, 4, 8, 16. It can be seen from these
figures that an oversampling factor of ¢ = 8 would be sufficient
to obtain better sparse channel estimation performance of the
proposed CGM-MP-SAGE algorithm. We also investigate the
Doppler effect on the MSE and SER performance of the system.
Figs. 7 and 8 show that the proposed CGM-MP-SAGE algo-
rithm is quite robust to Doppler shifts up to byax = 5 X 10-3
which can be considered as severe Doppler effects. The effects
of channel estimation on the average MSE performance are in-
vestigated as functions of SNR with different pilot spacings
(A,). The plots in Fig. 9 exhibit that the MSE performance gain
becomes much less for high SNR levels beyond 20 dB despite
denser pilot symbols. It can be seen from these curves that a pilot
spacing of A, = 4 would be sufficient for maximum Doppler
rates around by = 5 %X 1073, In Fig. 10, we also examine the
SER performance of the proposed CGM-MP-SAGE algorithm
under tougher channel settings, i.e., L = 3,6,9,12. It can be
seen from Fig. 10 that the performance of the proposed algo-
rithm yields quite convincing performance results even under
these harsh channel conditions.

Finally we note that by examining all the SER-vs-SNR per-
formance results presented in this section, it is clear that the
channel estimation results in a decrease in the diversity order.
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Fig. 7. MSE vs. SNR performance of the CGM-MP-SAGE algorithm for dif-
ferent Doppler rates: o = 8, A, = 4, L = 3, QPSK signaling.

This is mainly due to the time-selective nature of the UWA chan-
nels. Especially, since the speed of sound in water is much lower
than that of electromagnetic waves in air, the UWA channel be-
comes rapidly time-varying due to the severe motion-induced
Doppler effect. In fading channels with very high mobilities,
the time variation of the channel over an OFDM symbol pe-
riod results in a loss of subchannel orthogonality which leads to
inter-channel interference due to power leakage among OFDM
subcarriers. Consequently, estimation of the UWA channel pa-
rameters as well as channel equalization become critical issues
in the design of UWA systems operating under such conditions.
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In particular, the channel estimation performance degrades sub-
stantially especially in the higher SNR region forming an error
floor and consequently causing loss of diversity in SER perfor-
mance. The diversity loss depends on the ratio of the power al-
located for the pilot sequences and that allocated for the infor-
mation signal. In the computer simulations carried out in our
paper, 25 percent of the total power has been allocated to the
pilot sequences and the corresponding diversity loss can be seen
from the SER vs SNR and MSE vs SNR curves in Figs. 3-9. If
this ratio is increased by allocating more power to the pilot se-
quences, an improvement in SER and MSE performance would
be expected.
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VI. CONCLUSIONS

In this work we have presented a novel pilot assisted cas-
cade channel estimation and equalization algorithm for AF co-
operative relay based OFDM systems operating in sparse and
cascade connected UWA channels. In this algorithm, the initial
values of the unknown parameters of the UWA channel such
as sparse channel gains, channel delays and the variances of
the CGM densities, representing the prior information for the
overall cascaded channels gains, are estimated by the MP algo-
rithm and a new variance estimation algorithm. The prior pdf
of the overall cascaded complex channel gains, from source-
to-relay and relay-to-destination, have been modeled as CGMs
and it has been shown that an exponential type of mixing pdf
admits this representation exactly. We have further developed
an efficient and low complexity novel iterative channel estima-
tion algorithm based on the SAGE technique which makes use
of the soft data estimates obtained from the equalizer output at
each iteration step.

The performance of the proposed algorithms has been as-
sessed by detailed computer simulations on a typical UWA
channel model widely used in the literature. Thus, the proposed
approach and the resulting channel estimation algorithm seem
to be very promising for this kind of challenging and diffi-
cult channel estimation scenario involving cascade connected
channels with non-Gaussian priors. Finally, the computer sim-
ulations have shown that the UWA channel is estimated very
effectively and the proposed algorithm has excellent symbol
error rate and channel estimation performance, and is robust to
the effects of Doppler mismatch.

APPENDIX
DERIVATION OF OPTIMAL ESTIMATES FOR
MIXTURE VARIANCES

The convex optimization problem in (72) can be solved by
the Lagrangian method. Consider the expression

2 2
= LseBlled] [leel]
L
“p D ose-1), (73)
£=1

where p > 0 is the Lagrange multiplier. The Kuhn-Tucker con-
ditions for the optimal solution are

aJ

Y. if

35, 0, if s > 0,

B—J <0, if s, = 0. (74)
8513

Taking the derivative of J with respect to s, and equating to
zero we have,

el

L1 eve K ()

Csiled? s se/s g, (L)

—p=0. (75)

el
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The ratio K1(-)/Ko(-) in (75) can be well approximated as

Ky (3(se8) 11?)
Ko (2(&/52)1/2 )

T 14 (a—1)y/sg, for0 < sy <1, (76)

lleell®

where, a 2 K, (—”efuz (5@/82)1/2) /Ko (—Hefuz(&/sz)lﬂ)
Using this approximation and after some algebra (75) can be
expressed as

53+ Ps; + Qs+ R =0, (77)
where, P £ —2B/p;Q 2 (B? — 2Au)/u*; R £ (2AB —
C/p? with A £ —1/(3||ec|)?); B 2 a/(BvVE) — 1 and C
£ 1/(B+/&). It can be easily verified that the cubic equation
in (77) has only one real root and this root can be obtained as
follows:

7 2\
T /¢ 7 £
=8 =\ 5+ s Vitar) T3

1<¢<1L, (78)

where [2]* £ max(0,z) andp = (3Q — P)/3:q = (2P —
9PQ + 27TR)/27.

Note that (78) is the optimal solution if the Lagrange multi-
plier p satisfies the condition

L

de(ﬂ) =1

£=1

The inverse of the Lagrange multiplier can be regarded as a
water level. Generally, the water level can be found by the bi-
nary search method [42].
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