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1 Introduction

A considerable amount of real-life decision problems involve uncertain prospects as well as
risky prospects (e.g., making investment, buying insurance, etc.). In such cases, individuals
do not necessarily know the objective probabilities of occurrence, and it consequently be-
comes important how individuals perceive the probability of the event under consideration.
For such scenarios involving both uncertain and risky prospects, Tversky and Fox (1995)
proposed a two-stage model arguing that an individual first judges the probability of the
event under consideration and then transforms this probability using a probability weighting
function under risk (see also Fox and Tversky, 1998).

A first-price sealed-bid auction is an example of such scenarios, since lack of knowledge
regarding the other bidders’ valuations poses a risk, whereas lack of knowledge regarding
the other bidders’ bidding behavior, which in turn determines the auction outcome, poses
an uncertainty. It is commonly observed in first-price auction experiments that subjects
tend to bid higher than the risk neutral Nash equilibrium predictions (see Cox et al., 1988;
Kagel, 1995, among others). Several models are presented to explain this well-documented
overbidding phenomenon: ambiguity aversion (Salo and Weber, 1995), regret theory (Filiz-
Ozbay and Ozbay, 2007), level-k thinking (Crawford and Iriberri, 2007), and loss aversion
(Lange and Ratan, 2010), as well as subjective probability weighting (see Goeree et al., 2002;
Armantier and Treich, 2009a,b; Keskin, 2016, among others).

With the current study, we aim to stimulate a discussion on subjective probability weight-
ing in first-price auctions. In the models analyzed by Armantier and Treich (2009a) and by
Keskin (2016), it is assumed that bidders subjectively weight their winning probabilities.
On the other hand, in a recent experimental study, Armantier and Treich (2009b) reported
that subjects perceive their winning probabilities differently, which implies that using prob-
ability weighting functions directly on the winning probabilities might be misleading. What
if subjects have different winning probabilities in their minds based on their judgment of
the uncertain situation they face, as described in the first part of the Tversky-Fox two-stage
model? If so, this would imply that even if bidders do weight probabilities subjectively, they
might have been considering weighted winning probabilities different from what the theory
presumes they would. To our understanding, the experimental observations by Armantier
and Treich (2009b) reveal an important shortcoming in the literature: either researchers
misperceive the winning probabilities that subjects correctly perceive, or subjects misper-
ceive the winning probabilities that researchers correctly calculate. Independent of which of
these views is correct, it seems clear that these probability (mis-)perceptions create a dis-
connect between the theoretical analysis and the subject behavior observed in experiments.
We believe that if one is able to identify the extent of this disconnect between the winning
probabilities subjects perceive and the objective probabilities as calculated by researchers,
then one would have a better understanding of the reasons behind overbidding.

In this paper, we conduct an experiment investigating subjects’ beliefs about their win-
ning probabilities in order to understand the extent of the above-described disconnect, and
then we relate our observations to the Tversky-Fox two-stage model. Our findings indicate
that the two-stage model is able to explain the observed behavior by a proper selection of
the probability misperception and probability weighting functions. However, further exper-
imental investigation is necessary for the elicitation of those functions.



2 The Model

Let N be the set of n bidders participating in a first-price sealed-bid auction. Each bidder
i ∈ N has a private valuation vi ≥ 0 and knows that the other bidders’ valuations are
independently drawn from [0, v̄] according to a cumulative distribution function F . All
bidders simultaneously submit their bids, and the bidder with the highest bid wins the
auction. Ties are broken randomly and with equal probabilities. The winner’s payoff is
equal to her own valuation minus her bid, whereas the other bidders receive no payoffs.

Consider a bidder i ∈ N with valuation vi ≥ 0 and assume that each bidder j ∈ N \ {i}
submits her bid following some increasing bid function βj : [0, v̄] → [0,∞). We can write
that bidder i’s bid b ∈ [0,∞) turns out to be greater than the bid of some other bidder j ∈
N \ {i} with probability F (β−1

j (b)). Accordingly, bidder i wins the auction with probability
∏

j 6=i
F (β−1

j (b)). This situation can be interpreted as if bidder i faces the following lottery1:

(

vi − b ,
∏

j 6=i

F (β−1
j (b)) ; 0 , 1−

∏

j 6=i

F (β−1
j (b))

)

. (1)

Surely, bidder i chooses the bid that induces the lottery with the highest expected utility.
We assume that each bidder’s perception of her winning probabilities is in line with

the two-stage model proposed by Tversky and Fox (1995): each bidder first judges the
probability of the event under consideration (represented by w1 : [0, 1] → [0, 1]), after which
this probability is transformed by the probability weighting function under risk (represented
by w2 : [0, 1] → [0, 1]). To be more precise, assuming that a bidder’s objective winning
probability is p ∈ [0, 1], the bidder misjudges this probability and believes that she will
win the auction with a probability of w1(p); but then she distorts this probability while
making her bidding decision and acts as if her winning probability is w2(w1(p)). Utilizing
a standard assumption in the literature on subjective probability weighting, which is that
w1(0) = w2(0) = 0 and w1(1) = w2(1) = 1, the unique symmetric equilibrium can be written
as in Proposition 1.

Proposition 1. In a first-price sealed-bid auction with two-stage probability weighting, the
unique symmetric Nash equilibrium is given by

β(vi) = vi −

∫ vi

0
w2(w1(F

n−1(y)))dy

w2(w1(F n−1(vi)))

if all bidders (mis-)perceive probabilities according to the same functions, w1 and w2.

Proof. The proof follows from Proposition 1 in Keskin (2016). To make the current paper
self-contained, we provide a shorter version of the proof in the Appendix.

In the following section, we provide some experimental support for the two-stage model
in first-price sealed-bid auctions.

1A lottery is denoted by a tuple of pairs such that the former element of the pair is the outcome and the
latter element is the respective probability of occurrence.



3 The Experiment

3.1 Experimental Design

The experiment was conducted at Bilkent University and involved three identical sessions
with 24, 24, and 26 subjects. Each session took around 60 minutes. In the experiment we
used a so-called experimental currency (EC), with the exchange rate of 1 EC = 4 TRY,
which was approximately 2 USD at the time of the experiment. Given this exchange rate,
the subjects were paid an average of 14.05 USD.

The experiment consisted of three stages. In the first two stages, our subjects participated
in a two-player first-price sealed-bid auction. These two stages differ only in the valuations
subjects will possibly be assigned. In the third stage, our subjects faced a lottery framework
which is —in essence— equivalent to the auction framework.2

In the first two stages, we collected the subjects’ bids as well as their guesses about their
winning probabilities. Anticipating that winning probabilities would be more transparent
to subjects if the number of possible valuations is small, we employed a discrete setting, as
in Goeree et al. (2002) and Armantier and Treich (2009b). Throughout the experiment we
relied on the strategy method. In the first stage, each subject was given a list of valuations:
0 EC, 2 EC, 4 EC, 6 EC, 8 EC, 11 EC. For each valuation v from this list, each subject
was asked to submit only one bid b and to guess her winning probability under the case
in which the valuation v is realized and she bids b. We finalized the stage by randomly
assigning a valuation to each subject, which in turn determined the auction outcome.3 For
an example, consider two subjects: i and j. Suppose that they are assigned the valuations
vi and vj, respectively. If the bid subject i submitted under valuation vi is greater than the
bid subject j submitted under her own valuation vj, then subject i wins. The winner is paid
her own valuation minus her bid: vi − bi.

In the second stage, subjects were divided into new groups of two and were asked to
complete the same set of tasks. The only difference from the first stage was the list of
possible valuations: 0 EC, 3 EC, 5 EC, 7 EC, 9 EC, 12 EC.

In the third stage, we presented several lists of lotteries to our subjects. Each list is
obtained from the auction framework in the first two stages of the experiment. For a concrete
example, consider the first stage and a bidder i with valuation 6 EC. Assuming that the other
bidder follows the risk neutral Nash equilibrium (RNNE) —which is bidding 0 EC, 1 EC,
2 EC, 3 EC, 4 EC, and 5 EC respectively—, this situation can be interpreted as if bidder i
faces the lottery

(1 EC , 0.9167 ; 0 EC , 0.0833)

if she bids 5 EC; and she faces

(2 EC , 0.7500 ; 0 EC , 0.2500), (2)

2The experimental design follows closely to those of Dorsey and Razzolini (2003) and Armantier and
Treich (2009b).

3We carefully explained to our subjects that there will be separate randomizations for each subject.
Furthermore, we emphasized that they should select their bids carefully, as one of them would directly
influence their auction payoffs.



if she bids 4 EC; and so on. For instance, the lottery (2) utilizes the information that bidder i
would win the auction if the other bidder submits a bid less than or equal to 4 EC, which
occurs only if the other bidder (who bids according to the RNNE) has a valuation less than
or equal to 8 EC. We asked our subjects to choose the lottery they prefer the most from
each lottery list. The stage is finalized by randomly selecting a lottery list for each subject
and by determining the outcome of the lottery the subject chose from that list. The subject
is directly paid that outcome.

In theory, individual behavior in the auction framework should be consistent with that
in the lottery framework. More precisely, if a subject with valuation 6 EC bids 4 EC in
the auction stage, then she should choose the lottery (2) from the corresponding lottery
list. If otherwise, this would mean that the subject —for some reason— does not perceive
the lottery framework described above when participating the auction. As a matter of fact,
we expect to find such differences, and we expect the reason behind those differences to be
subjects’ (mis-)perceptions of their winning probabilities in first-price auctions.

Table I: Observations in Stages 1 and 2
Even

Valuation 2 4 6 8 11
RNNE 1.00 2.00 3.00 4.00 5.00
Mean 1.05 2.50 3.95 5.50 7.53
Std. Dev. 0.28 0.53 0.77 1.10 1.51
Median 1.00 3.00 4.00 6.00 8.00
Mode 1.00 3.00 4.00 6.00 8.00

Obj. Prob. (%) 25.00 41.67 58.33 75.00 91.67
Mean† 29.78 38.69 46.08 52.36 61.57
Std. Dev. 22.08 20.48 18.82 17.95 22.37
Mean‡ 30.40 31.71 42.82 44.00 58.84
Std. Dev. 22.11 16.70 19.94 15.95 20.89

Odd
Valuation 3 5 7 9 12
RNNE 1.00 2.00 3.00 4.00 5.00
Mean 1.74 3.24 4.74 6.20 8.36
Std. Dev. 0.60 0.64 1.05 1.39 1.83
Median 2.00 3.00 5.00 6.00 9.00
Mode 2.00 3.00 5.00 7.00 9.00

Obj. Prob. (%) 25.00 41.67 58.33 75.00 91.67
Mean† 29.30 36.62 44.04 49.70 59.22
Std. Dev. 22.69 20.22 18.99 20.28 23.57
Mean‡ 16.10 33.87 35.02 40.40 53.84
Std. Dev. 10.79 24.11 17.53 19.25 21.74

† The respective objective probabilities are calculated under the as-

sumption that each subject believes that the other bidder plays sym-

metrically
‡ The respective objective probabilities are calculated under the as-

sumption that each subject believes that the other bidder follows the

RNNE



Finally, from another perspective, our experiment can be thought of as a game-theoretic
version of the famous Ellsberg experiment in which the unknown urn is endogenously created
(see Ellsberg, 1961).

3.2 Experimental Observations

In Table I, we report the bidding behavior and the probability predictions in stages 1 and 2.
Our subjects tended to overbid when their valuations are high whereas their bids were in
line with the RNNE predictions when their valuations were sufficiently small. In particular,
there seems to be a clear overbidding when v ≥ 5. Furthermore, subjects’ guesses about
their winning probabilities were significantly different than the objective probabilities.4

Armantier and Treich (2009b) argued that underprediction of winning probabilities leads
to overbidding, but did not take a stand on the source of the disconnect between the objective
and subjective probabilities. We take the analysis one step further. In our experiment, beside
participating in the auction, each subject made decisions in a lottery framework obtained
directly from the auction framework. In Figure 1, we report the observed lottery behavior
as a comparison to the auction behavior. More precisely, in order to compare the lottery
behavior with the bidding decisions, we first convert the lottery framework back into the
auction framework by mapping every lottery to the corresponding bid amount. Then if a
subject bids b when her valuation is v and if the same subject chose the lottery induced by an
amount less/greater than b from the lottery list associated with valuation v, we report this
switch using a “+”/“−” sign. In short, when subjects’ behavior in the lottery framework is
considered a baseline, a “+”/“−” sign represents overbidders/underbidders in the auction
stages.

Figure 1: Comparison between Stages 1-2 and 3

(a) Even (b) Odd

Figure 1 indicates that subjects’ behavior in the lottery framework is mostly inconsistent
with that in the auction framework. For instance, for each v ≥ 3, most subjects chose a

4We employ two methods for the calculation of objective probabilities: (i) Each subject believes that the
other bidder plays symmetrically. This means that each subject believes that she would win the auction if
the other bidder ends up with a lower valuation, so that the subject’s bids have no effect on the objective
probabilities. (ii) Each subject believes that the other bidder follows the RNNE. This means that each
subject believes that she could win the auction even when the other bidder ends up with a higher valuation.
Accordingly, the subject’s valuation has no effect on the objective probabilities.



lottery induced by a bid amount lower than her actual bid in the auction framework. This
highlights that when the objective probabilities were known to our subjects, their tendency
to overbid was essentially suppressed.

Table II: Observations in Stage 3
Even

Valuation 2 4 6 8 11
Optimal Choice 1.00 2.00 3.00 4.00 5.00
Mean 0.81 1.70 2.64 3.54 4.51
Std. Dev. 0.39 0.77 1.12 1.38 1.43
Median 1.00 2.00 3.00 4.00 5.00
Mode 1.00 2.00 3.00 4.00 6.00

Odd
Valuation 3 5 7 9 12
Optimal Choice 1.00 2.00 3.00 4.00 5.00
Mean 1.25 2.17 2.97 3.71 4.52
Std. Dev. 0.57 0.93 1.32 1.51 1.64
Median 1.00 2.00 3.00 4.00 5.00
Mode 1.00 2.00 3.00 4.00 6.00

Using the observed probability predictions in stages 1 and 2, one can identify the lottery
framework our subjects believed they were facing. Though, doing that one cannot completely
explain the observations reported above. This indicates that there must be additional factors
behind overbidding, and we relate those other factors to the second stage of the Tversky-Fox
two-stage model.

Figure 2: Observations in Stage 3

(a) Even (b) Odd

Note: For a given valuation, if the theoretically optimal lottery is induced by the bid amount b, then L/H
represents a subject who chose a lottery induced by b

′ lower/higher than b.

As a matter of fact, since the objective probabilities were known in stage 3, subjects’
behavior in the lottery framework can be regarded as another indicator for those other
factors. Considering the mean and median values reported in Table II, subjects’ behavior
in this stage is quite different from that in the auction stages reported in Table I; and it



is indeed very close to the theoretical predictions. However, we must also emphasize that
Table II might be misleading. As further illustrated in Figure 2, especially when subjects
faced a lottery list associated with a high valuation (e.g., v ≥ 8), they struggled to choose
the theoretically optimal lottery.

To sum up, our subjects overbid in the auction stages as they perceived their winning
probabilities differently; yet even when the objective probabilities were explicitly presented,
they still struggled to make the optimal choice, especially under high valuations. These
observations are respectively related to the first (i.e., uncertainty) and second (i.e., risk)
stages of the Tversky-Fox two-stage model. Accordingly, it can be claimed that such a two-
stage model is able to explain the observed behavior by a proper selection of the probability
misperception and probability weighting functions. Further investigation is surely necessary
for the elicitation of those functions.
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at the Turkish Workshop in Behavioral and Experimental Economics for helpful comments
and suggestions. The financial support from Bilkent University is gratefully acknowledged.

Appendix

Proof of Proposition 1: We analyze symmetric Nash equilibrium. For bidder i with
valuation vi ∈ [0, v̄], the expected utility of bidding b when all the other bidders follow the
same bidding function β is

w2(w1(F
n−1(β−1(b))))(vi − b) .

Bidder i aims to maximize this expected utility. The corresponding first order condition
with respect to b is

∂w2(w1(F
n−1(β−1(b))))

∂β−1(b)

∂β−1(b)

∂b
(vi − b)− w2(w1(F

n−1(β−1(b)))) = 0 .

As we search for symmetric equilibrium, b = β(vi) should be the maximizer of the objective
function; that is, b = β(vi) should solve the equation above. Thus,

∂w2(w1(F
n−1(vi)))

∂vi

1

β′(vi)
(vi − β(vi)) = w2(w1(F

n−1(vi))) .

After arranging terms, one can obtain

β(vi) = vi −

∫ vi

0
w2(w1(F

n−1(y)))dy

w2(w1(F n−1(vi)))
.

To verify that β is indeed an equilibrium bidding function, one can show that it is
increasing in vi and that bidding above β(v̄) is dominated for bidder i. Finally, suppose
that bidder i bids as if her valuation is z ∈ [0, v̄] rather than vi. By showing that z = vi is
a best response in such a scenario, one can find that the bidding function β is the unique
symmetric Nash equilibrium.



References

Armantier, O., Treich, N., 2009a. Star-shaped Probability Weighting Functions and Over-
bidding in First-price Auctions. Economics Letters 104, 83–85.

Armantier, O., Treich, N., 2009b. Subjective Probabilities in Games: An Application to the
Overbidding Puzzle. International Economic Review 50, 1079–1102.

Cox, J. C., Smith, V. L., Walker, J. L., 1988. Theory and Individual Behavior of First-Price
Auctions. Journal of Risk and Uncertainty 1, 61–99.

Crawford, V. P., Iriberri, N., 2007. Level-k Auctions: Can a Nonequilibrium Model of Strate-
gic Thinking Explain the Winner’s Curse and Overbidding in Private Value Auctions?
Econometrica 75 (6), 1721–1770.

Dorsey, R., Razzolini, L., 2003. Explaining Overbidding in First Price Auctions Using Con-
trolled Lotteries. Experimental Economics 6, 123–140.

Ellsberg, D., 1961. Risk, Ambiguity, and the Savage Axioms. The Quarterly Journal of
Economics 75, 643–669.

Filiz-Ozbay, E., Ozbay, E. Y., 2007. Auctions with Anticipated Regret: Theory and Exper-
iment. The American Economic Review 97, 1407–1418.

Fox, C., Tversky, A., 1998. A Belief-based Account of Decision Under Uncertainty. Manage-
ment Science 44, 879–895.

Goeree, J., Holt, C., Palfrey, T., 2002. Quantal Response Equilibrium and Overbidding in
Private Value Auctions. Journal of Economic Theory 104, 247–272.

Kagel, J. H., 1995. Auctions: A Survey of Experimental Research. In: Kagel, J. H., Roth,
A. E. (Eds.), The Handbook of Experimental Economics. Ch. 7. pp. 501–586.

Keskin, K., 2016. Inverse S-shaped Probability Weighting Functions in First-price Sealed-bid
Auctions. Review of Economic Design 20, 57–67.

Lange, A., Ratan, A., 2010. Multi-dimensional Reference-dependent Preferences in Sealed-
bid Auctions - How (Most) Laboratory Experiments Differ From the Field. Games and
Economic Behavior 68, 634–645.

Salo, A. A., Weber, M., 1995. Ambiguity Aversion in first-price sealed-bid auctions. Journal
of Risk and Uncertainty 11, 123–137.

Tversky, A., Fox, C., 1995. Weighing Risk and Uncertainty. Psychological Review 102, 269–
283.


