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TULCZYJEW’S TRIPLET WITH AN EHRESMANN CONNECTION I: TRIVIALIZATION

AND REDUCTION

OĞUL ESEN, MAHMUT KUDEYT, AND SERKAN SÜTLÜ

Abstract. We study the trivialization and the reduction of the Tulczyjew’s triplet, in the presence of a sym-
metry and an Ehresmann connection associated to it. We thus obtain trivializations and reductions of iterated
tangent and cotangent bundles )∗)&,))∗& and )∗)∗&. Accordingly, the symplectomorphisms between these
manifolds are properly trivialized and reduced.
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1. Introduction

Euler-Lagrange equations governing the motion of a physical system, whose configuration space is a finite

dimensional manifold, is determined by a Lagrangian function defined on the tangent bundle. On the
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other hand, Hamilton’s equation is generated by a Hamiltonian function which is defined on the cotangent

bundle [1, 3, 14, 29, 49]. In order to find the (Legendre) transformation between the Lagrangian and the

Hamiltonian realizations of a system, it is critical to know whether the Lagrangian / Hamiltonian function is

(hyper)regular. In the case of a regular Lagrangian / Hamiltonian, the Legendre transformation is immediate,

being the fiber derivative of the generating function. However, if the Lagrangian / Hamiltonian is singular,

then establishing a relationship between the two formalisms is far from straightforward.

To this end, a geometric framework (called the Tulczyjew’s triplet) was proposed by Tulczyjew, which allows

the Legendre transformation even for the singular and/or constrained systems, [68, 69, 70, 71, 72, 73, 74, 75].

The Tulczyjew’s triplet is a construction that involves the (second order) iterated bundles of the configuration

space, say &, connected by two symplectomorphisms U& : )) ∗& → ) ∗)& and Ω♭
&

: )) ∗& → ) ∗) ∗&, as

well as their projections onto the (first order) (co)tangent bundles. In short, a Tulczyjew’s triplet may be

pictured by the diagram

(1.1) ) ∗)&

g∗
)& ""❋

❋❋
❋❋

❋❋
❋

)) ∗&

) g∗
&||①①

①①
①①
①①

Ω♭
&

//

g) ∗& ##●
●●

●●
●●

●

U&
oo ) ∗) ∗&

g∗
) ∗&{{✈✈

✈✈
✈✈
✈✈
✈

)& ) ∗&

In this theory, the dynamics of the system under consideration (whether it is in Lagrangian or Hamiltonian

form) is formulated as a Lagrangian submanifold of the Tulczyjew symplectic space )) ∗&, that is, the

tangent bundle of the momentum phase space. This is achieved by two special symplectic structures which

are referred as the left wing and the right wing of the triplet, [5, 67, 74]. The Legendre transformation

then is said to be established, if the Lagrangian submanifolds generated by a Hamiltonian function and a

Lagrangian function coincide. For singular systems, one may need to refer to a Morse family in order to

achieve the coincidence of the Lagrangian submanifolds.

The Tulczyjew’s triplet has been constructed for many physical systems and on several different geometric

theories. For instance, we refer the reader to [16, 20, 21, 34] for the triplet over a Lie group (from the point

of view of which the present paper is a generalization). In the case of the higher order dynamics, we may

cite [12], while for the field theories we refer the reader to [11, 15, 30, 31, 65]. As for the higher order

field theories, one may consult [33]. On the other hand, we refer the reader to [8, 35, 36, 38] for the graded

bundles, and to [45] for a discussion related to prolongations. The extension of the Tulczyjew’s triplet to

the level of Lie algebroids has been proposed in [44], see also [2, 7, 13, 32].

As one may find its roots in [64], the Lagrangian reduction theory [6, 10, 55, 56] is rather more recent

compared to the Hamiltonian reduction theory [51, 52, 53, 58, 59]. In the Lagrangian framework, the

reduced dynamics on the orbit space of the tangent bundle of the configuration space is governed by

the Lagrange–Poincaré equations. In the case of the configuration space to be the symmetry group, the

Lagrange–Poincaré equations reduce further to the Euler-Poincaré equations on the Lie algebra of the

symmetry group. As for the Hamiltonian perspective, the reduced dynamics is determined by the Hamilton-

Poincaré equations on the orbit space of the cotangent bundle, which reduce to the Lie-Poisson equations if

in particular the configuration space is the symmetry group.



TULCZYJEW’S TRIPLET WITH AN EHRESMANN CONNECTION I: TRIVIALIZATION AND REDUCTION 3

In the present note we intend to address both the trivialization and the reduction of the classical Tulczyjew’s

triplet in view of an Ehresmann connection. To be more precise, let us first recall that the symmetry of a

physical system, in its very classical sense, may be given by a Lie group action on the configuration space

of the system, [42, 43, 50, 54, 62, 63]. As such, we let the configuration space & be equipped with a free

and proper action of a Lie group �. This way, we may regard & as a principal �-bundle over the orbit

space &̄ := �\&, and hence we may endow the tangent bundle )& with a principal (Ehresmann) connection

� : )& → g. The thus obtained decompositions

(1.2) )& ≃ & ×&̄ )&̄ × g, ) ∗& ≃ & ×&̄ )
∗&̄ × g∗,

into Whitney sums (of the horizontal and the vertical subbundles), see for instance [9, 10, 52], allow at once

to express the �-reductions of both the tangent and the cotangent bundles as

(1.3) �\)& ≃ )&̄ ×&̄ g̃, �\) ∗& ≃ ) ∗&̄ ×&̄ g̃∗,

where g̃ denotes the adjoint bundle, while g̃∗ stands for the coadjoint bundle. These identifications are

important not only for the geometrical considerations, but also for the concrete physical applications; they

provide a decomposition of the dynamics into the vertical and the horizontal components. What is further,

as we present hereby, the decompositions in (1.2) and (1.3) may be lifted to all second order iterated

bundles ))&, ) ∗)&, )) ∗& and ) ∗) ∗&, allowing to obtain the trivializations of the symplectomorphisms

U& : )) ∗& → ) ∗)& and Ω♭
&

: )) ∗& → ) ∗) ∗&, as well as all the projections on (1.1).

Recent works addressing the reduction of the Tulczyjew’s triplet under symmetry include [4, 25, 26], yet,

none concerns the trivialization by virtue of a connection form. From this point of view, the present

approach, along the lines of [9, 10, 52], allows to analyze the dynamics explicitly over the orbit spaces.

The outline of the paper. The paper is planned over three main sections. In order to establish the notation,

conventions, and the terminology, we begin with the preliminaries in Section 2. In particular, the very

basic terminology regarding symplectic structures on cotangent bundles is given in Subsection 2.1, while

an overview of Tulczyjew triplets may be found in Subsection 2.2. What is more in preliminaries is a short

discussion on the theory of (principal Ehresmann) connections in Subsection 2.3. We then conclude this

section with Subsection 2.4 on the presentations of both the trivializations and reductions of (co)tangent

bundles in view of an Ehresmann connection. The latter discussion is then lifted to the level of second

order iterated (co)tangent bundles in Section 3. To be more precise, the trivializations and the reductions

of the iterated tangent bundles ))& and )) ∗& are explicitly presented in Subsection 3.1 and Subsection

3.2 respectively, while the iterated cotangent bundles ) ∗)& and ) ∗) ∗& are treated in Subsection 3.3 and

Subsection 3.4. The trivializations and the reductions of the rest of the components of the Tulczyjew’s

triplet, namely the symplectomorphisms, are postponed in Section 4. More precisely, in Subsection 4.1 we

consider the canonical 1-form and the symplectic 2-form on the cotangent bundle, while we undertake the

task to trivialize (and then to reduce by the symmetry) the symplectomorphisms in Subsection 4.2. On the

other hand, Subsection 4.3 is reserved for the trivialization and the reduction of the Tulczyjew’s symplectic

space )) ∗&.

Notations and Conventions. Throughout the text & will denote a smooth manifold admitting a (free and

proper) left action q : � × & → &, (6, @) ↦→ 6 · @ = q6 (@), of a Lie group �. We shall adopt the notation
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&̄ := �\& for the orbit space, and (&, c, &̄) for the principal �-bundle c : & → &̄. We shall also use the

notations g" : )" → " and g∗" : ) ∗" → " to denote the tangent and cotangent bundle projections of

a manifold " , respectively. On the other hand, given a manifold " , we shall use Λ: (") to represent the

space of :-forms on " , and X(") to denote the space of vector fields on " .

2. Preliminaries

In order to fix the terminology that we shall use in the sequel, we find it instructive to devote a section to

brief surveys on the basic concepts to be used in the text.

2.1. Symplectic structures.

Let us recall, very briefly, the canonical symplectic structure on a cotangent bundle. We shall then review

the (special) symplectic structures on symplectic manifolds.

Cotangent bundles. Given a manifold &, the tautological (Liouville, or canonical) 1-form \& ∈ Λ1() ∗&)

is given, on a vector field - ∈ X() ∗&), by

(2.1) \& (-) = 〈g) ∗& (-), )g
∗
& (-)〉,

where g) ∗& : )) ∗& → ) ∗& is the tangent bundle projection, and )g∗
&

: )) ∗& → )& is the tangent

mapping of the cotangent bundle projection. The negative of the exterior derivative of the canonical 1-form,

that is Ω& := −3\& , then, represents the canonical symplectic 2-form on ) ∗&. In Darboux’ coordinates

(@8, ?8) on ) ∗&, the canonical 1-form \& ∈ Λ1 () ∗&) and the symplectic 2-form Ω& ∈ Λ2 () ∗&) read

(2.2) \& = ?83@
8 , Ω& = 3@8 ∧ 3?8,

respectively.

Special symplectic structures. Let % be a symplectic manifold, that is, it is equipped with a non-degenerate

closed 2-form called the symplectic 2-form. Let, in particular, % be equipped with an exact symplectic 2-

form Ω = −3\, where \ is called a potential 1-form. Let, further, % be the total space of a fiber bundle, say

c : % → &, or (%, c, &) in short. A special symplectic structure, then, is a quintuple (%, c, &, \,Θ), where

Θ : % → ) ∗& is a fiber preserving symplectic diffeomorphism given by

(2.3) 〈Θ(G), c∗- (@)〉 = 〈\ (G), - (G)〉

for any vector field - on %, and any point G ∈ % with c(G) = @. Here, the pairing on the left hand side is the

(natural) one between ) ∗
@& and )@&, whereas the pairing on the right hand side is the one between ) ∗

G% and

)G%. In this case, the tuple (%,Ω) is called the underlying symplectic manifold of the special symplectic

structure. We refer the reader to [48, 67, 72] for further details on the special symplectic structures.
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2.2. Tulczyjew’s triplet.

We shall next review the Tulczyjew’s symplectic space and the construction of the Tulczyjew’s triplet, in a

very classical sense.

Two Operations. In order to be able to proceed to Tulczyjew’s symplectic space, we shall need to recall

two operations from Λ(&) to Λ()&). Letting )g& : ))& → )& to be the tangent lift of the tangent bundle

projection, the first operation is the one which assigns a (: − 1)-form in Λ()&) to each :-form in Λ(&).

More explicitly,

(2.4) 8) : Λ: (&) → Λ:−1()&), Ω: ↦→ 8)Ω
: ,

which is given by

8)Ω
: (-1, . . . , -:−1) = Ω:

(
g)& (-1), )g& (-1), . . . , )g& (-:−1)

)

for any vector fields -1, . . . , -:−1 on )&. The second operation, on the other hand, is a degree 0 derivation,

namely,

(2.5) 3) : Λ: (&) → Λ: ()&), Ω: ↦→ (8) 3 + 38) )Ω
: ,

where 3 : Λ: → Λ:+1 refers to the deRham exterior derivative on the exterior algebra of the relevant

manifold. For further details we refer the reader to [71, 72, 74, 75].

Tulczyjew’s symplectic space. We are now ready to review the Tulczyjew’s symplectic space from [71].

The tangent bundle of a symplectic manifold (%,Ω) is also a symplectic manifold given by ()%, 3)Ω).

In particular, starting with the canonical symplectic manifold () ∗&,Ω& := −3\&), Tulczyjew’s symplectic

space )) ∗& becomes a symplectic manifold equipped with the lifted symplectic 2-form 3)Ω& which admits

two potential 1-forms

(2.6) o1 = −8)Ω&, o2 = 3) \& = 8) 3\& + 38) \& .

If (@8) is a coordinate chart on &, we shall then make use of (@8, ¤@ 9 ) on )& for the induced coordinates.

Accordingly, the induced coordinates on )) ∗& may be given by (@8, ? 9 , ¤@
: , ¤?;), and the 1-forms (2.6) read

(2.7) o1 = −8)Ω& = ¤?83@
8 − ¤@83?8, o2 = 3) \& = ¤?83@

8 + ?83 ¤@
8 ,

see, for instance, [78]. Furthermore, the symplectic 2-form on )) ∗& appears to be

(2.8) 3)Ω& = 3o1 = 3o2 = 3 ¤?8 ∧ 3@
8 + 3?8 ∧ 3 ¤@

8 .

The canonical involution on ))&. Along the lines of [75, Sect. 5], see also [1, 39], given a differential

mapping W : R2 → &, W = W(B, C), both

¤W (B) :=
mW(B, C)

mC

����
C=0

and W′(C) :=
mW(B, C)

mB

����
B=0

determine curves ¤W, W′ : R→ )&, so that

( ¤W) ′ :=
3 ¤W (B)

3B

����
B=0

∈ ))&, ¤(W′) :=
3W′(C)

3C

����
C=0

∈ ))&.
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Accordingly, the mapping given by

(2.9) ^& : ))& → ))&, ¤W′ ↦→ ¤W′

is called the canonical involution on ))&. A quick inspection then reveals that the involution (2.9) satisfies

g) & ◦ ^& = )g&, )g& ◦ ^& = g) Q .

In terms of the induced coordinates (@8, ¤@ 9 , @′: , ¤@′;) on the iterated tangent bundle ))&, we have

(2.10) g)& (@
8, ¤@ 9 , @′: , ¤@′;) = (@8, ¤@ 9 ), )g& (@

8, ¤@ 9 , @′: , ¤@′;) = (@8, @′:),

and furthermore, the canonical involution (2.9) is computed to be

^& (@
8, ¤@ 9 , @′: , ¤@′ℓ) = (@8, @′: , ¤@ 9 , ¤@′ℓ ).

The pairing between )) ∗& and ))&. We shall now recall, also from [75], a pairing between )) ∗& and

))&. To this end, given any / ∈ )) ∗& and any, ∈ ))& satisfying )g& (,) = )g∗
&
(/), let I(C) ∈ ) ∗& be

the curve with ¤I(0) = / , and similarly let F (C) ∈ ) ∗& be the curve with ¤F (0) = , , so that g& ◦F = g∗
&
◦ I.

Then, a pairing of bundles over )& may be formulated by

(2.11) 〈•, •〉̃ : )) ∗& × ))& → R, 〈/,, 〉̃ :=
3

3C
〈I(C), F (C)〉

����
C=0

.

Setting the (induced) coordinates on)) ∗& as (@8, ? 9 , ¤@: , ¤?;), the coordinate expression of the pairing (2.11)

may be given by 〈
(@8, ? 9 , ¤@

: , ¤?;), (@
8, @′ 9 , ¤@: , ¤@′;)

〉̃
= ?8 ¤@

′8 + @′8 ¤?8 .

We shall conclude the present subsection with two symplectomorphisms; U& : )) ∗& → ) ∗)&, and

Ω♭
&

: )) ∗& → ) ∗) ∗&. To this end, we shall assume that, being cotangent bundles, ) ∗)& and ) ∗) ∗&

equipped with the canonical symplectic forms Ω)& = −3\) & and Ω) ∗& = −3\) ∗&, respectively.

The left Wing of the Tulczyjew’s Triplet. The first symplectomorphism that we shall present is the

morphism

(2.12) U& : )) ∗& → ) ∗)&, 〈U& (/),,〉 = −〈/, ^& (,)〉̃ ,

of vector bundles, which reads, in reduced coordinates

U& (@
8, ? 9 , ¤@

: , ¤?;) = (@8, ¤@: ,− ¤?;,−? 9).

We do note also that the pairing on the right hand side of (2.12) is the one in (2.11), whereas the pairing of

the left hand side is the canonical pairing between ) ∗)& and ))&.

A straightforward calculation reveals that U∗
&
Ω)& = 3)Ω&, hence (2.12) is indeed a symplectomorphism.

As a result, we arrive at a special symplectic structure

(2.13) ()) ∗&,)g∗&, )&, o2, U&)

the underlying symplectic manifold of which being ()) ∗&, 3)Ω&).
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The right Wing of the Tulczyjew’s Triplet. The nondegeneracy of the canonical symplectic 2-form on

) ∗& leads to the existence of a (musical) diffeomorphism given by

(2.14) Ω♭& : )) ∗& → ) ∗) ∗&, Ω♭& (I) = Ω& (I, •),

which may be presented in reduced coordinates as

Ω♭& (@
8, ? 9 , ¤@

: , ¤?;) = (@8, ? 9 ,− ¤?;, ¤@
: ).

Once again, a quick calculation yields (Ω♭
&
)∗Ω) ∗& = 3)Ω&, and hence (2.14) is a symplectomorphism.

Accordingly, there is a special symplectic structure

(2.15) ()) ∗&, g) ∗&, )
∗&, o1,Ω

♭
&),

over the (underlying) symplectic manifold ()) ∗&, 3)Ω&).

Referring the reader to [68, 71, 72, 75] for further details, let us finally record the following commutative

diagram summarizing the entire discussion on the present subsection.

(2.16) ) ∗)&

g∗
)& ""❋

❋❋
❋❋

❋❋
❋

)) ∗&

) g∗
&||①①

①①
①①
①①

Ω♭
&

//

g) ∗& ##●
●●

●●
●●

●

U&
oo ) ∗) ∗&

g∗
) ∗&{{✈✈

✈✈
✈✈
✈✈
✈

)&

g&
""❋

❋❋
❋❋

❋❋
❋❋

) ∗&

g∗
&{{✇✇

✇✇
✇✇
✇✇
✇

&

2.3. Connection and curvature.

In the present subsection we shall now review briefly the very basics of the theory connections, and

curvatures.

Let us first recall that the kernel of the tangent lift )c : )& → )&̄ of the principal �-bundle c : & → &̄,

@ ↦→ [@], determines the vertical subbundle +& of )&. We note, on the other hand, that any element of the

Lie algebra g of the symmetry group � generates a vertical vector field; an element of the space X(&) of

sections of )& which takes values in the fibers of +&, through

(2.17) b& (@) = )4q@ (b) =
3

3C

(
(exp Cb) · @

)����
C=0

,

where exp : g → � is the exponential map, and b ∈ g. The map g ↦→ X(&), given by b ↦→ b&, is a Lie

algebra homomorphism, and b& ∈ X(&) is called the fundamental (vertical) vector field associated to b ∈ g.

Let us next recall, following [9, 46] (see also [10, 61]), a connection on the principal �-bundle (&, c, &̄) is

an (differentiable) assignment of a subspace �@& ⊆ )@& to any @ ∈ &, so that

(i) )?& = +?& ⊕ �?&,

(ii) �6 ·@& = )!6(�@&), for any 6 ∈ �.
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Accordingly, in the presence of a connection, the tangent bundle decomposes into a Whitney sum

)& = +& ⊕ �&

of vertical and horizontal subbundles. Equivalently, a connection on the principal �-bundle (&, c, &̄) may

be viewed as a g-valued 1-form � : )& → g satisfying

(2.18) � ◦ b& = b, � ◦ )q6 = Ad6 ◦�,

where Ad : � × g → g is the adjoint representation of the group � on its Lie algebra g.

Let us note also that the tangent lift )c : )@& → )c (@)&̄ maps �@& isomorphically onto )c (@)&̄, for any

@ ∈ &. Accordingly, following the notation in [9, Sect. 2.2], given any Ec (@) ∈ )c (@)&̄, we shall denote by

Eℎ@ ∈ )@& the unique horizontal vector satisfying

)@c(E
ℎ
@) = Ec (@) ∈ )c (@)&̄,

and call it the horizontal lift of the vector Ec (@) ∈ )c (@)&̄. With a slight abuse of notation, we shall write

(2.19) ℎ : )&̄ → )&, Ec (@) ↦→ Eℎ@ .

Finally, the curvature of a connection � : )& → g on the �-bundle (&, c, &̄) is defined to be the g-valued

2-form given by (the Cartan structure equation)

(2.20) �(-1, -2) = 3�(-1, -2) − [�(-1), �(-2)],

for any -1, -2 ∈ X(&).

2.4. Trivialization and reduction of the (co)tangent bundles.

We shall next discuss the trivialization, and its reduction under a group action, of both the tangent and the

cotangent bundles of the total space of a principal bundle. In order to develop some terminology, we shall

begin with a quick detour on associated bundles.

Associated bundles. We shall now recall the construction of a vector bundle associated to a given principal

bundle. In particular, we shall review the adjoint bundle and the coadjoint bundle constructions.

To this end, letΦ : �×+ → + denoted by (6, E) ↦→ Φ6 (E), represents a (differentiable) linear representation

of � on a vector space + . Then, the space +̃ of orbits of & ×+ with respect to the diagonal �-action

(2.21) � × (& ×+) → (& ×+), 6 ∗ (@, E) = (6 · @,Φ6 (E))

admits the structure of a vector bundle over &̄, given by

(2.22) +̃ → &̄, [@, E] ↦→ c(@),

where [@, E] ∈ +̃ represents the orbit of (@, E) ∈ & × + with respect to (2.21). Let us note also that any

vector bundle over a manifold " , with fibers in an =-dimensional vector space, is an associated bundle of a

�! (=,R)-principal bundle called the frame bundle.
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In particular, taking the Lie algebra g of the Lie group � as the vector space, along with the adjoint

representation of � on g, we arrive to the associated vector bundle g̃, which is called the adjoint bundle of

the principal �-bundle (&, c, &̄).

If, on the other extreme, one takes the linear dual g∗ as the vector space, and the coadjoint representation

Ad∗ : � × g∗ → g∗ given by

(2.23) 〈Ad∗6 (`), b〉 = 〈`,Ad6−1 (b)〉

for any ` ∈ g∗ and any b ∈ g, the corresponding associated bundle g̃∗ is called the coadjoint bundle of

(&, c, &̄).

Trivialization and reduction of the tangent bundle. Given the principal �-bundle (&, c, &̄), let us now

consider the short exact sequence

(2.24) 0 // +& // )& // c∗()&̄) // 0

of vector bundles over &. In this framework, the presence of a connection � : )& → g, then, may be

interpreted as the splitting of (2.24), see for instance [37]. Accordingly, one may devise a diffeomorphism

given by

_) : )& → & ×&̄ )&̄ × g, E ↦→ (g& (E), )c(E), �(E)),

_−1
) : & ×&̄ )&̄ × g → )&, (@, D, b) ↦→ Dℎ@ + b& (@),

(2.25)

for any E ∈ )&, any (@, D) ∈ & ×&̄ )&̄, and any b ∈ g.

The diagonal action of � on & × g, then, reduces (2.24) into the Atiyah sequence

(2.26) 0 // g̃ // �\)& // )&̄ // 0

of vector bundles over &̄, which also splits by the connection. Accordingly, the trivialization (2.25) reduces

to that of

)& → )&̄ ×&̄ g̃, [E] ↦→ ()c(E), [g& (E), �(E)]),

)&̄ ×&̄ g̃ → )&, (Dc (@) , [@, b]) ↦→ [Dℎ@ + b& (@)],
(2.27)

where )& := �\)&.

Trivialization and reduction of the cotangent bundle. Next, by a slight abuse of language, dualizing

(2.25) we arrive at a similar trivialization of the cotangent bundle, which may be given by

_) ∗ : ) ∗& → & ×&̄ )
∗&̄ × g∗, I ↦→ (g∗& (I), ℎ

∗ (I), J& (I)),

_−1
) ∗ : & ×&̄ )

∗&̄ × g∗ → ) ∗&, (@, H, `) ↦→ ) ∗
@c(H) + �

∗
@`,

(2.28)

for any I ∈ ) ∗&, and any (@, H) ∈ & ×&̄ )
∗&̄, where

(2.29) J& : ) ∗& → g∗, 〈J& (I), b〉 := 〈I, b&〉,

is the moment map, while �∗
@ : g∗ → ) ∗

@& and ℎ∗ : ) ∗
@& → ) ∗

c (@)
&̄ are the linear algebraic duals of the

connection and the horizontal lift operator, respectively.
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Finally, the reduction with respect to the diagonal action of � on & × g∗ yields

(2.30) _) ∗ : ) ∗& → ) ∗&̄ ×&̄ g̃∗, [I] ↦→ (ℎ∗(I), [g∗& (I), J& (I@)]),

where ) ∗& := �\) ∗& via the coadjoint lift of the �-action on &.

Trivialized tangent - cotangent duality. Let us conclude with the manifestation of the natural pairing

between the tangent bundle and the cotangent bundle in view of the trivializations (2.25) and (2.28). To this

end, given any ) ∗& ∋ I ≃ (@, H, `) ∈ & × ) ∗&̄ × g∗, and any )& ∋ E ≃ (@, D, b) ∈ & × )& × g, we have

) ∗& × )& → R, 〈(@, H, `), (@, D, b)〉 = 〈H, D〉 + 〈`, b〉.

3. Trivializations and Reductions of the Iterated (Co)tangent Bundles

In the present section we shall derive the trivializations and reductions of the iterated tangent and cotangent

bundles.

To this end, we shall first record the following terminology on the (tangent) group actions. Given a Lie

group �, the structure of the group structure of the tangent group )� may be (right) trivialized via

CA')� : )� → g ⋊ �, E6 ↦→ ()'6−1E6, 6),

where '6 : � → � stands for the right translation of �, and the group operation of the latter is given by

(b, 6) ([, ℎ) = (b + Ad6 ([), 6ℎ)

for any b, [ ∈ g, and any 6, ℎ ∈ �.

On the other hand, let us note that, the tangent mapping of the group action q : � × & → & gives rise to

the action

(3.1) )q : )� × )& → )&, (b, 6) · E ↦→ )q6(E) + b& (6 · g& (E)),

which also is free and proper, [47]. As for the reduction, on the other hand, we have

(3.2) )�\)& ≃ (g ⋊ �)\)& ≃ g\(�\)&) ≃ g\()&̄ ×&̄ g̃) ≃ )&̄,

where the third identification is given by [10, Lemma 2.4.2]. As a result, we obtain the )�-principal bundle

()&,)c,)&̄). Furthermore, a straightforward calculation reveals that � : )& → g being a connection on

the �-bundle (&, c, &̄), its tangent map ) � : ))& → g ⋊ g happens to satisfy the manifestations

) � ◦ (b, [))& = (b, [), ) � ◦ ) ()q) (Z ,6) = Ad(Z ,6) ◦) �,

of the requirements (2.18) of a connection on the )�-bundle ()&,)c,)&̄), where (b, [))& : )& → ))&

stands for the fundamental vertical vector field associated to (b, [) ∈ g ⋊ g, and g ⋊ g is the Lie algebra of

the tangent group )� ≃ g ⋊ �, whose structure is given by

[(b1, [1), (b2, [2)] = ([b1, b2] + [[1, b2] − [[2, b1], [[1, [2])
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for any b1, b2, [1, [2 ∈ g. Finally, it follows from [23, (2.14)] that the adjoint action of the tangent group )�

on its Lie algebra g ⋊ g is given by

(3.3) Ad(Z ,6) : g ⋊ g → g ⋊ g, (b, [) ↦→ (Ad6 b − [Ad6 [, Z],Ad6 [),

for any b, [, Z ∈ g, and any 6 ∈ �.

Finally, we do note that the tangent lift )ℎ : ))&̄ → ))& of (2.19) works as the horizontal lift associated

to the tangent connection on ))&.

We are now ready to proceed onto the trivializations and the reductions of the iterated tangent and cotangent

bundles.

3.1. Trivialization and reduction of ))&.

In this subsection we shall first derive a trivialization of ))&, given the principal �-bundle (&, c, &̄).

Formulating the �-action on ))& in terms of this trivialization, we shall present explicitly the �-reduction

of ))&. Also in this subsection, we shall reformulate the canonical involution along the lines of the

trivialization we obtain. Finally, we shall illustrate the reduction, under the �-action, of the canonical

involution.

Trivialization of ))&. To begin with, we record the straightforward identification

) (& ×&̄ )&̄ × g) ≃ )& ×) &̄ ))&̄ × )g.

Then, it becomes a routine verification that the tangent lift of the trivialization (and its inverse) (2.25) may

be formulated as

)_) : ))& → )& ×) &̄ ))&̄ × )g, , ↦→
(
)g& (,), ))c(,),) �(,)

)
,

)_−1
) : )& ×) &̄ ))&̄ × )g → ))&, (E,*, b, [) ↦→ *) ℎE + (b, [))& (E),

(3.4)

for any , ∈ ))&, and any (E,*, b, [) ∈ )& ×) &̄ ))&̄ × )g.

Next, in view of the decomposition )& ≃ +& ⊕ �&, along with the identification )@c : �@& → )c (@)&̄,

we have

) (& ×&̄ )&̄ × g) ≃ )& ×) &̄ ))&̄ × )g ≃ ((& × g) ×&̄ )&̄) ×) &̄ ))&̄ × )g ≃ & ×&̄ ))&̄ × )g × g,

and hence obtain the following refinement of (3.4):

_)) : ))& → & ×&̄ ))&̄ × )g × g, , ↦→ (g& ()g& (,)), ))c(,),) �(,), �()g&(,))),

_−1
)) : & ×&̄ ))&̄ × )g × g → ))&, (@,*, b, [, Z) ↦→ *) ℎ

g) &̄ (* )ℎ@+Z& (@)
+ (b, [))& (g) &̄ (*)

ℎ
@ + Z& (@))

(3.5)

for any , ∈ ))&, and any (@,*, b, [, Z) ∈ & ×&̄ ))&̄ × )g × g.
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Trivialized canonical involution. Before we move towards the reduction of ))& by the�-action, we shall

now record the canonical involution (2.9) on the trivialization (3.5) of ))&. To this end let, once again,

W : R2 → &, W = W(C, B) be such that W(0, 0) = @ ∈ &. Then the two curves on )& given by

¤W (B) :=
mW(B, C)

mC

����
C=0

and W′(C) :=
mW(B, C)

mB

����
B=0

may be trivialized, in view of (2.25), into

¤Γ : R→ & ×&̄ )&̄ × g ≃ )&, B ↦→ (W(0, B), G (B), ¤G (B), b (B))

and

Γ′ : R→ & ×&̄ )&̄ × g ≃ )&, C ↦→ (W(C, 0), G (C), G ′(C), Z (C)),

where

(G (B), ¤G (B)) := )c(W(0, B), ¤W (B)), (G (C), G ′(C)) := )c(W(C,0), W′(C)),

and

b (B) := �(W(0, B), ¤W(B)), Z (C) := �(W(C, 0), W ′(C)).

Accordingly, then, the canonical involution (2.9) takes the form of

^& : ))& ≃ ) (& ×&̄ )&̄ × g) → ) (& ×&̄ )&̄ × g) ≃ ))&, (W′, G ′, ¤G ′, b ′) ↦→ ( ¤W, ¤G, ¤G ′, ¤Z),

where we suppressed the 0’s, on which the derivatives are evaluated.

Now, in an effort to recalibrate this last expression of the canonical involution according to (3.5), we observe

that

(3.6) ¤Z − b ′ =
3Z (C)

3C

���
C=0

−
3b (B)

3B

���
B=0

=
3�(W(C, 0), W′(C))

3C

���
C=0

−
3�(W(0, B), ¤W(B))

3B

���
B=0
,

where it follows from [10, Sect. 3.1] that the latter term is the value at C = 0 of the variation of

�(W(C, 0), ¤W (C, 0)) corresponding to the variation W ′(C) of the curve W(C, 0) ∈ &. Along the lines of [10,

Lemma 3.1.1], its vertical part; corresponding to the vertical variation Ver (W(C, 0)) := �(W(C, 0), W ′(C))W(C,0)

of the curve W(C, 0) ∈ &, is
3�(W(C, 0), W ′(C))

3C

���
C=0

+ [Z, b],

and it follows from [10, Lemma 3.1.2] that its horizontal part is

�@ (W
′, ¤W).

Substituting these into (3.6) we arrive at

^& : ))& ≃ ) (& ×&̄ )&̄ × g) → ) (& ×&̄ )&̄ × g) ≃ ))&, (W′, G ′, ¤G ′, b ′) ↦→ ( ¤W, ¤G, ¤G ′, b ′ + �@ ( ¤W, W
′) + [b, Z]).

As a result, the canonical involution (2.9) trivializes, in the level of (3.5), into

̂̂& : & ×&̄ ))&̄ × )g × g → & ×&̄ ))&̄ × )g × g,

(@,*, b, [, Z) ↦→ (@, ^&̄ (*), Z , [ + �((g) &̄ (*))
ℎ
@ , ()g&̄ (*))

ℎ
@) + [b, Z], b),

(3.7)

with * = (G, ¤G, G ′, ¤G ′) ∈ ))&, for which

g) &̄ (*) = g) &̄ (G, ¤G, G
′, ¤G ′) = (G, ¤G), )g&̄ (*) = )g&̄ (G, ¤G, G

′, ¤G ′) = (G, G ′).
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Let us note also that in the present framework we have

ĝ)& : & ×&̄ ))&̄ × )g × g ≃ ))& → )& ≃ & ×&̄ )&̄ × g, (@,*, b, [, Z) ↦→ (@, g) &̄ (*), b)

and

)̂ g& : & ×&̄ ))&̄ × )g × g ≃ ))& → )& ≃ & ×&̄ )&̄ × g, (@,*, b, [, Z) ↦→ (@, )g&̄ (*), Z).

Reduction of ))&. We shall now proceed towards the reduction of ))& under the Lie group action

(3.8) � × ))& → ))&, 6 ·, := ))q6(,),

which, in terms of the trivialization (3.5), may also be given by

� × (& ×&̄ ))&̄ × )g × g) → & ×&̄ ))&̄ × )g × g,

(6, (@,*, b, [, Z)) ↦→ 6 · (@,*, b, [, Z) := (6 · @,*,Ad6 b,Ad6 [,Ad6 Z).
(3.9)

Accordingly, it follows at once that

�\))& ≃ ))&̄ ×&̄ G̃,

where G̃ := �\(& × g × g × g) ≃ g̃ ×&̄ g̃ ×&̄ g̃ through

� × (& × g × g × g) → & × g × g × g, (6, (@, b, [, Z)) ↦→ (6 · @,Ad6 b,Ad6 [,Ad6 Z),

and that

^& : ))&̄ ×&̄ G̃ → ))&̄ ×&̄ G̃,

(*, [@, b, [, Z]) ↦→ (^&̄ (*), [@, Z, [ + �((g) &̄ (*))
ℎ
@ , ()g&̄(*))

ℎ
@) + [b, Z], b]),

(3.10)

which serves as the reduction of the canonical inclusion, for any* ∈ ))&̄, and any [@, b, [, Z] ∈ G̃. Let us

also note, in this case, that

g)& : ))&̄ ×&̄ G̃ → )&̄ ×&̄ g̃, (*, [@, b, [, Z]) ↦→ (g) &̄ (*), [@, b]),

)g& : ))&̄ ×&̄ G̃ → )&̄ ×&̄ g̃, (*, [@, Z, b, []) ↦→ ()g&̄(*), [@, Z]).

Remark 3.1. Let us conclude with the reduction of ))&, with respect to the tangent group action. Along

with the trivialization (3.4) of ))&, the tangent group action may be given by

)� × ()& ×) &̄ ))&̄ × )g) → )& ×) &̄ ))&̄ × )g, ((b, 6), (E,*, Z, [)) ↦→ ((b, 6) · E,*,Ad( b ,6) (Z, [)),

(3.11)

where the former component is the tangent group action (3.1), and the latter component refers to the adjoint

action (3.3). As a result, in view of (3.2), we arrive at

)_) : )�\))&→ )�\()& ×) &̄ ))&̄ × )g) ≃ ))&̄ ×) &̄ ℌ̃, [,])� ↦→ ())c(,), [E, ) �(,)])�),

)_)
−1

: ))&̄ ×) &̄ ℌ̃ → )�\))&, (*, [E, (b, [)])�) ↦→ [*) ℎE + (b, [))& (E)])� .

for any [,])� ∈ )�\))&, any * ∈ )(c (@) ,) c (E)))&̄, and any (b, [) ∈ )g, where ℌ̃ := )�\()& × )g)

through the diagonal action of )� on )& × )g. Moreover, there is an associated bundle structure given by

ℌ̃ := )�\()& × )g) → )&̄ ≃ )�\)&, [E, b, [])� ↦→ [E]) � .

�
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3.2. Trivialization and reduction of )) ∗&.

We shall now consider the trivialization, and then the reduction of)) ∗&. Upon formulating the trivialization

of )) ∗&, in terms of (2.28), we shall introduce the (trivialized) �-action on )) ∗&, via which we shall

arrive at the �-reduction of )) ∗&.

Trivialization of )) ∗&. Differentiating (2.28), we attain a natural trivialization of )) ∗& as

)_) ∗ : )) ∗& → )& ×) &̄ ))
∗&̄ × )g∗, / ↦→ ()g∗& (/), ) ℎ

∗(/), )J& (/)),

)_−1
) ∗ : )& ×) &̄ ))

∗&̄ × )g∗ → )) ∗&, (E,. , `, a) ↦→ )) ∗c(. ) + ) �∗(`, a),
(3.12)

for any / ∈ )) ∗&, and any (E,. , `, a) ∈ )& ×) &̄ ))
∗&̄ × )g∗, where )ℎ∗ : )) ∗& → )) ∗&̄ is the tangent

lift of the linear algebraic dual of (2.19), ) �∗ : )g∗ → )) ∗& is the tangent lift of the dual of the connection

1-form on )&, and )J& : )) ∗& → )g∗ is the tangent lift of the moment map (2.29).

Similar to the trivialization (3.5) of ))&, employing the identification (2.25), we next obtain

_)) ∗ : )) ∗& → & ×&̄ ))
∗&̄ × )g∗ × g, / ↦→ (g& ()g

∗
&(/)), ) ℎ

∗(/), )J& (/), �()g
∗
&(/))),

_−1
)) ∗ : & ×&̄ ))

∗&̄ × )g∗ × g → )) ∗&, (@,. , `, a, Z) ↦→ )) ∗
@ c (g) ∗&̄ (. )))

∗c(. ) + ) �∗(`, a) + J∗) ∗& (Z)

(3.13)

for any / ∈ )) ∗&, and any (@,. , `, a, Z) ∈ & ×&̄ ))
∗&̄ × )g∗ × g, where J∗

) ∗&
: g → )) ∗& is the

dualization of J) ∗& : ) ∗) ∗& → g∗.

In this language, the maps )g∗
&

: )) ∗& → )& and g) ∗& : )) ∗& → ) ∗& take the form of

)̂ g∗
&

: & ×&̄ ))
∗&̄ × )g∗ × g → & ×&̄ )&̄ × g, (@,. , `, a, Z) ↦→ (@, )g∗

&̄
(. ), Z),

�g) ∗& : & ×&̄ ))
∗&̄ × )g∗ × g → & ×&̄ )

∗&̄ × g∗, (@,. , `, a, Z) ↦→ (@, g) ∗&̄ (. ), `),
(3.14)

for any (@,. , `, a, Z) ∈ & ×&̄ ))
∗&̄ × )g∗ × g.

Finally, given any , ∈ ))&, and any / ∈ )) ∗&, setting

〈_)) ∗ (/), _)) (,)〉̂ := 〈/,, 〉̃ ,

we obtain the trivialization

(3.15) 〈•, •〉̂ :
(
& ×&̄ ))

∗&̄ × )g∗ × g
)
× (& ×&̄ ))&̄ × )g × g) → R

of the pairing (2.11) in the form of

〈(@,. , `, a, Z); (@,*, b, [, Z)〉̂ = 〈.,* 〉̃ +
3

3B

���
B=0

〈` + Ba, b + B[〉 = 〈.,* 〉̃ + 〈a, b〉 + 〈`, [〉 .

Reduction of )) ∗&. We now proceed, along the lines of [79], to the reduction of )) ∗& by the �-action

(3.16) � × )) ∗& → )) ∗&, 6 · / := )) ∗q6−1 (/),
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which trivializes into

� × (& ×&̄ ))
∗&̄ × )g∗ × g) → & ×&̄ ))

∗&̄ × )g∗ × g,

(6, (@,. , `, a, Z)) ↦→ 6 · (@,. , `, a, Z) := (6 · @,. ,Ad∗6 `,Ad∗6 a,Ad6 Z).
(3.17)

Accordingly, we have

�\)) ∗& ≃ )) ∗&̄ ×&̄ K̃,

where K̃ := �\(& × g∗ × g∗ × g) ≃ g̃∗ ×&̄ g̃∗ ×&̄ g̃ via

� × (& × g∗ × g∗ × g) → & × g∗ × g∗ × g, (6, (@, `, a, Z)) ↦→ (6 · @,Ad∗6 `,Ad∗6 a,Ad6 Z).

Finally, the reductions of (3.14) then appear as

)g∗
&

: )) ∗&̄ ×&̄ K̃ → )&̄ ×&̄ g̃, (., [@, `, a, Z]) ↦→ ()g∗
&̄
(. ), [@, Z]),

g) ∗& : )) ∗&̄ ×&̄ K̃ → ) ∗&̄ ×&̄ g̃∗, (., [@, `, a, Z]) ↦→ (g) ∗&̄ (. ), [@, `]).

3.3. Trivialization and reduction of ) ∗)&.

In the present subsection we shall now study the case of ) ∗)&. As usual, we shall first derive a trivialization

of ) ∗)& out of (2.28). Then, along the lines of the �-action on ) ∗)&, which is in fact the one that follows

from the �-action on ) ∗& and on )&, we shall present the �-reduction of ) ∗)&.

Trivialization of) ∗)&. Replacing the principal�-bundle (&, c, &̄) with the principal)�-bundle ()&, )c,)&̄)

in (2.28), we achieve at once

) ∗)& ≃ )& ×) &̄ )
∗)&̄ × ()g)∗,

the composition of which with )& ≃ & ×&̄ )&̄ × g then quickly yields

_) ∗) : ) ∗)& → & ×&̄ )
∗)&̄ × ()g)∗ × g, Υ ↦→ (g& (g

∗
)& (Υ)), )

∗ℎ(Υ), J)& (Υ), �(g
∗
)& (Υ))),

_−1
) ∗) : & ×&̄ )

∗)&̄ × ()g)∗ × g → ) ∗)&, (@,  , `, a, Z) ↦→ ) ∗

g∗
) &̄

( )ℎ@+Z& (@)
()c) ( ) + () �)∗

g∗
)&̄

( )ℎ@+Z& (@)
(`, a),

(3.18)

where ) ∗ℎ : ) ∗)& → ) ∗)&̄ is the cotangent lift of (2.19), ) � : ))& → )g is the connection 1-form on

())&,)c,)&̄), with () �)∗
g∗
)&̄

( )ℎ@+Z& (@)
: ()g)∗ → ) ∗

g∗
) &̄

( )ℎ@+Z& (@)
)& being its linear algebraic dual, and

J) & : ) ∗)& → ()g)∗ is the mapping given by

〈J)& (Υ), (b, [)〉 = 〈Υ, (b, [))& (g
∗
)& (Υ))〉

for any Υ ∈ ) ∗)&, and any (@,  , `, a, Z) ∈ & ×&̄ )
∗)&̄ × ()g)∗ × g.

Let us record also that the trivialized projection g∗
) &

: ) ∗)& → )& then, in this framework, reads

(3.19) ĝ∗
) &

: &×&̄)
∗)&̄×()g)∗×g ≃ ) ∗)& → )& ≃ &×&̄)&̄×g, (@,  , `, a, Z) ↦→ (@, g∗

) &̄
( ), Z),

for any (@,  , `, a, Z) ∈ & ×&̄ )
∗)&̄ × ()g)∗ × g.
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Remark 3.2. Let us note that this trivialization may also be accomplished by the dualization of the fibers

of ())&, g) &, )&) in view of the trivialization

〈•, •〉 : (& ×&̄ )
∗)&̄ × ()g)∗ × g) × (& ×&̄ ))&̄ × )g × g) → R,

〈(@,  , `, a, Z); (@,*, b, [, Z)〉 = 〈 ,*〉 + 〈`, b〉 + 〈a, [〉 .
(3.20)

of the natural pairing between ) ∗)& and ))&. �

Reduction of ) ∗)&. We shall now present the reduction of ) ∗)& with respect to the cotangent lift of the

�-action on )&, namely,

(3.21) � × ) ∗)& → ) ∗)&, 6 · Υ := ) ∗)q6−1 (Υ),

for any 6 ∈ �, and any Υ ∈ ) ∗)&. To this end, we first note the expression

� × (& ×&̄ )
∗)&̄ × ()g)∗ × g) → & ×&̄ )

∗)&̄ × ()g)∗ × g,

(6, (@,  , `, a, Z)) ↦→ 6 · (@,  , `, a, Z) = (6 · @,  ,Ad∗6 `,Ad∗6 a,Ad6 Z),

of (3.21) in terms of the trivialization (3.18). It, then, follows at once that

�\) ∗)& ≃ ) ∗)&̄ ×&̄ K̃.

Accordingly, the (trivialized) projection (3.19) above reduces to

(3.22) g∗
) &

: ) ∗)&̄ ×&̄ K̃ → )&̄ ×&̄ g̃, ( , [@, `, a, Z]) ↦→ (g∗
) &̄

( ), [@, Z]).

On the other hand,

〈•, •〉 : () ∗)&̄ ×&̄ K̃) × ())&̄ ×&̄ K̃) → R
〈
( , [@, `, a, Z]), (*, [@, b, [, Z])

〉
= 〈 ,*〉 + 〈`, b〉 + 〈a, [〉

(3.23)

determines a pairing on the reduced spaces, which then may be considered as the reduction of the (trivialized)

pairing (3.20).

3.4. Trivialization and reduction of ) ∗) ∗&.

We shall now conclude the present section with the trivialization, and then the reduction, of the iterated

cotangent bundle ) ∗) ∗&.

Trivialization of ) ∗) ∗&. In order to obtain a trivialization of ) ∗) ∗&, we consider the fiberwise dualization

of the (trivialized) bundle (& ×&̄ ))
∗&̄ × )g∗ × g ≃ )) ∗&,�g) ∗&, )

∗& ≃ & ×&̄ )
∗&̄ × g∗). In view of the

explicit expression of the (trivialized) bundle projection �g) ∗& : & ×&̄ ))
∗&̄ × )g∗ × g → & ×&̄ )

∗&̄ × g∗

in (3.14), we have the (trivialized) bundle projection

(3.24) �g∗
) ∗&

: & ×&̄ )
∗) ∗&̄ × ) ∗g∗ × g∗ → & ×&̄ )

∗&̄ × g∗, (@, !, `, [, d) ↦→ (@, g∗
) ∗&̄

(!), `).
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The explicit identification with ) ∗) ∗&, on the other hand, may indeed be given by

_) ∗) ∗ : ) ∗) ∗& → & ×&̄ )
∗) ∗&̄ × ) ∗g∗ × g∗, Ξ ↦→ (g∗& (g

∗
) ∗& (Ξ)), )

∗) ∗c(Ξ), ) ∗�∗(Ξ), J& (g
∗
) ∗& (Ξ))),

_−1
) ∗) ∗ : & ×&̄ )

∗) ∗&̄ × ) ∗g∗ × g∗ → ) ∗) ∗&,

(@, !, `, [, d) ↦→ ) ∗
) ∗
@ c (g

∗
) ∗&̄

(!))+�∗@ (d)
ℎ∗ (!) + ) ∗

) ∗
@ c (g

∗
) ∗&̄

(!))+�∗@ (d)J& (`, [),

(3.25)

for any Ξ ∈ ) ∗) ∗&, and any (@, !, `, [, d) ∈ & ×&̄ )
∗) ∗&̄ × ) ∗g∗ × g∗.

Reduction of ) ∗) ∗&. Let us finally note the reduction of the bundle ) ∗) ∗& under the group action given

by the double cotangent lift of the group action on the base manifold; namely,

(3.26) � × ) ∗) ∗& → ) ∗) ∗&, (6,Ξ) ↦→ 6 · Ξ := ) ∗) ∗q6−1 (Ξ),

for any 6 ∈ �, and any Ξ ∈ ) ∗) ∗&. On the level of the trivialization (3.25) then, the group action appears

to be

� × (& ×&̄ )
∗) ∗&̄ × ) ∗g∗ × g∗) → (& ×&̄ )

∗) ∗&̄ × ) ∗g∗ × g∗),

(6, (@, !, `, [, d)) ↦→ 6 · (@, !, `, [, d) = (6 · @, !,Ad∗6 `,Ad6 [,Ad∗6 d),

for any 6 ∈ �, and any (@, !, `, [, d) ∈ & ×&̄ )
∗) ∗&̄ × ) ∗g∗ × g∗. As a result, we obtain at once

�\) ∗) ∗& ≃ ) ∗) ∗&̄ × L̃,

where L̃ := �\(& × g∗ × g × g∗) ≃ g̃∗ ×&̄ g̃ ×&̄ g̃∗ via the diagonal �-action, that is,

� × (& × g∗ × g × g∗) → & × g∗ × g × g∗, 6 · (@, `, [, d) := (6 · @,Ad∗6 `,Ad6 [,Ad∗6 d).

The bundle projection, on the other hand, then reduces to that of

(3.27) g∗
) ∗&

: ) ∗) ∗&̄ ×&̄ L̃ → ) ∗&̄ ×&̄ g̃∗, (!, [@, `, [, d]) ↦→ (g∗
) ∗&̄

(!), [@, `]),

while the natural pairing between the cotangent bundle ) ∗) ∗� and the tangent bundle )) ∗& takes the form

of

〈•, •〉 : () ∗) ∗&̄ ×&̄ L̃) × ()) ∗&̄ ×&̄ K̃) → R,

〈(!, [@, `, [, d]), (., [@, `, a, Z])〉 = 〈!,. 〉 + 〈a, [〉 + 〈d, Z〉,
(3.28)

for any (!, [@, `, [, d]) ∈ ) ∗) ∗&̄ ×&̄ L̃, and any (., [@, `, a, Z]) ∈ )) ∗&̄ ×&̄ K̃.

4. Trivialization and Reduction of Tulczyjew’s Triplet

4.1. Trivializations and reductions of the canonical forms.

In this first subsection we shall present both the canonical 1-form and the symplectic 2-form in (2.2) along

the lines of the trivializations (and then the reductions) of the cotangent bundles ) ∗& and ) ∗) ∗&.

Trivialization and reduction of the canonical 1-form.
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Let us begin with the canonical 1-form \& ∈ Λ1() ∗&). Regarding it as a section of the cotangent bundle

g∗
) ∗&

: ) ∗) ∗& → ) ∗&, the defining relation (2.1) of the canonical 1-form may be incarnated as

〈\̂& (@, H, `), (@,. , `, a, Z)〉 = 〈�g) ∗& (@,. , `, a, Z), )̂ g
∗
&
(@,. , `, a, Z)〉 =

〈(@, g) ∗&̄ (. ), `), (@, )g
∗

&̄
(. ), Z)〉 = 〈g) ∗&̄ (. ), )g

∗

&̄
(. )〉 + 〈`, Z〉 = 〈\&̄ (H),. 〉 + 〈`, Z〉,

(4.1)

for any (@, H, `) ∈ & ×&̄ ×) ∗&̄ × g∗ ≃ ) ∗&, and any (@,. , `, a, Z) ∈ & ×&̄ ×)) ∗&̄ × )g∗ × g ≃ )) ∗&, see

also [79, Prop. 3]. Accordingly, the trivialized canonical 1-form may be given by

(4.2) \̂& : & ×&̄ )
∗&̄ × g∗ → & ×&̄ )

∗) ∗&̄ × ) ∗g∗ × g∗, (@, H, `) ↦→ (@, \&̄ (H), `, 0, `),

which, thus, reduces at once to

\& : ) ∗&̄ ×&̄ g̃∗ → ) ∗) ∗&̄ ×&̄ L̃, (H, [@, `]) ↦→ (\&̄ (H), [@, `, 0, `]).

Trivialization and reduction of the canonical symplectic 2-form. We continue with the trivialization and

the reduction of the symplectic 2-form Ω& = −3\& ∈ Λ2() ∗&). Along the lines of [79, Prop. 3], we have

(4.3)

Ω̂& ((@,.1, `, a1, Z1), (@,.2, `, a2, Z2)) = Ω&̄ (.1, .2) − ((g∗
&̄
)∗�̄`) (.1, .2) + 〈a2, Z1〉 − 〈a1, Z2〉 + 〈`, [Z2, Z1]〉

for any (@,.1, `, a1, Z1), (@,.2, `, a2, Z2) ∈ & ×&̄ ×)) ∗&̄ × )g∗ × g ≃ )) ∗& with g) ∗& (.1) = g) ∗& (.2),

where

(4.4) �` (-1, -2) := 〈`, �(-1, -2)〉

for any -1, -2 ∈ X(&), and �̄(Ec (@) , Fc (@) ) := �(Eℎ@, F
ℎ
@) for any E, F ∈ )&̄. As a result, the reduced

canonical 2-form takes the form of

Ω& ((.1, [@, `, a1, Z1]), (.2, [@, `, a2, Z2])) =

Ω&̄ (.1, .2) − (g∗
&̄
)∗ �̄ [@,`]) (.1, .2) + 〈[@, a2], [@, Z1]〉 − 〈[@, a1], [@, Z2]〉 + 〈[@, `], [@, [Z2, Z1]]〉

(4.5)

for any (.1, [@, `, a1, Z1]), (.2, [@, `, a2, Z2]) ∈ ))
∗&̄ ×&̄ K̃.

4.2. Trivializations and reductions of the symplectomorphisms.

Along the way to the trivialization, and then to the reduction, of the Tulczyjew’s triplet (2.16), what remains

are the symplectomorphisms of the top line. To be more precise, presenting the trivialization and the

reduction of (2.12) and (2.14) in the present subsection we shall accomplish our main task.

Trivialization and Reduction of U&. It follows at once from the trivialization (3.15) of the pairing between

)) ∗& and ))&, the trivialization (3.7) of the canonical involution, and the very definition (2.12) of the

symplectomorphism U& : )) ∗& → ) ∗)& that given any (@,. , `, a, b) ∈ & ×&̄ ))
∗&̄ × )g∗ × g ≃ )) ∗&,
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and any (@,*, b, [, Z) ∈ & ×&̄ ))&̄ × )g × g ≃ ))&,

〈Û& (@,. , `, a, b), (@,*, b, [, Z)〉 = −〈(@,. , `, a, b), ̂̂& (@,*, b, [, Z)〉̂ =

− 〈(@,. , `, a, b), (@, ^&̄ (*), Z , [ + �̄(g) &̄ (*), )g&̄ (*)) + [b, Z], b)〉̂ =

− 〈., ^&̄ (*)〉̃ − 〈`, [ + �̄(g) &̄ (*), )g&̄ (*)) + [b, Z]〉 − 〈a, Z〉 =

〈U&̄ (. ) − 8) �̄`, *〉 − 〈`, [〉 + 〈ad∗b ` − a, Z〉.

(4.6)

Accordingly, taking into account the compatibility of the pairing (2.11), we may write

Û& : & ×&̄ ))
∗&̄ × )g∗ × g → & ×&̄ )

∗)&̄ × ()g)∗ × g,

(@,. , `, a, b) ↦→ (@, U&̄ (. ) − 8) �̄`, ad∗b ` − a,−`, b).
(4.7)

As for the reduction, the similar computations yield

U& : )) ∗&̄ ×&̄ K̃ → ) ∗)&̄ ×&̄ K̃, (., [@, `, a, b]) ↦→ (U&̄ (. ) − 8) �`, [@, ad∗Z ` − a,−`, b]),(4.8)

where �(g) &̄ (*), )g&̄ (*)) := [@, �̄(g) &̄ (*), )g&̄ (*))] ∈ g̃.

Trivialization and Reduction of Ω♭
&

. Recalling the trivialization (4.3) of the symplectic 2-form, given any

(@,.1, `, a1, Z1), (@,.2, `, a2, Z2) ∈ & ×&̄ ))
∗&̄ × ()g)∗ × g ≃ )) ∗&, we have

〈Ω̂&
♭
(@,.1, `, a1, Z1), (@,.2, `, a2, Z2)〉 = Ω̂& ((@,.1, `, a1, Z1), (@,.2, `, a2, Z2)) =

Ω&̄ (.1, .2) − ((g∗
&̄
)∗�̄`) (.1, .2) + 〈a2, Z1〉 − 〈a1, Z2〉 + 〈`, [Z2, Z1]〉 =

〈Ω♭
&̄
(.1) − ((g∗

&̄
)∗�̄`)

♭ (.1), .2〉 + 〈a2, Z1〉 + 〈ad∗Z1
` − a1, Z2〉.

(4.9)

In other words, the symplectomorphism Ω♭
&

: )) ∗& → ) ∗) ∗& trivializes into

Ω̂&
♭

: & ×&̄ ))
∗&̄ × )g∗ × g → & ×&̄ )

∗) ∗&̄ × ) ∗g∗ × g∗,

(@,. , `, a, Z) ↦→ (@,Ω♭
&̄
(. ) − ((g∗

&̄
)∗�̄`)

♭ (. ), `, Z , ad∗Z ` − a).
(4.10)

As a result, the �-action reduces (4.10) into

Ω&
♭

: )) ∗&̄ ×&̄ K̃ → ) ∗) ∗&̄ ×&̄ L̃,

(., [@, `, a, Z]) ↦→ (Ω♭
&̄
(. ) − ((g∗

&̄
)∗ �̄`)

♭ (. ), [@, `, Z , ad∗Z ` − a]).
(4.11)

4.3. Trivialization of Tulczyjew’s symplectic space.

In this subsection we shall present the trivialization of the symplectic 2-form on )) ∗&. To this end, we

shall first study the tangent space ))) ∗& of Tulczyjew’s symplectic space from the point of view of the

trivialization. Taking into account, then, the operations (2.4) and (2.5), we shall succeed in obtaining the

explicit expression of the trivialized symplectic structure on )) ∗&. As for the reduction, we shall be content

with a brief comment at the end of the section.

Trivialization and reduction of ))) ∗&. In view of the trivialization )) ∗& ≃ & ×&̄ ))
∗&̄ × )g∗ × g, we

have at once

))) ∗& ≃ )& ×) &̄ )))
∗&̄ × ))g∗ × )g,
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which, by )& ≃ & ×&̄ )&̄ × g and (3.13), yields

_))) ∗ : ))) ∗& → & ×&̄ )))
∗&̄ × ))g∗ × )g × g,

¤/ ↦→ ((g& ◦ )g& ◦ ))g∗&) (
¤/), ))ℎ∗( ¤/), ))J& ( ¤/), ) �())g

∗
&(

¤/)), �(()g& ◦ ))g∗&) (
¤/)),

_−1
))) ∗ : & ×&̄ )))

∗&̄ × ))g∗ × )g × g → ))) ∗&,

(@, .́ , `, a, ¤̀, ¤a, Z , ¤Z, X) ↦→ ))) ∗c ( (g) ∗&̄◦g)) ∗&̄) (.́ ))+J∗
) ∗&

(X) (@)))
∗c(.́ ) + )) �∗(`, a, ¤̀, ¤a) + )J∗) ∗& (Z,

¤Z),

for any ¤/ ∈ ))) ∗&, and any (@, .́ , `, a, ¤̀, ¤a, Z , ¤Z, X) ∈ & ×&̄ )))
∗&̄ × ))g∗ × )g × g.

In this case, the projections g)) ∗& : ))) ∗& → )) ∗& and )g) ∗& : ))) ∗& → )) ∗& take the form

�g)) ∗& : & ×&̄ )))
∗&̄ × ))g∗ × )g × g → & ×&̄ ))

∗&̄ × )g∗ × g,

(@, .́ , `, a, ¤̀, ¤a, Z , ¤Z, X) ↦→ (@, g)) ∗&̄ (.́), `, a, Z),

�)g) ∗& : & ×&̄ )))
∗&̄ × ))g∗ × )g × g → & ×&̄ ))

∗&̄ × )g∗ × g,

(@, .́ , `, a, ¤̀, ¤a, Z , ¤Z, X) ↦→ (@, )g) ∗&̄ (.́ ), `, ¤̀, X),

(4.12)

respectively.

Let us next consider the �-action

� × ))) ∗& → ))) ∗&, 6 · ¤/ := ))) ∗q6−1 ( ¤/),

which, on the level of the trivialization, appears as

� × (& ×&̄ )))
∗&̄ × ))g∗ × )g × g) → & ×&̄ )))

∗&̄ × ))g∗ × )g × g,

(6, (@, .́ , `, a, ¤̀, ¤a, Z , ¤Z, X)) ↦→ (6 · @, .́ ,Ad∗6 `,Ad∗6 a,Ad∗6 ¤̀,Ad∗6 ¤a,Ad6 Z,Ad6 ¤Z,Ad6 X).

Therefore,

�\))) ∗& ≃ ))) ∗&̄ ×&̄ M̃,

where M̃ := �\(& × g∗ × g∗ × g∗ × g∗ × g × g × g) ≃ g̃∗ ×&̄ g̃∗ ×&̄ g̃∗ ×&̄ g̃∗ ×&̄ g̃ ×&̄ g̃ ×&̄ g̃ through

� × (& × g∗ × g∗ × g∗ × g∗ × g × g × g) → & × g∗ × g∗ × g∗ × g∗ × g × g × g,

(6, (@, `, a, ¤̀, ¤a, Z , ¤Z, X)) ↦→ (6 · @,Ad∗6 `,Ad∗6 a,Ad∗6 ¤̀,Ad∗6 ¤a,Ad6 Z,Ad6 ¤Z,Ad6 X).

As a result, (4.12) reduces to

g)) ∗& : ))) ∗&̄ ×&̄ M̃ → )) ∗&̄ ×&̄ K̃,

(.́ , [@, `, a, ¤̀, ¤a, Z , ¤Z, X]) ↦→ (g)) ∗&̄ (.́ ), [@, `, a, Z]),

)g) ∗& : ))) ∗&̄ ×&̄ M̃ → )) ∗&̄ ×&̄ K̃,

(.́ , [@, `, a, ¤̀, ¤a, Z , ¤Z, X]) ↦→ ()g) ∗&̄ (.́ ), [@, `, ¤̀, X]).

(4.13)

Trivialization of the symplectic 2-form on Tulczyjew’s symplectic space. We shall, finally, present the

trivialization 3̂) Ω̂& ∈ Λ2(& ×&̄ ))
∗&̄ ×)g∗ × g) of the symplectic 2-form 3)Ω& ∈ Λ2()) ∗&), where the

trivialization

(4.14) 3̂) : Λ: (&) → Λ: (& ×&̄ )&̄ × g), 3̂) = 38̂) + 8̂) 3
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of the operator (2.5) is given by the trivialization

8̂) : Λ: (&) → Λ:−1(& ×&̄ )&̄ × g), 8̂)Ω(-1, · · · , -:−1) = Ω(ĝ)& (-1), )̂ g& (-1), · · · , )̂ g& (-:−1))

(4.15)

of (2.4), for any -1, . . . , -:−1 ∈ X(& ×&̄ )&̄ × g) and any Ω ∈ Λ: (&).

Accordingly, given any (@, .́1, `, a, ¤̀1, ¤a1, Z , ¤Z1, X1), (@, .́2, `, a, ¤̀2, ¤a2, Z , ¤Z2, X2) ∈ & ×&̄ )))
∗&̄ × ))g∗ ×

)g × g, with g)) ∗&̄ (.́1) = g)) ∗&̄ (.́2) =: . ∈ )) ∗&̄, we have

3̂) Ω̂& ((@, .́1, `, a, ¤̀1, ¤a1, Z , ¤Z1, X1), (@, .́2, `, a, ¤̀2, ¤a2, Z , ¤Z2, X2)) =

3ô1 ((@, .́1, `, a, ¤̀1, ¤a1, Z , ¤Z1, X1), (@, .́2, `, a, ¤̀2, ¤a2, Z , ¤Z2, X2)) =

3ô1 (-1, -2) (@,. , `, a, Z) =
(
-1(ô1(-2)) − -2(ô1 (-1)) − ô1 ([-1, -2])

)
(@,. , `, a, Z),

(4.16)

where on the first equality we used (4.14), Ω̂& = −3\̂& ∈ Λ2(& ×&̄ )
∗&̄ × g∗), and ô1 = −8̂) Ω̂&, while

-1, -2 ∈ X(& ×&̄ ))
∗&̄ × )g∗ × g) are vector fields given by

-1(@,. , `, a, Z) = (@, .́1, `, a, ¤̀1, ¤a1, Z , ¤Z1, X1) ∈ & ×&̄ )))
∗&̄ × ))g∗ × )g × g,

-2(@,. , `, a, Z) = (@, .́2, `, a, ¤̀2, ¤a2, Z , ¤Z2, X2) ∈ & ×&̄ )))
∗&̄ × ))g∗ × )g × g.

Fixing (@,. , `, a, Z) ∈ & ×&̄))
∗&̄×)g∗×g, let q1(C) := (@1(C),.1(C), `1(C), a1 (C), Z1(C)) ∈ & ×&̄))

∗&̄ ×

)g∗×g be the integral curve of -1 ∈ X(&×&̄))
∗&̄×)g∗×g), and q2 (C) := (@2 (C),.2(C), `2(C), a2(C), Z2(C)) ∈

& ×&̄ ))
∗&̄ × )g∗ × g of -2 ∈ X(& ×&̄ ))

∗&̄ × )g∗ × g), that is,

@1 (0) = @ = @2 (0), ¤@1 (0) = X1, ¤@2(0) = X2,

`1 (0) = ` = `2(0), ¤̀1(0) = ¤̀1, ¤̀2(0) = ¤̀2,

Z1(0) = Z = Z2(0), ¤Z1(0) = ¤Z1, ¤Z2(0) = ¤Z2,

.1(0) = . = .2(0), ¤.1(0) = .́1, ¤.2(0) = .́2.

We thus have

-1(ô1 (-2)) (@,. , `, a, Z) =
3

3C

����
C=0

ô1 (-2) (q1(C)) = −
3

3C

����
C=0

Ω̂& (�g)) ∗& (-2(q1(C))),�)g) ∗& (-2(q1(C)))),

where we shall write

-2(q1(C)) = (@1(C), .́12 (C), `1(C), a1 (C), ¤̀2, ¤a2, Z1(C), ¤Z2, X2)

for some .́12(C) ∈ )))
∗&̄ satisfying .́12(0) = .́2. Accordingly,

-1(ô1 (-2)) (@,. , `, a, Z) =

−
3

3C

����
C=0

Ω̂& ((@1(C), g)) ∗& (.́12(C)), `1(C), a1(C), Z1(C)), (@1(C), )g) ∗& (.́12(C)), `1(C), ¤̀2, X2)) =

−
3

3C

����
C=0

(
Ω&̄ (g)) ∗& (.́12(C)), )g) ∗& (.́12(C)) − ((g∗

&̄
)∗ �̄`1 (C) ) (g)) ∗& (.́12(C)), )g) ∗& (.́12(C)))+

〈 ¤̀2, Z1(C)〉 − 〈a1(C), X2〉 + 〈`1(C), [X2, Z1(C)]〉
)
=

− .́1(8)Ω&̄ (.́2)) + .́1(8) ((g
∗
&̄
)∗ �̄`) (.́2)) + 8) ((g

∗
&̄
)∗ �̄ ¤̀1) (.́2) − 〈 ¤̀2, ¤Z1〉 + 〈 ¤a1, X2〉 − 〈 ¤̀1, [X2, Z1]〉 − 〈`1, [X2, ¤Z1]〉.

(4.17)
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Similarly, setting

-1(q2(C)) = (@2(C), .́21 (C), `2(C), a2 (C), ¤̀1, ¤a1, Z2(C), ¤Z1, X1)

for some .́21(C) ∈ )))
∗&̄ with .́21(0) = .́2, we arrive at

-2(ô1 (-1)) (@,. , `, a, Z) =

− .́2(8)Ω&̄ (.́1)) + .́2(8) ((g
∗
&̄
)∗ �̄`) (.́1)) + 8) ((g

∗
&̄
)∗ �̄ ¤̀2) (.́1) − 〈 ¤̀1, ¤Z2〉 + 〈 ¤a2, X1〉 − 〈 ¤̀2, [X1, Z2]〉 − 〈`2, [X1, ¤Z2]〉.

(4.18)

Finally, in view of the decomposition ))) ∗& ≃ + ()) ∗&) ⊕� ()) ∗&) of ))) ∗& into the vertical subbundle

+ ()) ∗&) = ker)g) ∗& and the horizontal subbundle � ()) ∗&), we have, along the lines of the proof of [79,

Prop. 3],

ô1 ([-1, -2]) (@,. , `, a, Z) = −Ω̂& (�g)) ∗& [-1, -2],�)g) ∗& [-1, -2]) =

− Ω̂& ((@, g)) ∗&̄ [.́1, .́2], `, a, Z), (@, )g) ∗& [.́1, .́2], `, 0, [X1, X2] − �()g) ∗&̄ (.́1), )g) ∗&̄ (.́2))) =

−Ω&̄ (g)) ∗&̄ ([.́1, .́2]), )g) ∗&̄ ([.́1, .́2])) + (g∗)∗
&̄
�̄` (g)) ∗&̄ ([.́1, .́2]), )g) ∗&̄ ([.́1, .́2]))+

〈ad∗
[X1, X2 ]−� () g) ∗&̄ (.́1) ,) g) ∗&̄ (.́2))

`, Z〉 + 〈a, [X1, X2] − �()g) ∗&̄ (.́1), )g) ∗&̄ (.́2))〉.

(4.19)

Combining (4.16)-(4.19) we obtain the trivialization of the symplectic structure on the Tulczyjew’s sym-

plectic space as

3̂) Ω̂& ((@, .́1, `, a, ¤̀1, ¤a1, Z , ¤Z1, X1), (@, .́2, `, a, ¤̀2, ¤a2, Z , ¤Z2, X2)) =

− 3)Ω&̄ (.́1, .́2) + 38) ((g
∗
&̄
)∗�̄ ¤̀1) (.́1, .́2) + 8) ((g

∗
&̄
)∗�̄ ¤̀1) (.́2) − 8) ((g

∗
&̄
)∗�̄ ¤̀2) (.́1)+

〈ad∗X2
`1 − ¤̀2, ¤Z1〉 + 〈 ¤a1 − ad∗Z1

¤̀1, X2〉 + 〈 ¤̀1 − ad∗X1
`2, ¤Z2〉 + 〈ad∗Z2

¤̀2 − ¤a2, X1〉+

〈ad∗
� () g) ∗&̄ (.́1) ,) g) ∗&̄ (.́2))−[X1 , X2 ]

`, Z〉 + 〈a, �()g) ∗&̄ (.́1), )g) ∗&̄ (.́2)) − [X1, X2])〉.

Remark 4.1. The reduction 3)Ω& ∈ Λ2()) ∗&̄ ×&̄ K̃) of 3)Ω& ∈ Λ2()) ∗&), under the �-action, then

follows at once in view of (4.13) with

3) : Λ: (&̄) → Λ: ()&̄ ×&̄ g̃), 3) := 38) + 8) 3

and

8) : Λ: (&̄) → Λ:−1()&̄ ×&̄ g̃), 8)Ω(-1, · · · , -:−1) = Ω(g)& (-1), )g& (-1), · · · , )g& (-:−1))

for any -1, . . . , -:−1 ∈ ))&̄ ×&̄ G̃ and any Ω ∈ Λ: (&̄), where (by a slight abuse of notation) we mean

by Λ: (&̄) the sections of the bundle Λ:) ∗& over &̄, and by Λ:−1()&̄ ×&̄ g̃) the sections of Λ:−1) ∗)&.

Accordingly, then, the reduced symplectic form 3)Ω& ∈ Λ2 ()) ∗&̄×&̄ K̃) will be a section ofΛ2) ∗))&. �

5. Conclusion and the Future Work

In this note, we have presented both the trivialization and the reduction of the Tulczyjew’s triplet in the

presence of an Ehresmann connection. More precisely, given a manifold admitting a free proper action of a

Lie group (which may thus be regarded as a principal bundle over the orbit space of the action), we used the

decomposition of its tangent bundle via a principal connection (associated to the principal bundle structure

on the manifold through the action) to establish the trivializations of all components of the Tulczyjew’s
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triplet over this manifold. We have then observed, and presented, that once the trivializations are established,

it takes rather straightforward calculations to obtain the reductions.

Accordingly, a natural avenue of research is the Legendre transformation of (possibly singular) Lagrange-

Poincaré systems [9, 10, 52], which we plan to undertake in a sequel [22]. To this end, we shall need to

consider the trivializations and the reductions of Morse families and generating functions, as well as the

Lagrangian submanifolds under symmetry. It will then be possible to consider the Legendre transformation

even for the singular Lagrangian/Hamiltonian dynamics.

The ultimate goal of our works, [17, 18, 19, 24] on the geometry of kinetic theories, and [16, 20, 21] on the

Tulczyjew’s triplet for Lie groups, are to establish a Lagrangian formulation of Poisson-Vlasov dynamics

of plasma motion. We do hope that the geometry presented herein will help to shed more light on this

phenomenon.

On the other hand, an independent line of research might be to pursue the trivialization and the reduction

of Tulczyjew’s triplet for the higher order reduced dynamics from the point of view of the higher order

Lagrange–Poincaré and Hamilton–Poincaré reductions in [28], see also [27].

An important application of the present geometry is to study a gauged Tulczyjew’s triplet motivated by the

gauged Lie-Poisson setting of [60], which is constructed on the quotient space  ×& := ( ⋊�)\( ×&)

of the product manifold  × & by the action of the semi-direct product Lie group  ⋊ �, where & is a

manifold, whereas � and  are Lie groups. On the level of the dynamical equations, in this case, the

additional terms associated to the action of � on  allow to study the dynamics of a particle in a Yang-Mills

field [40, 77], for nonlinear elasticity [66], stability of the rigid body, and for Maxwell-Vlasov dynamics

of plasma motion [57]. As stated in [60], the gauged geometry is important to establish a passage from

the Maxwell-Vlasov dynamics to Poisson-Vlasov dynamics through the nonrelativistic limit, [41]. For this

realization, a motivation behind the need of the semi-direct structure can be found in the work of Van Hove

in [76].
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