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Abstract Due to the sparse structure of ultra-wideband
(UWB) channels, compressive sensing (CS) is suitable for
UWB channel estimation. Among various implementations
of CS, the inclusion of Bayesian framework has shown poten-
tial to improve signal recovery as statistical information
related to signal parameters is considered. In this paper, we
study the channel estimation performance of Bayesian CS
(BCS) for various UWB channel models and noise condi-
tions. Specifically, we investigate the effects of (i) sparse
structure of standardized IEEE 802.15.4a channel models,
(ii) signal-to-noise ratio (SNR) regions, and (iii) number of
measurements on the BCS channel estimation performance,
and compare them to the results of �1-norm minimization
based estimation, which is widely used for sparse channel
estimation. We also provide a lower bound on mean-square
error (MSE) for the biased BCS estimator and compare it
with the MSE performance of implemented BCS estimator.
Moreover, we study the computation efficiencies of BCS and
�1-norm minimization in terms of computation time by mak-
ing use of the big-O notation. The study shows that BCS
exhibits superior performance at higher SNR regions for ade-
quate number of measurements and sparser channel models
(e.g., CM-1 and CM-2). Based on the results of this study,
the BCS method or the �1-norm minimization method can be
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İstanbul Technical University, Maslak, 34469 Istanbul, Turkey
e-mail: ozgor@itu.edu.tr

H. A. Çırpan
e-mail: cirpanh@itu.edu.tr

S. Erküçük (B)
Department of Electrical and Electronics Engineering,
Kadir Has University, Fatih, 34083 Istanbul, Turkey
e-mail: serkucuk@khas.edu.tr

preferred over the other one for different system implemen-
tation conditions.
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1 Introduction

Ultra-wideband (UWB) impulse radio (IR) [1] is an emerg-
ing technology for wireless communications. Owing to dis-
tinguishing properties such as having low transmit power,
low-cost simple structure, immunity to flat fading and capa-
bility of resolving multipath components individually with
good time resolution, UWB-IR systems have received great
interest from both academia and industry [2,3]. Considering
these properties, UWB-IRs have been selected as the physi-
cal layer structure of wireless personal area network (WPAN)
standard IEEE 802.15.4a for location and ranging, and low
data rate applications [4,5]. In the implementation of UWB-
IRs, one of the main challenges is the channel estimation [6].
Due to ultra-wide bandwidth of UWB-IRs, the main disad-
vantage of implementing the conventional maximum like-
lihood (ML) channel estimator is that very high sampling
rates, i.e., very high speed A/D converters are required for
precise channel estimation.

In order to overcome the high-rate sampling problem,
compressive sensing (CS) theory proposed in [7,8] can be
considered for UWB channel estimation. CS is a promising
paradigm in signal processing, where a signal that is sparse in
a known transform domain can be recovered with high prob-
ability from a set of random linear projections with much
fewer measurements than usually required by the dimensions
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of this domain. As the received consecutive UWB pulses
arrive with a considerable time delay and can be resolved
individually at the receiver, sparse structure assumption is
widely accepted for UWB multipath channels. Accordingly,
CS has been exploited for UWB channel estimation [9,10],
where the conventional �1-norm minimization method has
been used to estimate UWB channel coefficients.

Among various implementations of CS, one approach
has been to include the Bayesian model. Considering the
sparse Bayesian model in [11], a Bayesian framework has
been developed for CS in [12]. In [13], a hierarchical form
of Laplace priors on signal coefficients is taken into con-
sideration for Bayesian CS (BCS). Both of the frameworks
have shown potential to improve signal recovery as the pos-
terior density function over the associated sparse channel
coefficients is considered. In [14], a Turbo BCS algorithm
for sparse signal reconstruction through exploiting and inte-
grating spatial and temporal redundancies in multiple sparse
signal reconstruction is proposed. In [15], the Laplace prior
based BCS algorithm in [13] has been modified for joint
reconstruction of received sparse signals and channel para-
meters for multiuser UWB communications. In [16], the pro-
posed approach in [12] is considered for UWB channel esti-
mation, where BCS estimation results are compared to the
�1-norm minimization results. However, the authors have not
considered the effects of UWB channel models (i.e., sparsity
condition) or additive noise level (i.e., Bayesian approach
depends on the statistical information about channel para-
meters and additive noise) on the channel estimation perfor-
mance.

In this paper, motivated by investigating the factors that
affect the performance of BCS in realistic UWB channels,
we study the effects of standardized IEEE 802.15.4a chan-
nel models, signal-to-noise ratio (SNR) regions, and num-
ber of measurements on the channel estimation performance.
These factors are important to analyze as sparsity, noise level
and measurements directly affect the BCS model. Accord-
ingly, BCS channel estimation performance for various sce-
narios is compared to the �1-norm minimization based esti-
mation [17], which is a method widely used for sparse chan-
nel estimation. Furthermore, it is important to specify a lower
bound on the estimation error as a benchmark for the perfor-
mance analysis of BCS estimators. Posterior Cramér-Rao
lower bound (PCRLB), also referred to as the Bayesian
CRLB, is a widely used bound that defines a lower bound
on the mean-square error (MSE) of unbiased Bayesian esti-
mators [18]. Indeed, CRLB is a lower bound only on the total
variance of unbiased estimators [19], where MSE becomes
equal to the variance for unbiased estimators. However, for
biased estimators the bias term should be taken into account
in addition to the variance of the estimator. By considering
the bound in [20], we will present an MSE lower bound for
biased Bayesian estimators with linear bias vectors to com-

pare with the actual channel estimation performance of BCS.
In addition, computation efficiency of BCS over the �1-norm
minimization will be justified in terms of computation time
by making use of the big-O notation. The comparison results
provided are important in order to define the conditions where
BCS may be preferred over the conventional �1-norm mini-
mization method.

The rest of the paper is organized as follows. In Sect. 2,
IEEE 802.15.4a channel models that are widely used in UWB
communications are explained. In Sect. 3, the overview of
CS theory, �1-norm minimization, Bayesian model and their
applications to UWB channel estimation are presented. In
Sect. 4, an MSE performance bound for a biased BCS estima-
tor is provided. In Sect. 5, simulation results for performance
comparison are presented. In Sect. 6, computation efficien-
cies of both BCS and �1-norm minimization are compared.
Concluding remarks are given in Sect. 7.

2 UWB channel model

In this section, the discrete-time equivalent UWB channel
model and the standardized IEEE 802.15.4a channel models
are presented, respectively.

In order to obtain the discrete-time channel model, the
general channel impulse response (CIR) should be presented
first. Accordingly, the continuous-time channel h(t) can be
modeled as

h(t) =
Lr∑

k=1

hkδ(t − τk), (1)

where hk represents the kth multipath gain coefficient, τk is
the delay of the kth multipath component, δ(·) is the Dirac
delta function and Lr is the number of resolvable multipaths.

The continuous-time CIR given in (1) assumes that multi-
paths may arrive any time. This is referred to as the τ -spaced
channel model [21]. If a pulse is Ts-seconds duration, then an
approximate equivalent channel model can be obtained for
practical purposes. Hence, the equivalent Ts-spaced channel
model can be expressed as

h(t) =
N∑

n=1

cnδ(t − nTs), (2)

where Tc = NTs is the channel length and {cn}’s are
the resulting new channel coefficients [10]. Using (2), the
discrete-time equivalent channel can be written as

h = [c1, c2, . . . , cN ]T , (3)
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where the channel resolution is Ts . Assuming that h has K
nonzero coefficients, the sparsity assumption of (3) is valid
if K � N .

Based on the discrete-time equivalent channel model
above, the UWB channels are widely accepted as having a
sparse structure. This assumption for UWB channels plays
an important role in CS based UWB channel estimation.
However, the channel environment should be inspected to
prove this assumption. In [22], a comprehensive model for
UWB propagation channels, which was accepted as the stan-
dardized channel model for IEEE 802.15.4a, has been devel-
oped considering various channel environments and conduct-
ing different measurement campaigns. These environments
include indoor residential, indoor office, outdoor, industrial
environments, agricultural areas and body area networks with
having either a line-of-sight (LOS) or a non-LOS (NLOS)
transmitter-receiver connection. In [10], the sparsity assump-
tion of UWB channels has been discussed over the widely
used channel models CM-1 (LOS residential indoor), CM-2
(NLOS residential indoor), CM-5 (LOS outdoor) and CM-8
(NLOS industrial). In order to investigate the effects of chan-
nel sparsity on the BCS channel estimation performance, we
will consider the same channel models in the current study.
More details on the channel models CM-1, CM-2, CM-5 and
CM-8 can be found in [10] and [22].

3 CS for UWB channel estimation

Assuming that the UWB channels are sparse, CS can be
employed for UWB channel estimation in order to overcome
the high-rate sampling problem. In the following, we will
present the overview of CS theory and its application to UWB
channel estimation, and the Bayesian CS model, respectively.

3.1 Overview of compressive sensing

Consider the problem of reconstructing a discrete-time signal
x ∈ �N which can be represented in an arbitrary basis � ∈
�N×N with the weighting coefficients θ ∈ �N as

x =
N∑

n=1

ψnθn = �θ . (4)

Suppose that θ = [θ1, θ2, . . . , θN ]T has only K nonzero
coefficients, where K � N and � = [ψ1, ψ2, . . . , ψN ],
ψn ∈ �N . As x is a linear combination of only K basis vec-
tors, it can be called a K -sparse signal and can be expressed
as

x =
K∑

i=1

ψni θni , (5)

where {ni}’s are the indices that correspond to nonzero coef-
ficients. By projecting x onto a random measurement matrix
� ∈ �M×N , a set of measurements y ∈ �M can be obtained
as

y = ��θ, (6)

where M � N . Here, the measurement matrix should be
incoherent with the basis in addition to the sparsity con-
dition for accurately estimating the weighting coefficients.
The incoherency is usually achieved by random matrices
with independent identically distributed (i.i.d) elements from
Gaussian or Bernoulli distributions [23]. Instead of using the
N -sample x to estimate the weighting coefficients θ , the M-
sample measurement vector y can be used. Accordingly, θ

can be estimated as

θ̂ = argmin ‖θ‖1 subject to y = ��θ , (7)

where �p-norm is denoted as ‖θ‖p =
(∑N

n=1 |θn|p
) 1

p
. The

reconstruction problem hence becomes an �1-norm optimiza-
tion problem, and estimating θ from the vector y instead of
x corresponds to a lower sampling rate at the receiver.

The CS theory explained in (4)–(7) can be employed
to UWB channel estimation. Suppose that g ∈ �N is the
discrete-time representation of the received signal given as

g = Ph + n, (8)

where P ∈ �N×N is a scalar matrix representing the time-
shifted pulses, h = [c1, c2, . . . , cN ]T are the channel gain
coefficients, and n are the additive white Gaussian noise
(AWGN) terms. Since the UWB channel structure is sparse,
h has only K nonzero coefficients. Similar to (6), the received
signal g can be projected onto a random measurement matrix
� ∈ �M×N so as to obtain y ∈ �M as

y = �Ph + �n

= Ah + z. (9)

Due to the presence of the noise term z, the channel h can be
estimated as

ĥ = argmin ‖h‖1 subject to ‖y − Ah‖2 ≤ ε , (10)

where ε is related to the noise term as ε ≥ ‖z‖2. The �1-norm
minimization problem in (10) can be recast as a second-order
cone program (SOCP) and solved1 with a generic log-barrier
algorithm.

1 For the implementation of (10), the codes provided by Romberg
and Candes publicly availble at http://users.ece.gatech.edu/~justin/
l1magic/ are used.
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3.2 Bayesian compressive sensing

In this section, the CS problem will be presented from a
Bayesian perspective for UWB channel estimation. In the
BCS framework proposed in [11,12], the statistical infor-
mation about the compressible signal and the additive noise
is considered, where �1-norm minimization does not con-
sider these factors. Considering sparsity prior of h and the
noise model assumption together with the signal model in
(9), BCS can be used2 for UWB channel estimation. Taking
into consideration (9), the full posterior distribution over all
unknowns of interest for the problem at hand becomes

p(h,β, σ 2 | y) = p(y | h,β, σ 2) p(h,β, σ 2)

p(y)
, (11)

where β represents hyperparameters that control the inverse
variance of each channel coefficient, and σ 2 is the variance
of each noise term in z. Unfortunately, this full posterior term
is not tractable since the integral

p(y) =
∫ ∫ ∫

p(y | h,β, σ 2) p(h,β, σ 2) dh dβ dσ 2

(12)

cannot be computed analytically. Hence, we decompose the
full posterior distribution as

p(h,β, σ 2 | y) ≡ p(h | y,β, σ 2) p(β, σ 2 | y). (13)

In (9), the noise term z can be modeled probabilistically as
independent zero-mean Gaussian random variables:

p(z) =
M∏

m=1

N (zm | 0, σ 2). (14)

This noise model infers Gaussian likelihood for observation
y:

p(y | h, σ 2) = (2πσ 2)−M/2 exp

(−‖y − �h‖2

2σ 2

)
. (15)

Since this Gaussian likelihood is inferred by AWGN term z,
a conjugate3 prior distribution has to be defined for computa-
tional convenience so that the associated Bayesian inference
may be performed in closed form [24]. Therefore, suppose
that a zero-mean Gaussian prior distribution is defined on

2 For the implementation of BCS, the codes provided by Shihao Ji pub-
licly available at http://people.ee.duke.edu/~lcarin/BCS.html are used.
3 In Bayesian probability theory, if the resulting posterior distributions
p(h| y) are in the same class as prior probability distributions p(h),
then that class of p(h) is said to be conjugate to the class of likelihood
functions p(y| h) [12].

channel coefficients with {βn}:

p(h | β) =
N∏

n=1

N (hn | 0, β−1
n )

= (2π)−N/2
N∏

n=1

β
1/2
n exp

(
−βnh2

n

2

)
. (16)

{βn}’s are independent hyperparameters that form the β =
[β1, ..., βN ]T vector and control the strength of the prior over
associated channel coefficients individually.

The first term of (13), p(h | y,β, σ 2), the posterior dis-
tribution over the channel coefficients, can be expressed via
Bayes’ rule as

p(h | y,β, σ 2) = p(y | h, σ 2) p(h | β)

p(y | β, σ 2)
. (17)

Considering Gaussian likelihood together with Gaussian
prior, this posterior distribution is also N (μ,�) where

Σ = (Λ + σ−2�T�)−1,

μ = σ−2Σ�T y, (18)

with Λ = diag(β1, β2, . . . , βN ) and is analytically trac-
table. To compute the full posterior distribution approxi-
mately, hyperparameter posterior p(β, σ 2 | y), the second
term in (13), needs to be approximated. This approxima-
tion is provided by type-II ML procedure. This procedure,
also known as the evidence approximation or the emprical
Bayes, is used to estimate hyperparameters by maximizing
the marginal likelihood function (LF) [25]. According to the
Bayes’ theorem, hyperparameter posterior p(β, σ 2 | y) can
be expressed as:

p(β, σ 2 | y) ∝ p(y | β, σ 2) p(β, σ 2). (19)

Using appropriately selected uniform4 hyperpriors for β and
σ 2 (i.e., p(β, σ 2 | y) ∝ p(y | β, σ 2)), the estimates of
β and σ 2 can be found by maximizing marginal likelihood
function (LF) p(y | β, σ 2) as a consequence of type-II ML
procedure. The marginal LF can be obtained by integrating
over the channel coefficients h as:

p(y | β, σ 2) =
∫ ∞

−∞
p( y | h, σ 2) p(h | β)dh. (20)

Maximization of the marginal LF with respect to β or equiv-
alently, its logarithm can be expressed as:

L(β, σ 2) = log p(y | β, σ 2)

= log
∫ ∞

−∞
p(y | h, σ 2) p(h | β)dh

= −1

2

[
M log(2π) + log |C| + yTC−1y

]
(21)

4 Uniform or flat hyperpriors are known as noninformative hyperpriors
[24] which have a minimum effect on the hyperparameter posterior and
they can be ignored.
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where C = σ 2I + �Λ−1�T and I ∈ �M×M is an identity
matrix. Differentiating L(β, σ 2) with respect to β and σ 2,
and equating it to zero yields the following expressions which
can be solved iteratively:

βnew
n = γn

μ2
n
, σ 2new = ‖y − �μ‖2

2

M − ∑N
n=1 γn

, (22)

where γn ∈ [0, 1] is defined as γn = 1 − βn
∑

nn with
∑

nn
being the nth diagonal element of the posterior coefficient
covariance from (18) and μn is the nth posterior coefficient
mean from (18).

By employing re-estimates of hyperparameters, an itera-
tive systematic approach is used to determine which basis
vectors should be included in the model and which should be
removed to promote sparsity [12]. Further details and steps
of the BCS algorithm can be found in [11].

4 Performance bound

As in any estimation application, it is useful to quantify the
best performance that may be achieved from channel esti-
mator approach proposed. Performance bounds can serve as
a benchmark with the goal of facilitating performance com-
parisons of the various estimation techniques under consid-
eration. Such bounds may also indicate characteristics of the
problem that require extra attention for optimal performance.

The CRLB is a widely used performance bound in order to
indicate the minimum achievable total variance of any unbi-
ased estimator of deterministic parameter vector [19]. Since
MSE becomes equal to variance for unbiased (zero bias) esti-
mators, CRLB also provides a benchmark on the estimation
error for this type of estimators. However, the BCS estima-
tor proposed for UWB channel estimation in our study is
a biased estimator as well as being Bayesian. Accordingly,
restricting ourselves to unbiased approach of the lower bound
for the problem at hand leads to unreasonable performance
results. It is necessary to determine a lower bound on the esti-
mation error which characterizes both the total variance and
the bias of the biased estimator. Hence, we will provide an
MSE lower bound for biased Bayesian estimators (MSEl,b,
where subscript l stands for lower bound and subscript b
stands for biased Bayesian) by making use of bound in [20],
which is based on biased CRLB in [26]. In literature, PCRLB
or Bayesian CRLB [18] was defined for unbiased Bayesian
estimators considering prior information about the parameter
vector that we want to estimate. In addition to CRLB, PCRLB
also takes into account prior probability distribution of the
parameter vector. Nevertheless, PCRLB is a lower bound on
the variance of the unbiased Bayesian estimator not on the
estimation error. Accordingly, the MSEl,b that we will pro-
vide considering bias with the prior information of channel

vector will become a lower bound on the estimation error of
biased Bayesian estimators. Note that the bias and the prior
distribution of the parameter vector are included in the deriva-
tion of the performance bound presented below, however, the
sparsity conditions are not incorporated into the model and
are subject for future research. Next, the MSE of general and
Bayesian biased estimators are presented, respectively.

4.1 MSE of a biased estimator

In what follows, MSE of the biased estimator is expressed
as a sum of the squared norm of bias and trace of covariance
matrix for the channel vector h with given linear signal model
in (9),

MSE(ĥb) = E

{∥∥∥(ĥb) − h
∥∥∥

2
}

= ‖b(h)‖2 + Tr(Cĥb
),

(23)

where bias vector, b(h) ∈ �N , and covariance matrix of the
biased estimator, Cĥb

∈ �N×N , can be denoted respectively
as

b(h) = E
{

ĥb

}
− h, (24)

Cĥb
= Cov(ĥb) = E

{[
ĥb − E(ĥb)

] [
ĥb − E(ĥb)

]T}
,

(25)

and ĥb ∈ �N corresponds to estimated channel vector.
Regarding suitability of regularity condition on p(y|h) [19]

Ey

[
∂ ln p(y |h)

∂h

]
= 0 ∀ h, (26)

biased CRLB in [26] for any biased estimator with a given
bias can be obtained for the vector case as follows:

Cĥb
≥

(
I + ∂b(h)

∂h

)(
Ey|h

{[
∂ ln py|h (y |h)

∂h

]T

×
[
∂ ln py|h (y |h)

∂h

]})−1 (
I + ∂b(h)

∂h

)T

(27)

where ∂b(h)
∂h represents the bias gradient matrix as will be

explained while presenting the assumption on the bias vector.
The second term in (27) can also be denoted as

Ey|h

{[
∂ ln py|h (y |h)

∂h

]T [
∂ ln py|h (y |h)

∂h

]}

= −Ey|h

{[
∂2 ln py|h (y |h)

∂hT ∂h

]}
. (28)
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4.2 MSE of Bayesian biased estimator

Counterpart of the biased CRLB in Bayesian framework can
be expressed for Bayesian estimators as

Cĥb
≥

(
I + ∂b(h)

∂h

) (
−Ey,h

{[
∂2 ln py,h(y, h)

∂hT ∂h

]})−1

×
(

I + ∂b(h)

∂h

)T

.

(29)

Moreover, we can decompose the second term in (29) into
two parts using the Bayes’ rule:

−Ey,h

{[
∂2 ln py,h(y, h)

∂hT ∂h

]}

= −Ey|h
{[

∂2 ln py|h (y |h )

∂hT ∂h

]}
− Eh

{[
∂2 ln ph(h)

∂hT ∂h

]}

(30)

which can be expressed in matrix form as

JH = JD + JP , (31)

where JH ∈ �N×N , JD ∈ �N×N and JP ∈ �N×N corre-
spond to Bayesian Fisher information matrix (FIM), observa-
tion data (y) information matrix and prior information matrix,
respectively. Considering our linear signal model in (9) with
(14) and (15), observation data information matrix JD can
be expressed as

JD = −Ey|h

{[
∂2 ln py|h (y |h )

∂hT ∂h

]}
= AT C−1

z A, (32)

where Cz = σ 2I ∈ �M×M is the covariance matrix of the
noise term z and A ∈ �M×N is the measurement matrix
which is also a full rank matrix. Exploiting assumption
(h ∼ N (0, Ch)) in (16), prior information matrix JP is
equal to inverse of covariance matrix of the channel vector
Ch ∈ �N×N :

JP = −Eh

{
∂2 ln ph(h)

∂hT ∂h

}
= C−1

h . (33)

Ch is a diagonal matrix and each diagonal element is formed
by inverse of the hyperparameters

Ch = diag
{
β−1
n

}
, n ∈ {1, 2, ..., N } . (34)

Once JD and JP are obtained, the Bayesian FIM JH can be
rewritten in compact form as

JH = AT C−1
z A + C−1

h . (35)

Since the denominator of (29) is obtained, to form a final
expression for the biased Bayesian CRLB, an a-priori choice
of the bias gradient is required. In [20], estimators with
only linear bias vectors are considered instead of taking
into account all possible estimators. For its simplicity and
tractability, we also consider only linear bias vectors in this
study. Advantages of restricting attention to linear bias vec-
tors can be found in [20]. Linear bias vector can be denoted
as

b(h) = Sh, (36)

where S ∈ �N×N is the bias gradient matrix defined by

S = ∂b(h)

∂h
. (37)

Thus, (29) can be rearranged as

Cĥb
≥ (I + S) J−1

H (I + S)T , (38)

where I ∈ �N×N is an identity matrix. Inserting (36) and
(38) into (23), the MSEl,b for biased Bayesian estimators
can be obtained as

MSEl,b = E

{∥∥∥(ĥb) − h
∥∥∥

2
}

= hT ST Sh

+ Tr
{
(I + S) J−1

H (I + S)T
}

. (39)

Now, the optimal S matrix needs to be determined to find the
achievable smallest MSE over all estimators with linear bias.
Since (39) is convex in S, the smallest value of MSEl,b can
be found by equating its derivative to zero

∂
[
hT ST Sh + Tr

{
(I + S)J−1

H (I + S)T
}]

∂S
= 0,

2hT hS + 2J−1
H + 2J−1

H S = 0, (40)

which yields

S(J−1
H + hT h) = −J−1

H . (41)

Multiplying both sides of (41) with (J−1
H + hT h)−1 leaves

the matrix S alone at the left side in (41). Using the matrix
inversion lemma, (J−1

H + hT h)−1 can be expressed as

(J−1
H + hT h)−1 = JH − JHhhT JH

1 + hT JHh
. (42)

After multiplying the right side of (41) with (42), the optimal
S matrix can be obtained as follows:

S = −I + 1

1 + hT JHh
hhT JH . (43)
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Fig. 1 Realizations of channel models for Tc = 250 ns and Ts = 0.25 ns

Note that when S = 0, which is the zero bias case, CRLB
for unbiased Bayesian estimators (i.e., PCRLB) is obtained:
MSEl,b=0 = Tr(J−1

H ). Therefore MSEl,b also includes
unbiased Bayesian estimation as a special case.

5 Performance results

In this section, we investigate the effects of number of mea-
surements, SNR regions, and the IEEE 802.15.4a channel
models on the BCS channel estimation performance, and
compare the results to the performance of the �1-norm min-
imization results. As the performance measure, we evaluate
the MSE of the estimated channel vector. To remove the path
loss effect and to treat each channel model fairly, we nor-
malize the channel coefficients as

∑N
n=1 c

2
n = 1. For the

simulations, the channel length and resolution are fixed to
Tc = 250 ns and Ts = 0.25 ns, respectively, resulting in the
discrete-time channel length N = Tc/Ts = 1,000. Accord-
ing to these Tc and Ts values, single channel realizations of
CM-1, CM-2, CM-5 and CM-8 with the parameters given
in [22] are plotted in Fig. 1 for illustrative purposes. The
performances are evaluated for M = {250, 500, 750} mea-
surements in the [0, 30]dB SNR region. Here, M/N can be
regarded as the compression ratio (i.e., the ratio of number of
measurements to the length of the equivalent discrete-time
channel) and K/N can be regarded as the sparsity ratio (i.e.,

Table 1 Sparsity ratios of channel models when Tc = 250 ns and Ts =
0.25 ns

Channel model Sparsity ratio (K/N )

CM-1 0.06

CM-2 0.09

CM-5 0.47

CM-8 0.79

the ratio of number of nonzero coefficients to the length of
the equivalent discrete-time channel). The channel models’
sparsity ratios, which are acquired by averaging over 200
channel realizations, for fixed Tc and Ts values are given
in Table 1. The elements of the measurement matrix � are
obtained from the N (0, 1) distribution, and the basis where
the channel vector is sparse is defined as � = I in our sim-
ulations.

In Figs. 2, 3, 4 and 5, the channel estimation performances
of BCS and �1-norm minimization are compared for various
number of measurements and SNR values for the channel
models CM-1, CM-2, CM-5 and CM-8, respectively. The
best channel estimation performance for both methods is
obtained for CM-1, as it exhibits the sparsest structure among
these channel models (see Fig. 1; Table 1). BCS outperforms
�1-norm minimization in the sparser channel models CM-
1 and CM-2 for SNR values greater than 12-13dB for all
measurements considered. This can be explained as for the
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Fig. 2 MSE performance comparison of BCS and �1-norm minimiza-
tion for CM-1
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Fig. 3 MSE performance comparison of BCS and �1-norm minimiza-
tion for CM-2

higher SNR regions posterior density function over the chan-
nel coefficients and noise is beneficial to the channel coeffi-
cient estimation, whereas for lower SNR regions the uncer-
tainty in the estimation is higher. As for CM-5, which is a
less sparse channel, the number of measurements should be
greater than M = 500 in order for BCS to have a superior
performance at higher SNR regions. As for CM-8, which is
not a sparse channel model, as the multipaths arrive almost
in every time bin, the BCS performs inferior compared to
the �1-norm minimization for almost all conditions. In sum-
mary, BCS can be an effective channel estimation method
for sparser channel models at high SNR regions. This is
mainly due to BCS considering the channel and noise sta-
tistics and providing a posterior density function over noise
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Fig. 4 MSE performance comparison of BCS and �1-norm minimiza-
tion for CM-5
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Fig. 5 MSE performance comparison of BCS and �1-norm minimiza-
tion for CM-8

and the channel coefficients, whereas the �1-norm minimiza-
tion method not utilizing such statistics.

Next, we compare the MSE performance of BCS with the
MSE lower bound, MSEl,b, in Figs. 2, 3, 4 and 5. It can be
observed that the MSE lower bound performance improves
with the number of measurements M as expected. On the
other hand, for M fixed the MSE bounds are similar for differ-
ent channel models. This can be explained as follows. When
quantified, the MSEl,b term in (39) is observed to be domi-
nated by the second term, which depends on JH = JD + JP .
Here, the observation data information matrix JD has more
significant contribution compared to the prior information
matrix JP that carries the channel model information. There-
fore, MSEl,b values have found to be similar despite chan-
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nel model differences. Lastly, we observed a performance
gap between the MSE performance of BCS and the MSE
lower bound as in [18], where they compared their proposed
CS based block maximum-a-posteriori least mean squares
(CS-BMAP-LMS) method to the Bayesian CRLB. A tighter
bound for our implementation may be obtained if the sparsity
knowledge of the channel can be incorporated into the lower
bound computation and the linearly assumed bias vector can
be generalized to cover nonlinear bias vectors. Both consid-
erations are non-trivial to implement, however, are expected
to provide tighter bounds and subject to further investigation.
In the next section, we will present the second part of simu-
lation results, which is related to computation times of both
methods.

6 Computation efficiency

Before presenting numerical values for computation times,
we provide a short discussion on the comparison of compu-
tation efficiencies of both BCS and �1-norm minimization in
this section.

In �1-norm minimization, whose computational complex-
ity is proportional to O(N 3) [27], the basis vectors are added
to the model and never removed during the channel coef-
ficient estimation. Therefore, not only the K basis vectors
that correspond to nonzero coefficients but all basis vectors
are considered during the channel estimation process. This
situation apparently increases the computational complex-
ity of this method. However, in BCS, whose computational
complexity is proportional to O(NK 2), there is an itera-
tive update approach which sequentially adds or removes
basis vectors to the model until all K basis vectors have been
included [12]. Thus, BCS is computationally more efficient
compared to the �1-norm minimization.

To justify this argument, computation times of both meth-
ods are provided. The average computation times of the chan-
nel estimators for both methods are compared based on the
publicly available codes, where their main structures are not
modified but adapted to IEEE 802.15.4a channel estimation.
In Tables 2, 3, 4 and 5, the computation times of both methods
are presented for different number of measurements in CM-1,
CM-2, CM-5 and CM-8, respectively. The simulations were
run on a computer that has a 3.4 GHz Intel Core i7 CPU and a
3.88 GB RAM. It can be observed that the computation time
of BCS is significantly shorter than the �1-norm minimiza-
tion for every channel model and number of measurements. It
can be further observed that the computation time of �1-norm
minimization does not change much with sparsity or the num-
ber of measurements. This can be explained by the compu-
tational complexity of �1-norm minimization not depending
on the number of nonzero coefficients (K ) but only on the
discrete-time channel length (N ), which is the same for all

Table 2 Computation times of both methods for CM-1

Number of measurements �1-norm minimization (s) Bayesian CS (s)

M = 250 3.5911 0.13607

M = 500 3.6684 0.2892

M = 750 3.5778 0.76564

Table 3 Computation times of both methods for CM-2

Number of measurements �1-norm minimization (s) Bayesian CS (s)

M = 250 3.6073 0.15767

M = 500 3.627 0.31896

M = 750 3.4591 0.82328

Table 4 Computation times of both methods for CM-5

Number of measurements �1-norm minimization (s) Bayesian CS (s)

M = 250 3.748 0.22791

M = 500 3.5745 0.47146

M = 750 3.2783 1.1099

Table 5 Computation times of both methods for CM-8

Number of measurements �1-norm minimization (s) Bayesian CS (s)

M = 250 3.8257 0.27791

M = 500 4.0806 0.84026

M = 750 3.6359 1.9952

Table 6 Computation times of both methods for channel models when
M=250

Channel model �1-norm minimization
∼ O(N 3) (s)

Bayesian CS
∼ O(NK 2) (s)

CM-1 3.5911 0.13607

CM-2 3.6073 0.15767

CM-5 3.748 0.22791

CM-8 3.8257 0.27791

channel models considered. Unlike �1-norm minimization,
the computational complexity of BCS depends on K , and
therefore, the computation time of BCS changes remarkably
with sparsity and the number of measurements. The com-
putation times of both methods are summarized in Table 6
for different channel models when the number of measure-
ments is fixed to M = 250. Considering CM-1, which has
the sparsest structure, and CM-8, which has the least sparse
structure among the channel models, the computation time of
�1-norm minimization in CM-8 increases 6.53 % compared
to CM-1 but for BCS this ratio becomes 104.24 %. Simi-
lar observations were made for the cases M = {500, 750}.
This remarkable increase in the computation time of BCS is a
result of its computational complexity depending on K . Nev-
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ertheless, BCS is computationally more efficient compared
to �1-norm minimization as shown with practical examples.

7 Conclusion

In this paper, we considered the application of Bayesian CS
to UWB channel estimation, and studied its channel esti-
mation performance for various UWB channel models and
noise conditions. Specifically, we investigated the effects of
the sparse structure of standardized IEEE 802.15.4a channel
models, SNR regions, and number of measurements on the
BCS channel estimation performance, and compared them to
the results of the conventional �1-norm minimization based
estimation. We also (i) provided an MSE lower bound on the
estimation error for biased Bayesian estimators with linear
bias vectors, and (ii) compared the computational efficiencies
of both BCS and �1-norm minimization for channel estima-
tion.

The results of this study show that BCS exhibits supe-
rior performance at sparser channel models and higher SNR
regions as it utilizes the statistics of channel coefficients and
noise. Furthermore, the computational efficiency of BCS has
been found to be significantly better than �1-norm minimiza-
tion for the cases considered. Based on the results of this
study, the implementation conditions of BCS can be deter-
mined for practical cases.
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