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In this paper, the inverse problem of finding the time-dependent coefficient of heat capacity together with the solution
of heat equation with nonlocal boundary and overdetermination conditions is considered. The existence, uniqueness
and continuous dependence upon the data are studied. Some considerations on the numerical solution for this inverse
problem are presented with the examples. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

In

QT ={(x, t) : 0<x<1, 0<t�T}
consider the equation

ut =uxx −a(t)u+F(x, t) (1)

with the initial condition

u(x, 0)=�(x), 0�x�1 (2)

nonlocal boundary conditions

u(0, t)=u(1, t), ux(1, t)=0, 0�t�T (3)

and overdetermination condition ∫ 1

0
u(x, t) dx =g(t), 0�t�T. (4)

The problem of finding a pair {a(t), u(x, t)} in (1)–(4) will be called an inverse problem.

Definition 1
The pair {a(t), u(x, t)} from the class C[0, T]×C2,1(QT )∩C1,0(QT ) for which conditions (1)–(4) are satisfied and a(t)�0 on the interval [0, T],
is called a classical solution of the inverse problem (1)–(4).

The problems of finding a coefficient a(t) together with the solution u(x, t) of heat equation (1) with the integral overdetermination
condition (4) and different nonlocal boundary conditions are studied in [1, 2]. The interested reader can find different inverse
problems for heat equations with nonlocal boundary and overdetermination conditions in [3, 4].
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These kinds of conditions such as (4) arise from many important applications in heat transfer, termoelasticity, control theory, life
sciences, etc. For example, in heat propagation in a thin rod in which the law of variation g(t) of the total quantity of heat in the
rod is given in [5].

The paper is organized as follows. In Section 2, the nonorthogonal systems of functions, by using these systems it is possible to
expand the generalized Fourier series, are introduced. In Section 3, the existence and uniqueness of the solution of inverse problem
(1)–(4) is proved. In Section 4, the continuous dependence upon the data of the solution of the inverse problem is shown. Then,
in Section 5, the numerical solution for the inverse problem is presented with the examples. Finally, some discussions related to
causing difficulties in numerical solution of the inverse problems are given.

2. Some preliminary facts on the nonorthogonal systems of functions

Consider the following systems of functions on the interval [0,1]:

X0(x) = 2, X2k−1(x)=4 cos 2�kx, X2k(x)=4(1−x) sin 2�kx, k =1, 2,. . . (5)

Y0(x) = x, Y2k−1(x)=x cos 2�kx, Y2k(x)=sin 2�kx, k =1, 2,. . . (6)

Systems (5) and (6) arise in [5] for the solution of a nonlocal boundary value problem in heat conduction.
For the systems of functions (5) and (6), the following lemmas hold.

Lemma 1
The systems of functions (5) and (6) are biorthonormal on [0,1].

The proof of this lemma is trivial.

Lemma 2
The systems of functions (5) and (6) are complete in L2[0, 1].

Proof
Let f (x)∈L2[0, 1] be orthogonal to the functions of system (5). f (x) can be represented by the series

f (x)=
∞∑

n=1
Bn sin 2�nx (7)

that converges in L2[0, 1]. Since f (x) is orthogonal to (5),

0 =
∫ 1

0
f (x)4(1−x) sin 2�kx dx

=
∞∑

n=1
Bn

∫ 1

0
4(1−x) sin 2�nx sin 2�kx dx =Bk, k =1, 2,. . . .

Thus Bk =0, k =1, 2,. . . , then f (x)=0, from (7). The completeness of the system (6) is shown analogously. �

Lemma 3
The systems of functions (5) and (6) are Riesz bases in L2[0, 1].

Proof
According to the results in book p. 310 [6], the system of functions (5) is Riesz basis in L2[0, 1] since it is complete in L2[0, 1] by
Lemma 2 and the series

4

(∫ 1

0
f (x) dx

)2

+16
∞∑

k=1

[(∫ 1

0
f (x) cos 2�kx dx

)2

+
(∫ 1

0
f (x)(1−x) sin 2�kx dx

)2]
(∫ 1

0
xf (x) dx

)2

+
∞∑

k=1

[(∫ 1

0
xf (x) cos 2�kx dx

)2

+
(∫ 1

0
f (x) sin 2�kx dx

)2]

are convergent for each f (x)∈L2[0, 1]. Similarly, it is shown that system (6) is Riesz basis in L2[0, 1]. �

3. Existence and uniqueness of the solution of the inverse problem

We have the following assumptions on �, g and F.

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 692–702
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(A1)

(A1)1 �(x)∈C4[0, 1];

(A1)2 �(0)=�(1), �′(1)=0, �′′(0)=�′′(1);

(A1)3 �2k�0, k =1, 2,. . . ,

(A2)

(A2)1 g(t)∈C1[0, T];

(A2)2 g(0)=
∫ 1

0
�(x) dx;

(A2)3 g(t)>0, g′(t)�0,∀t ∈ [0, T],

(A3)

(A3)1 F(x, t)∈C(QT ); F(x, t)∈C4[0, 1] ∀t ∈ [0, T];

(A3)2 F(0, t)=F(1, t), Fx(1, t)=0, Fxx(0, t)=Fxx(1, t);

(A3)3 F0(t)�0, F2k(t)�0 ∀t ∈ [0, T], min
0�t�T

F2k(t)+[e−(2�k)2T −1] max
0�t�T

F2k(t)�0, k =1, 2,. . . ,

where �k =∫ 1
0 �(x)Yk(x) dx, Fk(t)=∫ 1

0 F(x, t)Yk(x) dx, k =0, 1, 2,. . . .

Remark 1
There are functions �, g and F satisfying (A1)−(A3). For example

�(x) = 1+cos 2�x,

g(t) = exp(−(2�)2t),

F(x, t) = (2�)2 cos 2�x exp(−(2�)2t)+2t(1+cos 2�x) exp(−(2�)2t+10t2).

The main result is presented as follows.

Theorem 1
Let (A1)−(A3) be satisfied. Then the inverse problem (1)–(4) has a unique solution for small T .

Proof
By applying the standard procedure of the Fourier method, we obtain the following representation for the solution of (1)–(3) for
arbitrary a(t)∈C[0, T]:

u(x, t) =
[
�0e−∫ t

0 a(s) ds +
∫ t

0
F0(�)e−∫ t

� a(s) ds d�

]
X0(x)+

∞∑
k=1

[
�2ke−(2�k)2t−∫ t

0 a(s) ds +
∫ t

0
F2k(�)e−(2�k)2(t−�)−∫ t

� a(s) ds d�

]
X2k(x)

+
∞∑

k=1
[(�2k−1 −4�k�2kt)e−(2�k)2t−∫ t

0 a(s) ds]X2k−1(x)+
∞∑

k=1

[∫ t

0
(F2k−1(�)−4�kF2k(�)(t−�))e−(2�k)2(t−�)−∫ t

� a(s) ds d�

]
X2k−1(x).

(8)

Under conditions (A1)1 and (A3)1 the series (8) and
∑∞

k=1 � / �x converge uniformly in QT since their majorizing sums are absolutely

convergent. Therefore, their sums u(x, t) and ux(x, t) are continuous in QT . In addition, the series
∑∞

k=1 � / �t and
∑∞

k=1 �2 / �x2 are

uniformly convergent for t��>0 (� is an arbitrary positive number). Thus, u(x, t)∈C2,1(QT )∩C1,0(QT ) and satisfies condition (1)–(3).
In addition, ut(x, t) is continuous in QT because the majorizing sum of

∑∞
k=1 � / �x is absolutely convergent under the condition

�′′(0)=�′′(1) and Fxx(0, t)=Fxx(1, t) in QT . Differentiating (4) under the condition (A2)1, we obtain∫ 1

0
ut(x, t) dx =g′(t), 0�t�T. (9)

(8) and (9) yield

a(t)=P[a(t)], (10)

where

P[a(t)]= 1

g(t)

(
−g′(t)+2F0(t)+

∞∑
k=1

(
2

�k
F2k(t)−8�k�2ke−(2�k)2t−∫ t

0 a(s) ds
))

− 1

g(t)

∞∑
k=1

8�k

∫ t

0
F2k(�)e−(2�k)2(t−�)−∫ t

� a(s) ds d�. (11)

Let us denote

C+[0, T]={a(t)∈C[0, T] : a(t)�0}.
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It is easy to verify that under conditions (A1)3, (A2)3 and (A3)3,

P : C+[0, T]→C+[0, T].

Let us show that P is a contraction mapping in C+[0, T], for small T . Indeed, for ∀a(t), b(t)∈C+[0, T]

|P[a(t)]−P[b(t)]|� 1

|g(t)|
∞∑

k=1
8�k|�2k||e−∫ t

0 a(s) ds −e−∫ t
0 b(s) ds|+ 1

|g(t)|
∫ T

0

∞∑
k=1

8�k|F2k(�)||e−∫ t
� a(s) ds −e−∫ t

� b(s) ds|d�.

Denote

∞∑
k=1

8�k|�2k|=c1,

∫ T

0

∞∑
k=1

8�k|F2k(�)|d�=c2, max
0�t�T

1

|g(t)| =c3.

Since a(t)�0 and b(t)�0 the estimates

|e−∫ t
0 a(s) ds −e−∫ t

0 b(s) ds|�T max
0�t�T

|a(t)−b(t)|, |e−∫ t
� a(s)ds −e−∫ t

� b(s) ds|�T max
0�t�T

|a(t)−b(t)|

are true by using the mean value theorem. From the last inequalities, we obtain

max
0�t�T

|P[a(t)]−P[b(t)]|�� max
0�t�T

|a(t)−b(t)|,

where �=c3(c1 +c2)T . In the case �<1, Equation (10) has a unique solution a(t)∈C+[0, T], by the Banach fixed point theorem.
Now, let us show that the solution (a, u), obtained for (1)–(4), is unique. Suppose that (b, v) is also a solution pair of (1)–(4). Then

the uniqueness of the representation of the solution, we have

u(x, t)−v(x, t) = [�0(e−∫ t
0 a(s) ds −e−∫ t

0 b(s) ds)]X0(x)

+
[∫ t

0
F0(�)(e−∫ t

� a(s) ds −e−∫ t
� b(s) ds) d�

]
X0(x)+

∞∑
k=1

�2ke−(2�k)2t(e−∫ t
0 a(s) ds −e−∫ t

0 b(s) ds)X2k(x)

+
∞∑

k=1

(∫ t

0
F2k(�)e−(2�k)2(t−�)(e−∫ t

� a(s) ds −e−∫ t
� b(s) ds) d�

)
X2k(x)

+
∞∑

k=1
(�2k−1 −4�k�2kt)e−(2�k)2t(e−∫ t

0 a(s) ds −e−∫ t
0 b(s) ds)X2k−1(x)

+
∞∑

k=1

(∫ t

0
(F2k−1(�)−4�kF2k(�)(t−�))e−(2�k)2(t−�)(e−∫ t

� a(s) ds −e−∫ t
� b(s) ds) d�

)
X2k−1(x), (12)

a(t)−b(t)= 1

g(t)

∞∑
k=1

8�k�2ke−(2�k)2t(e−∫ t
0 b(s) ds −e−∫ t

0 a(s) ds)+ 1

g(t)

∞∑
k=1

8�k

∫ t

0
F2k(�)e−(2�k)2(t−�)(e−∫ t

� b(s) ds −e−∫ t
� a(s) ds) d�.

Following the same procedure leading to (11), we obtain

‖a−b‖C[0,T]��‖a−b‖C[0,T]

which implies that a=b. By substituting a=b into (12), we have u=v.

Theorem 1 has been proved. �

Remark 2
There are three types of conditions on the data of the inverse problem (1)–(4): the smoothness conditions ((A1)1, (A2)1 and (A3)1),
the consistency conditions ((A1)2, (A2)2 and (A3)2) and the estimation conditions ((A1)3, (A2)3 and (A3)3).

The smoothness and consistency types of conditions are well known in the theory of BVP (boundary value problems). It is
known in Fourier analysis that some of these conditions are necessary but some of them are sufficient for existence of the classical
solution. For example, �(x)∈C2[0, 1] with �(0)=�(1), �′(1)=0 are necessary conditions; however, �′′′(x)∈C1[0, 1] with �′′(0)=�′′(1)
are sufficient for Theorem 1. It is useful to note that the condition �(ıv)(x)∈C[0, 1] can be changed with the weaker condition
�(ıv)(x)∈L2[0, 1]. Similar considerations are true for the conditions (A3)1 and (A3)2. However, the condition that g(t)∈C[0, T] and
(A2)2 are necessary and g′(t)∈C[0, T] are sufficient and all of the conditions (A1)3, (A2)3 and (A3)3 are sufficient for the Theorem 1.
Notice that such types of conditions are arisen in the inverse BVP for parabolic equations (see [3]).

Remark 3
The existence and uniqueness of the solution of the inverse problem (1)–(4) are obtained in QT for small T . The smallest value of T
is sufficient for application of the Banach Fixed-point Theorem. Such types of conditions are also popular in the theory of inverse
BVP. When the even numbered Fourier coefficients of the data �(x) and F(x, t) are zero (�2k =0, F2k(t)=0, k =0, 1,. . .), the conditions
(A1)3 and (A3)3 vanish. In this case Theorem 1 is trivial and it is not necessary to apply a fixed-point theorem, therefore, the solution
of the inverse problem (1)–(4) exists for not only small T>0.

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 692–702
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4. Continuous dependence of (a, u) upon the data

Theorem 2
Under assumption (A1)−(A3), the solution (a, u) depends continuously upon the data.

Proof
Let �={�, g, F} and �={�, g, F} be two sets of data, which satisfy the conditions (A1)−(A3). Let us denote ‖�‖= (‖g‖C1[0,T] +
‖�‖C3[0,1] +‖F‖C3,0(QT )). Suppose that there exist positive constants Mi , i=1, 2 such that

0<M1�|g|, 0<M1�|g|, ‖�‖�M2 and ‖�̄‖�M2.

Let (a, u) and (a, u) be the solutions of inverse problems (1)–(4) corresponding to the data � and �, respectively. According to (10)

a(t) = 1

g(t)

(
−g′(t)+2F0(t)+

∞∑
k=1

2

�k
F2k(t)

)
− 1

g(t)

∞∑
k=1

8�k

(
�2ke−(2�k)2t−∫ t

0 a(s) ds +
∫ t

0
F2k(�)e−(2�k)2(t−�)−∫ t

� a(s) ds d�

)
,

a(t) = 1

g(t)

(
−g′(t)+2F0(t)+

∞∑
k=1

2

�k
F2k(t)

)
− 1

g(t)

∞∑
k=1

8�k

(
�2ke−(2�k)2t−∫ t

0 a(s) ds +
∫ t

0
F2k(�)e−(2�k)2(t−�)−∫ t

� a(s) ds d�

)
.

First, let us estimate the difference a−a. It is easy to compute that∥∥∥∥g′
g

− g′
g

∥∥∥∥
C[0,T]

� M3‖g−g‖C1[0,T],

∥∥∥∥∥F0

g
− F0

g

∥∥∥∥∥
C[0,T]

� M4‖g−g‖C1[0,T] +M5‖F−F‖C3,0(QT ),

∞∑
k=1

1

k

∥∥∥∥∥F2k

g
− F2k

g

∥∥∥∥∥
C[0,T]

� M6‖g−g‖C1[0,T] +M7‖F−F‖
C3,0(QT )

,

∣∣∣∣∣ ∞∑
k=1

k

(
1

g(t)
�2ke−(2�k)2t−∫ t

0 a(s) ds − 1

g(t)
�2ke−(2�k)2t−∫ t

0 a(s) ds
)∣∣∣∣∣� M8‖g−g‖C1[0,T] +TM9‖a−a‖C[0,T] +M10‖�−�‖C3[0,1],

∣∣∣∣∣ ∞∑
k=1

k

(
1

g(t)

∫ t

0
F2k(�)e−(2�k)2(t−�)−∫ t

� a(s) ds d�− 1

g(t)

∫ t

0
F2k(�)e−(2�k)2(t−�)−∫ t

� a(s) ds d�

)∣∣∣∣∣
�TM11‖g−g‖C1[0,T] +T2M12‖a−a‖C[0,T] +TM13‖F−F‖C3,0(QT ),

where Mk , k =3, 4,. . . , 13 are constants that are determined by M1 and M2. If we consider these estimates in a−a, we obtain

(1−M14)‖a−a‖C[0,T]�M15(‖g−g‖C1[0,T] +‖�−�‖C3[0,1] +‖F−F‖C3,0(QT )),

where M14 =8�T(M9 +TM12), M15 =max{M3 +2M4 + 2
� M6 +8�M8 +8�TM11, 8�M10, 2M5 + 2

� M7 +8�TM13}. The inequality M14<1
holds for small T . Finally, we obtain

‖a−a‖C[0,T]�M16‖�−�‖, M16 = M15

(1−M14)
.

The similar estimate is also obtained for the difference u−u from (8):

‖u−u‖C(QT )�M17‖�−�‖.

�

5. Numerical method and examples

We will consider the examples of numerical solution of the inverse problem (1)–(4). For the convenience of discussion of the
numerical method, we will rewrite (1)–(4) as follows:

vt = vxx +r(t)F(x, t), (x, t)∈QT , (13)

v(x, 0) = �(x), 0�x�1, (14)
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v(0, t) = v(1, t), vx(1, t)=0, 0�t�T, (15)

r(t)g(t) =
∫ 1

0
v(x, t) dx, 0�t�T (16)

by transformations

r(t) = exp

(∫ t

0
a(�) d�

)
, (17)

v(x, t) = r(t)u(x, t). (18)

We subdivide the intervals [0,1] and [0,T] into M and N subintervals of equal lengths h= 1
M and �= T

N , respectively. Then we add a
line x = (M+1)h to generate the fictitious point needed for the second boundary condition. We choose the Crank–Nicolson scheme.
The scheme for (13)–(16) is as follows:

1

�
(vn+1

j −vn
j ) = 1

2

[
1

h2
(vn

j−1 −2vn
j +vn

j+1)+(rF)n
j

]
+ 1

2

[
1

h2
(vn+1

j−1 −2vn+1
j +vn+1

j+1 )+(rF)n+1
j

]
, (19)

v1
j = �j , (20)

vn
0 = vn

M, (21)

vn
M = vn

M+1, (22)

where 0�j�M and 1�n�N are the indices for the spatial and time steps, respectively, vn
j is the approximation to v(xj, tn), (rF)n

j =
r(tn)F(xj, tn), �j =�(xj), v1

j =�j , xj = jh, tn =n�. At the t =0 level, adjustment should be made according to the initial condition and

the compatibility requirements.
Now, we rewrite (16) as

r(t)= 1

g(t)

∫ 1

0
v(x, t) dx (23)

and approximate
∫ 1

0 v(x, t) dx formally by the trapezoidal formula∫ 1

0
v(x, t) dx =h

(v1

2
+v2 +·· ·+vM−1 + vM

2

)
, (24)

where vj =v(xj, t), 0�j�M.

Substituting (23), with
∫ 1

0 v(x, t) dx given by (24) into (13), and rewriting the resulting system into a matrix form, we obtain M×M
linear system of equations (

A+ h2

gn+1 Ã

)
Vn+1 =

(
B+ h2

gn B̃

)
Vn, (25)

where

Vn = (vn
1 , vn

2 ,. . . , vn
M)T , gn =g(tn), 1�n�N,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

(
1+ h2

�

)
1 0 . . . 0 1

1 −2

(
1+ h2

�

)
1 0 . . . 0

0 1 −2

(
1+ h2

�

)
1 0 . . . 0

...
. . .

0 1 −2

(
1+ h2

�

)
1

0 2 −2

(
1+ h2

�

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 692–702
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

(
1− h2

�

)
−1 0 . . . 0 −1

−1 2

(
1− h2

�

)
−1 0 . . . 0

0 −1 2

(
1− h2

�

)
−1 0 . . . 0

...
. . .

0 −1 2

(
1− h2

�

)
−1

0 −2 2

(
1− h2

�

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
c1 c1 . . . c1

1

2
c1

1

2
c2 c2 c2 c2

1

2
c2

...
...

1

2
cM cM cM cM

1

2
cM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̃=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
b1 b1 . . . b1

1

2
b1

1

2
b2 b2 b2 b2

1

2
b2

...
...

1

2
bM bM bM bM

1

2
bM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

ci = hFn+1
i , i=1,. . . , M,

bi = hFn
i , i=1,. . . , M.

We can solve (25) by the Gauss elimination method. When vn+1
j , j=1, 2,. . . , M, have been obtained, rn+1 can be evaluated through

(23) and (24).
Let us compare the solution v(x, t) of (13)–(15) and the solution vn

j of the Crank–Nicolson scheme (19)–(22) for (13)–(16).

According to Theorem 1, problem (1)–(4) with the data satisfying the conditions (A1)−(A3) has unique solution {a(t), u(x, t)} for
some T . In this case, the function v(x, t)= r(t)u(x, t), r(t)=exp(

∫ t
0 a(�) d�) satisfy (13)–(15). In addition, system (25) has unique solution

that the matrices A+ h2

gn+1 Ã, n=1, 2,. . . , N are nonsingular.

In order to compare the solution v(x, t) of (13)–(15) and the solution vn
j of the Crank–Nicolson scheme (19)–(22) for (13)–(16), let

us evaluate the difference

zn
j =Vn

j −vn
j ,

where Vn
j =v(xj, tn). We proceed to the estimation of the order of approximation for scheme under the agreement that the solution

v(x, t) of (13)–(15) possesses a necessary number of derivatives in x and t.
The following notations will be used on techniques in [7]:

vn
j =v, vn

j+1 = v̂, vt = v̂−v

�
, ∧vn

j =
vn

j−1 −2vn
j +vn

j+1

h2
.

It is possible to set up the problem for z:

zt = 1
2 ∧ (̂z+z)+�,

z(x, 0) = 0,

z(0, t) = z(1, t),

zx(1, t) = 0,

6
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where

�= 1
2 ∧ (̂V +V)+�

is the error of approximation for the Crank–Nicolson scheme on the solution v(x, t) of (13)–(15), where �= 1
2 ((rF)n

j +(rF)n+1
j ). The

Taylor series expansions for the function v(x, t) and r(t)F(x, t) about the node (xj, tn+1/2) lead to the estimation:

�=O(h2 +�2).

Knowing v(x, t), r(t) we can find the solution pair (u, a) through the inverse transformations of (17) and (18)

u(x, t) = v(x, t)

r(t)
,

a(t) = r′(t)

r(t)
.

We can use numerical differentiation to compute the values of r′(t).
Two examples are given below. In the first example, the illustration of the theoretical results on the convergence of the Crank–

Nicolson scheme to exact solution is demonstrated. In the second one, the Crank–Nicolson scheme that ends with an unstable
scheme for some T is demonstrated.

Example 1
Consider the inverse problem (1)–(4), with

F(x, t) = (2�)2 cos 2�x exp(−(2�)2t)+2t(1+cos 2�x) exp(−(2�)2t+10t2),

�(x) = 1+cos 2�x, g(t)=exp(−(2�)2t), T = 1
2 .

It is easy to check that the exact solution is

{a(t), u(x, t)}={(2�)2 +2t exp(10t2), (1+cos 2�x) exp(−(2�)2t)}.

Problem (13)–(16) is given by

vt = vxx +r(t)((2�)2 cos 2�x exp(−(2�)2t)+2t(1+cos 2�x) exp(−(2�)2t+10t2)),

0<x<1, 0<t � 1
2 ,

v(x, 0) = 1+cos 2�x, 0�x�1,

v(0, t) = v(1, t), 0�t� 1
2 ,

vx(1, t) = 0, 0�t� 1
2 ,∫ 1

0
v(x, t) dx = r(t) exp(−(2�)2t), 0�t� 1

2 ,

where

r(t)=exp(((2�)2t)+ 1
10 (exp(10t2)−1)).

We use the Crank–Nicolson scheme to solve it for the values of v, and then use (23) and (24) to approximate r(t). As a result, we
obtain Tables I, II and Figures 1, 2 for exact and approximate values of a(t) and u(x, t). The step sizes are h=0.005 and �= h

2 .

Table I. Some values of a(t).

Exact Approximate Error Relative error

39.5236 39.5887 0.065 0.0016
39.5390 39.6037 0.0647 0.0016
40.4125 40.4732 0.0606 0.0015
40.9542 41.0130 0.0588 0.0014
41.3475 41.4051 0.0576 0.0014
41.8613 41.9175 0.0561 0.0013
42.5389 42.5933 0.0544 0.0013
43.4408 43.4932 0.0524 0.0012
44.6529 44.7031 0.0503 0.0011
46.2969 46.3454 0.0485 0.0010
48.5483 48.5963 0.0480 0.0009

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 692–702
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Table II. Some values of u(x, t) for 70. mesh point of t.

Exact Approximate Error

2.0700 2.0621 0.0079
1.7673 1.7616 0.0057
1.5053 1.5019 0.0034
1.3552 1.3532 0.0020
0.9703 0.9717 0.0014
0.5365 0.5418 0.0053
0.4268 0.4330 0.0062
1.0353 1.0361 0.0004
2.0199 2.0119 0.0080
2.0700 2.0616 0.0084

0 0.1 0.2 0.3 0.4 0.5
38

40

42

44

46

48

50

52

t

a 
(t

)

exact a(t)
approx.a(t)

Figure 1. Exact and approximate a(t).
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1
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x
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approx. u(x,t)
exact u(x,t)

Figure 2. Exact and approximate solutions of u(x, t) for 70. Mesh point of t.

Example 2
Consider the problem with the equation, initial, boundary and overdetermination conditions as in Example 1 but for T = 31

40 .
Under the same step size as in Example 1 the Crank–Nicolson scheme is used to solve it for the values of v, and then (23) and

(24) are used to approximate r(t). As a result, Tables III, IV and Figures 3, 4 are obtained for exact and approximate values of a(t)
and u(x, t).

7
0

0
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Table III. Some values of a(t).

Exact Approximate Error relative error

40.9542 41.013 0.0588 0.0014
46.2969 46.3454 0.0485 0.0010
83.3963 83.8099 0.4136 0.005
101.6186 102.5894 0.9707 0.0096
128.3653 130.7749 2.4096 0.0188
168.0331 174.3586 6.3255 0.0376
227.4841 245.2822 17.7981 0.0782
317.5319 372.8756 55.3437 0.1743
455.3868 662.0168 206.63 0.4537
668.7135 511.2322 157.4813 0.2355

Table IV. Some values of u(x, t) for 280. mesh point of t.

Exact Approximate Error Relative error

7.5994×105 1.1657×106 4.0578×105 2.3825×10−8

7.0830×105 1.0809×106 3.7264×105 2.5562×10−8

6.2527×105 9.4888×105 3.2361×105 2.8956×10−8

5.1899×105 7.8248×105 2.6349×105 3.4886×10−8

3.9984×105 5.9802×105 1.9817×105 4.5281×10−8

2.7951×105 4.1356×105 1.3405×105 6.4775×10−8

1.6977×105 2.4716×105 7.7391×104 1.0665×10−7

4.9582×105 2.8248×105 2.8665×105 3.6516×10−8

7.5242×105 1.1657×106 4.1331×105 2.4063×10−8

7.7514×105 1.1949×106 4.1979×105 2.3357×10−8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600
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exact a(t)
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Figure 3. Exact and approximate a(t).
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Figure 4. Exact and approximate solutions of u(x, t) for 280. Mesh point of t.
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6. Some discussions

Numerical differentiation is used to compute the values of r′(t) in the formula a(t)= r′(t)
r(t) . It is well known that numerical differentiation

is slightly ill-posed and it can cause some numerical difficulties. One can apply the natural cubic spline function technique [8] to
still obtain decent accuracy.

The matrices A+ h2

gn+1 Ã, n=1, 2,. . . , N are dependent on the step sizes h and �. The condition number of the system (25) grows

with N for fixed h, if the overdetermination data g(t) fast decreases in t. Therefore, it causes some numerical difficulties.
The condition number of the system (25) corresponding to BVP that is mentioned in the above examples, strongly grows in T> 3

4 ,

for the step size h=0.005,�= h
2 . In this sense T ≈ 3

4 is the critical upper bound of T for the step size h=0.005,�= h
2 . The critical

upper bound of T can change for the other step sizes h and �. For the problems that are mentioned in the above examples the
critical upper bound of T is 5

8 in the case of h=�=0.005, the critical upper bound of T is 11
16 in the case of h=0.01, �=0.0069.
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