
Accelerating Brain Simulations on Graphical
Processing Units

Engin Kayraklioglu
The George Washington University

Washington, DC United States

engin@gwu.edu

Tarek El-Ghazawi
The George Washington University

Washington, DC United States

tarek@gwu.edu

Zeki Bozkus
Kadir Has University

Istanbul, Turkey

zeki.bozkus@khas.edu.tr

Abstract—NEural Simulation Tool(NEST) is a large scale
spiking neuronal network simulator of the brain. In this work,
we present a CUDA® implementation of NEST. We were able
to gain a speedup of factor 20 for the computational parts of
NEST execution using a different data structure than NEST’s
default. Our partial implementation shows the potential gains
and limitations of such possible port. We discuss possible novel
approaches to be able to adapt generic spiking neural network
simulators such as NEST to run on commodity or high-end
GPGPUs.

Keywords—Brain simulation, CUDA, accelerators

I. INTRODUCTION

Contemporary neuroscience is evolving into an interdis-

ciplinary science, where more traditional branches such as

biology, neurology, genetics and chemistry gets entangled with

mathematics, engineering and computer science. Involvement

of computational sciences is caused by the fact that gathering

experimental data of an intact brain is increasingly difficult[1].

There are various applications implemented to simulate

brain on different levels of abstraction and/or approximation.

GENESIS[2] is a simulator supporting simulation of neuronal

network entities ranging from subcellular processes to neu-

ronal network systems and PGENESIS[3] is an implemen-

tation of GENESIS to support running of multiple different

simulations on networks of parallel processors. NEURON[4]

is a simulator that can be used to simulate and analyze both

network of neurons or independent neurons.

NEST[1] is a spiking neuronal network simulator that

was designed to support large-scale simulations. Rather than

detailed attributes of individual neurons, NEST focuses on

dynamics of a neuronal network. NEST is implemented in

C++ and has built-in support for MPI and OpenMP. NEST

also has PyNN[5] support which provides a Python interface

to replace NEST’s default command line interpreter, called

SLI.

A. How NEST Works

A NEST network consists of nodes stored in a polymorphic

C++ vector. Nodes can be neurons themselves, as well as

external modules such as spike generators and voltmeters.

There are plethora of neuron models conforming to a class

hierarchy that comes bundled with NEST. Moreover, modular

structure of NEST allows advanced users to implement their

own neuron models.

NEST execution phases are as follows:

1) Create the neuronal network according to user’s specifi-

cations, and store nodes in the nodes vector. Initialize

time to 0.

2) Iterate over the nodes vector, calling update function

of every node.

3) Advance time. If current simulation time did not reach

user’s specification, jump back to step 2

4) End execution. (A typical user would add more instruc-

tions to output the results of the execution in various

different formats; i.e. text, plot etc.)

While iterating the nodes vector as in step 2, nodes can

send spikes to the network depending on their state, which

in turn is dependent on previous state and possible incoming

spikes. update function of nodes can vary greatly depending

on the type of the node. For instance, a neuron can go through

several branches solving differential equations before deciding

to send a spike to the network, whereas a poisson generator

can use a simple random number generator and choose to send

a spike.

NEST supports many different synaptic connection models

as well as neuron models. Connections, like neurons, can differ

in how they connect senders and receivers(i.e. one-to-one,

divergent, convergent etc.) and how they transfer spikes(i.e.

weight and delay of the connection). Connections are also

stored in a data structure, thus there is no programmatic

“connection” between nodes as in linked data structures. Every

time a node spikes in step 2, the spike event is passed to it’s

connector, which transfers the spike to the recipients. In this

structure, nodes are not directly aware of their neighbors.

B. GPGPU Programming

General Purpose Graphical Processing Units(GPGPU) have

been widely used in scientific computations as their massively

parallel architecture enables executing many instructions at the

same time, and scientific computations generally lend them-

selves to massive parallelization. CUDA[6] and OpenCL[7]

are two widely used frameworks for programming GPGPUs.

CUDA is a proprietary library developed by NVidia to use

on their GPGPUs, whereas OpenCL is open source and

2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

978-1-5090-0154-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.79

556

supports many different devices including digital signal pro-

cessors(DSPs) and field-programmable gate arrays(FPGAs) as

well as GPGPUs.

Regardless of the framework, GPGPU programming has

specific architectural limitations. 1) Cores are more dependent
on each other compared to CPU cores. GPGPU threads are

not scheduled independently. Scheduling groups of threads

together is a limiting feature as lack of branch indepen-

dence among threads is a imiting feature. Branching threads

differently in the same group causes them to stay idle for

many instruction cycles, reducing resource utilization greatly.

2) Memory bandwidth is a more valuable resource. Many

cores trying to access device memory can cause significant

overheads. Memory layout of the data is crucial to be able to

serve memory requests from many cores efficiently. 3) Data
offload is costly. Regardless of the type of computation, execu-

tion must start and end in host CPU and memory. Therefore,

data needs to be transferred between host and device at least

twice during a GPGPU execution cycle. Data transfers in algo-

rithms that require constant host-device communication must

be tailored carefully to increase communication/computation

overlap and decrease overall execution time.

In this work, we discover ways to leverage many-core ar-

chitecture of GPGPUs to parallelize NEST. Our contributions

can be summarized as follows:

• An initial implementation of NEST in CUDA which

focuses on computational part,

• Performance analysis of the implemented version with a

previously designed neuronal network[8].

• Discussion of possible optimizations both in default and

GPU implementation of NEST.

• Analysis of a projected full implementation of NEST,

including its possible limitations. Investigation of the

tradeoffs associated with producing a fully parallelized

implementation.

Rest of this paper is organized as follows: in section II,

we present similar studies in the field that can be roughly

categorized as using GPGPUs to simulate generic or non-

generic neuronal networks and performance studies of NEST,

in section III thorough information about our implementation

is given with specific focus on data layout, in section IV we

discuss experimental results of our implementation, and finally,

section V concludes the paper by briefly discussing possible

next steps.

II. RELATED WORK

HRLSim[9] is a recent simulator that simulates neural net-

works on GPGPU clusters. Researchers created the simulator

so that the network can be distributed to GPU nodes on a

cluster. Their primary limitation was the enormous size of

the network that is created. As they create the network on

a master node initially, the size of the network is limited

by the memory of the master node, which is 48GB in their

setup. They were able to run real-time simulations of size

80K neurons and 800M synapses on such hardware. They also

stress that performance and extensibility are conflicting goals

while designing a high performance brain simulator especially

on GPGPUs.

Other than HRLSim, there are various studies in the litera-

ture that develops non-generic neural network simulators that

run on GPGPUs. Scorcioni [10] develops a GPGPU simulator

that can outperform CPU by 20 times. Scorcioni’s simulator

bypasses the memory requirements of storing large number

of synapses by using a just-in-time computation for some

synaptic values. This way, very small amount of data(4 bytes)

stored per synapse, and necessary values are computed in

every iteration instead of storing them. Another such example

is developed by Fidjeland and Shanahan [11]. Researchers

developed nemo, a platform to simulate specific type of

neurons on GPUs. To do that, authors used a special memory

organization designed for GPU’s memory architecture. They

measured their performance in terms of throughput(spikes/sec)

and stated that the performance they achieve corresponds to a

realtime simulation of 55K neurons with 55M synapses.

Brette and Goodman [12] thoroughly discusses the possible

strategies to implement spiking neural networks on GPUs.

Along with their conceptual discussion they also give practical

examples on CUDA on how to optimize for specific cases.

They also pay specific attention to spike propagation, which

is transferring spikes in the GPU memory and propose several

optimized ways to achieve good performance. As with many

other researchers they also mention large memory footprint

required by very large number of synapses in a non-trivial

neural network.

We are not aware of any experiments in the literature that

tests NEST’s performance on a GPGPU. However, NEST has

a very mature implementation in MPI+OpenMP and there is

extensive research on the subject matter. In one of the most

recent works, Schenk et al. [13] devised a performance model

that includes multi-node, multi-thread execution of NEST.

Authors also suggested that optimizations regarding the data

layout and using GPUs can give more performance for the

update step. Kunkel et al. [14] focus on memory limitations

of large-scale neural simulators on large clusters. They use

NEST in their analysis and also evaluate its performance on

more than 10000 processors. Necessity of optimizations in the

data structures are also suggested in order to scale on large

clusters.

III. EXPERIMENTS

A. CUDA Implementation

As discussed before, GPGPUs are suitable for large scien-

tific computations. However, memory bandwidth is scarce, and

applications relying heavily on memory operations(including

inter-thread communication) has to be implemented keeping

memory limitations in mind[15].

Even though considerable amount of time is spent in

computation during execution, NEST can be considered as

communication-heavy. Figure 1 shows time spent on commu-

nication and computation. It is obvious from the figure that

computation has linear time complexity, whereas communica-

tion has quadratic time complexity.

557

Fig. 1: Time Spent For Interaction Between

Neurons(Communication) and Update(Computation) During

a Sequential Execution of NEST

(a) Uncoalesced Memory Access

(b) Coalesced Memory Access

Fig. 2: Rearranging Nodes For More Efficient Memory Access

There is a clear distinction between when communication

and computation happens in NEST. Considering this clean

distinction between logical execution steps and very large

source code, we chose an incremental approach to port NEST

on CUDA.

1) Data Layout: As mentioned earlier, global memory

accesses in CUDA must be carefully organized. We realized

that NEST’s default data structure to store nodes is not suitable

for memory accesses in GPGPU. The nodes vector stores all

NEST nodes in a standard C++ vector, where every node is an

object with many attributes(limited to a, b, c in the example

in Figure 2a). As CUDA threads are scheduled in groups of

32, which is called warp, many threads will be accessing the

memory in SIMD fashion, therefore having those locations that

are to be accessed at the same time closer can decrease the

number of memory accesses significantly1. Optimized memory

layout is shown in Figure 2b.

2) Algorithm: Our current implementation, depicted in Fig-

ure 3 runs as follows:

1) Create the network on host memory.

2) Change the memory layout to make it more suitable for

GPGPU execution(As will be explained shortly).

3) Offload nodes vector to device memory.

4) Run the simulation on GPU for one time step. Record

generated spikes in a sparse table to avoid atomic opera-

tions and to achieve better memory utilization.

5) Transfer recorded spike data to host memory.

6) Process generated spikes on CPU, and fill buffers of

nodes as necessary.

7) Advance time. If simulation time reached user’s specifi-

cation, stop

8) Transfer node buffers to GPU. Jump back to step 4

A NEST network can consist of many different types of

nodes, all of which has different update functions. However,

some types have only few members in the network. We do not

expect to gain much from the update of these nodes, as there

are no parallelism to be harnessed. Therefore, we ported only

the neuron in the network on CUDA and left the rest of the

execution on the CPU. Even though the part on CPU is very

minimal, GPU and CPU executions are overlapped.

B. Characteristics of the Test Simulation

In our work we used a part of the network designed and used

by Brunel[8], [16]. PyNEST[17] interface is used to define

a neuronal network consisting of 10000 neurons, 8000 of

which is “excitatory” and the rest is “inhibitory”. Each type of

neurons receive connections from 10% of the other population,

where communications are made randomly.

To generate some activity in the network, a poisson spike

generator is connected to all the neurons in a one-to-all

fashion, an important thing to note here is that a poisson

generator can generate multiple independent poisson spike

trains to all its outgoing connections. In order to observe

spikes, 2 spike detectors are attached to 50 neurons from

each population. As the connections are uniformly formed

among the population, observing only a small portion of the

population is enough to make necessary interpretations[16].

IV. EARLY RESULTS & FUTURE WORK

Experiments were run on George supercomputer at The

George Washington University. George is a Cray XE6/XK7

hybrid. XK7 partition consists of 30 NVidia XK40 GPUs.

Breakdown of execution time of different parts of the

implementation is given in figure 4. Difference between com-

munication and computation is even more significant, because

the speedup over sequential run, which is slightly more than

1This is called memory coalescing

558

Fig. 3: Flowchart of current CUDA implementation. Shaded parts are CUDA-specific implementations. Update kernel is directly

transformed from CPU implementation of the corresponding function. Thread grid is created in a way that each CUDA thread

is responsible of a single neuron.

20x, obtained by massive parallelism in GPGPU. However,

in terms of overall execution time, our initial port performed

virtually same as the sequential execution regardless of the

neuronal network size.

As described before, this port currently sends the data

between the host and device in every iteration of the execution.

Close to 16% of time was spent in these data transfers, where

sparse data of spikes or buffers ping-ponged. Initial offloading

of the data is also taking 5.36% of the overall execution time,

which is an inherent overhead and completely dependent on

the speed of PCIe bus.

Although in the latest versions of NEST, there has been

some upgrades to the data structures they use[18]. Main point

of those updates are to minimize memory footprint and we

believe that GPGPU execution requires specific design of

data structures. Therefore, we plan to analyze the possibility

of using a structure that is optimal for GPGPU execution.

Design of such structure may conflict with prior studies efforts,

because such structure may have sparsity to some extent to

provide well-structured and well-defined memory accesses for

559

Fig. 4: Time Breakdown of CUDA Execution

GPGPUs. In order to discover the best way to utilize GPU

memory we are planning to devise a memory model, keeping

GPU architecture in consideration. Then, using our model to

identify some possible solutions as feasible or infeasible.

In the current implementation, network is initially created

on CPU and then transformed into a different layout suitable

for GPU. As our implementation gets more mature, we plan to

generate the initial data structure directly suitable for GPU to

avoid additional initial overhead. Modular structure of NEST

allowed us to port necessary neuron models only. In the future

we expect to expand the GPU-supported model base. However,

as noted before there are some node models(mainly external

tools) that do not have large populations in a network. We

do not anticipate porting those kinds of models onto GPU, as

there is not much parallelism in small populations of nodes.

We anticipate that, after synapse interaction is efficiently

ported on GPU, using Chapel’s built in support for MPI,

extending our approach to run on cluster of GPUs using

message passing is not as complicated.

V. CONCLUSION

In this work, we partially implemented NEST, a common

spiking neuronal network simulator, on CUDA. We analyzed

its current performance and possible limitations that can be

faced while finishing the port. Our performance analysis

showed that computations in NEST can be made faster by

20 times using GPGPU, compared to single core sequential

run. However, we also showed that NEST is communication-

intensive and the gap between communication and computa-

tion is increases as the network size gets larger. Therefore,

we provide a new data layout different than NEST’s default

layout, to make memory accesses more efficient.

ACKNOWLEDGEMENT

Zeki Bozkus and Tarek El-Ghazawi are funded by Scientific

and Technological Research Council of Turkey(TUBITAK;

114E046)

REFERENCES

[1] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[2] J. M. Bower and D. Beeman, The book of GENESIS (2nd ed.): exploring
realistic neural models with the GEneral NEural SImulation System.
New York, NY, USA: Springer-Verlag New York, Inc., 1998.

[3] “PGENESIS,” http://www.genesis-sim.org/project/pgenesis, accessed:
2015-02-01.

[4] N. T. Carnevale and M. L. Hines, The NEURON Book. New York, NY,
USA: Cambridge University Press, 2006.

[5] A. P. Davison, D. Bruederle, J. M. Eppler, J. Kremkow, E. Muller,
D. Pecevski, L. Perrinet, and P. Yger, “PyNN: a common interface
for neuronal network simulators,” Frontiers in Neuroinformatics,
vol. 2, no. 11, 2009. [Online]. Available: http://www.frontiersin.org/
neuroinformatics/10.3389/neuro.11.011.2008/abstract

[6] Parallel Programming and Computing Platform — CUDA — NVidia.
Accessed: 2015-02-01. [Online]. Available: http://www.nvidia.com/
object/cuda home new.html

[7] OpenCL - The standard for parallel programming of heterogenous
systems. Accessed: 2015-02-01. [Online]. Available: https://www.
khronos.org/opencl

[8] N. Brunel, “Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons,” Journal of Computational Neuroscience,
vol. 8, no. 3, pp. 183–208, 2000. [Online]. Available: http:
//dx.doi.org/10.1023/A%3A1008925309027

[9] K. Minkovich, C. Thibeault, M. O’Brien, A. Nogin, Y. Cho, and
N. Srinivasa, “HRLSim: A High Performance Spiking Neural Network
Simulator for GPGPU Clusters,” Neural Networks and Learning Sys-
tems, IEEE Transactions on, vol. 25, no. 2, pp. 316–331, Feb 2014.

[10] R. Scorcioni, “GPGPU implementation of a synaptically optimized,
anatomically accurate spiking network simulator,” in Biomedical Sci-
ences and Engineering Conference (BSEC), 2010, May 2010, pp. 1–3.

[11] A. Fidjeland and M. Shanahan, “Accelerated simulation of spiking
neural networks using GPUs,” in Neural Networks (IJCNN), The 2010
International Joint Conference on, July 2010, pp. 1–8.

[12] R. Brette and D. F. M. Goodman, “Simulating spiking neural networks
on GPU,” Network: Computation in Neural Systems, vol. 23, no. 4, pp.
167–182, 2012, pMID: 23067314.

[13] W. Schenck, Y. V. Zaytsev, A. Morrison, A. V. Adinetz, and D. Pleiter,
“Performance model for largescale neural simulations with nest,” Poster,
November 2014.

[14] S. Kunkel, T. C. Potjans, J. M. Eppler, H. E. E. Plesser, A. Morrison,
and M. Diesmann, “Meeting the memory challenges of brain-scale
network simulation,” Frontiers in Neuroinformatics, vol. 5, no. 35,
2012. [Online]. Available: http://www.frontiersin.org/neuroinformatics/
10.3389/fninf.2011.00035/abstract

[15] Best Practices Guide :: CUDA Toolkit Documentation.
Accessed: 2015-02-01. [Online]. Available: http://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/index.html

[16] M.-O. Gewaltig, A. Morrison, and H. E. Plesser, NEST by Example:
An Introduction to the Neural Simulation Tool NEST Version 2.2.2, July
2013.

[17] J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig,
“PyNEST: a convenient interface to the NEST simulator,” Frontiers in
Neuroinformatics, vol. 2, 2008.

[18] S. Kunkel, M. Schmidt, J. M. Eppler, H. E. Plesser, G. Masumoto,
J. Igarashi, S. Ishii, T. Fukai, A. Morrison, M. Diesmann, and M. Helias,
“Spiking network simulation code for petascale computers,” Frontiers in
Neuroinformatics, vol. 8, no. 78, 2014. [Online]. Available: http://www.
frontiersin.org/neuroinformatics/10.3389/fninf.2014.00078/abstract

560

