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Abstract: A graph G of order n is called t-edge-balanced if G satisfies the property that there
exists a positive λ for which every graph of order n and size t is contained in exactly λ distinct
subgraphs of Kn isomorphic to G. We call λ the index of G. In this article, we obtain new infinite
families of 2-edge-balanced graphs. C© 2013 Wiley Periodicals, Inc. J. Combin. Designs 22: 291–305, 2014
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1. INTRODUCTION

Our terminology and notation are standard (see [3] for undefined terms). We consider
the problem of seeking a graph G of order n satisfying the property that there exists a
positive λ for which every graph of order n and size t is contained in exactly λ distinct
subgraphs of Kn isomorphic to G. We call such a graph G t-edge-balanced, and call λ its
index. This problem is a special case of the problem of constructing graphical t-designs
(all terms and notations are defined in the next section). Not every graph of order n

is t-edge-balanced. For example, the graph of order n containing a star of order k and
n − k isolated vertices is not 2-edge-balanced for any k ≥ 2, since it contains no pair
of independent edges, and the graph of order n ≡ 0 (mod 2) containing n/2 independent
edges is not 2-edge-balanced since it contains no pair of incident edges. In fact, there
has been only one explicit infinite family of 2-edge-balanced graphs known. Alltop [1]
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has shown that when n ≥ 3 is odd, the graph (of order n) containing a cycle of length
(n + 3)/2 and (n − 3)/2 isolated vertices is 2-edge-balanced with index λ = (n − 3)!/
((n − 3)/2)!.

For history and state-of-the-art results on t-edge-balanced graphs and graphical
t-designs, we refer the reader to [4, 5].

The purpose of this paper is to provide an exposition of the method developed
by Alltop [1] for finding 2-edge-balanced graphs and obtain new infinite families
of 2-edge-balanced graphs. These also give rise to new infinite families of graphical
2-designs.

2. PRELIMINARIES

For a finite set X and a nonnegative integer t , the set of all t-subsets of X is denoted
(Xt ). A set system is a pair (X,A), where X is a finite set of elements called points, and

A ⊆ 2X. Elements of A are called blocks. The order of (X,A) is the number of points,
|X|. A set system (X,A) such that A ⊆ (Xk ) is said to be k-uniform. A t-design, or more
specifically a t-(v, k, λ) design, is a k-uniform set system (X,A) of order v such that
every T ∈ (Xt ) is contained in precisely λ blocks of A. To avoid triviality, we impose the
following restrictions on a t-(v, k, λ) design (X,A):

(i) t ≥ 2,
(ii) t < k < v,

(iii) A �= ∅, and A �= (X
k
).

For two set systems, S1 = (X1,A1) and S2 = (X2,A2), an isomorphism of S1 onto
S2 is a bijection σ : X1 → X2 such that σ (A1) = A2. A set system S1 is isomorphic to
a set system S2, and written S1

∼= S2, if there exists an isomorphism of S1 onto S2. An
automorphism of a set system is an isomorphism of the set system onto itself. The set of
all automorphisms of a set system S forms a group under functional composition. This
group is called the automorphism group of S and is denoted by Aut(S).

Let V = V (Kn) be the set of vertices of the complete graph Kn on n vertices. The
action of the symmetric group Sn on V also induces an action on E = E(Kn) = (V2), the
set of edges of Kn. A t-((n2), k, λ) design (E,A) is said to be graphical if it is fixed under
the action of Sn, that is, Sn(A) = A. In particular, A is then a union of orbits of Sn on
(Ek ). We can consider a subset E′ ⊆ E as a labeled graph with edge set E′ and vertex set
V . The orbits of Sn on 2E are just the isomorphism classes of graphs on vertex set V , and
therefore each such orbit can be represented by an unlabeled subgraph of Kn.

The connection between graphical t-designs and t-edge-balanced graphs is as follows:
a graphical t-((n2), k, λ) design (X,A) such that A contains a single orbit represented
by G is equivalent to G being a graph of order n and size k that is t-edge-balanced
with index λ. This equivalence is clear from the definitions of graphical t-designs and
t-edge-balanced graphs.

Chee and Kaski [4] remarked that only a finite number of graphical t-designs are known.
It came to our attention recently that an infinite family of 2-edge-balanced graphs, and
hence graphical 2-designs, had already been discovered by Alltop [1] in 1966 (actually,
this fact is also mentioned by Betten et al. [2] referenced in [4], but we had missed it).
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3. ALLTOP’S METHOD

The essence of Alltop’s method is the following elementary result, for which a proof is
included for completeness.

Lemma 3.1 (Alltop [1]). Let G and H be graphs of order n. Suppose G contains
nH :G distinct subgraphs isomorphic to H . Then the number of distinct subgraphs of Kn

isomorphic to G, each of which contains H , is

λH :G = nH :G
|Aut(H )|
|Aut(G)| .

Proof. We count in two ways, N , the number of ordered pairs (H ′, G′) satisfying the
conditions

� H ′ is a subgraph of Kn isomorphic to H ,
� G′ is a subgraph of Kn isomorphic to G, and
� G′ contains H ′.

For a fixed H ′, there are λH :G subgraphs of Kn isomorphic to G, each of which
contains H ′. Since the number of subgraphs of Kn isomorphic to H is n!/|Aut(H )|, the
total number of such ordered pairs (H ′, G′) is

λH :G
n!

|Aut(H )| . (1)

On the other hand, for a fixed G′, G′ contains nH :G subgraphs isomorphic to H . Since
the number of subgraphs of Kn isomorphic to G is n!/|Aut(G)|, the total number of such
ordered pairs (H ′, G′) is

nH :G
n!

|Aut(G)| . (2)

Equating (1) and (2) gives the required

λH :G = nH :G
|Aut(H )|
|Aut(G)| . �

There are two isomorphism classes of graphs of order n and size two. These are shown
in Fig. 1 (we adopt the convention that isolated vertices are not shown in graph drawings;

G

H
(2)
1 H

(2)
2

Aut(G) S2 × Sn−3 (S2 � S2) × Sn−4

|Aut(G)| 2(n − 3)! 8(n − 4)!

FIGURE 1. Isomorphism classes of graphs of size two.
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the order of the graphs involved should be clear from the context), together with their
automorphism groups. A necessary and sufficient condition for a graph G to be 2-edge-
balanced is λH

(2)
1 :G = λH

(2)
2 :G. It follows from Lemma 3.1 that this condition is equivalent

to

nH
(2)
1 :G

∣∣Aut
(
H

(2)
1

)∣∣ = nH
(2)
2 :G

∣∣Aut
(
H

(2)
2

)∣∣,
or

nH
(2)
2 :G

nH
(2)
1 :G

= n − 3

4
.

We record this result as:

Theorem 3.1 (Alltop [1]). A graph G of order n is 2-edge-balanced if and only if

nH
(2)
2 :G

nH
(2)
1 :G

= n − 3

4
.

Corollary 3.1 (Alltop [1]). Let k ≥ 3 and let G be the graph of order 2k − 3 and size
k containing a cycle of length k. Then G is 2-edge-balanced of index (2k − 6)!/(k − 3)!.

Proof. We have nH
(2)
1 :G = k and nH

(2)
2 :G = k(k − 3)/2. This gives nH

(2)
2 :G/nH

(2)
1 :G =

(k − 3)/2 = (2k − 6)/4. It follows that G is 2-edge-balanced. The index of G follows
from |Aut(G)| = 2k(k − 3)!. �

Corollary 3.2 (Alltop [1]). There exists a graphical 2-((2k−3
2 ), k, (2k − 6)!/(k − 3)!)

design, for all k ≥ 3.

4. NEW INFINITE FAMILIES OF 2-EDGE-BALANCED GRAPHS

Let Sm,k be a tree of size k and consisting of a vertex v
(Sm,k)
0 of degree m ≥ 1 and other

vertices of degree 1 or 2. It is immediate that k ≥ m. We label by v
(Sm,k)
1 , v

(Sm,k)
2 , . . . , v

(Sm,k)
m

the leaves of Sm,k . If we denote by d
(Sm,k)
j the distance of v

(Sm,k)
j from the vertex v

(Sm,k)
0 , note

that
∑

d
(Sm,k)
j = k, where d

(Sm,k)
j ≥ 1. Based on the structure of the tree, we compute that

nH
(2)
1 :Sm,m

= (m2), and for a given m, nH
(2)
1 :Sm,k

= nH
(2)
1 :Sm,k−1

+ 1 whenever k > m. Therefore,

nH
(2)
1 :Sm,k

= k +
(

m

2

)
− m.

Moreover, nH
(2)
2 :Sm,m

= 0, and for a given m, nH
(2)
2 :Sm,k

= nH
(2)
2 :Sm,k−1

+ k − 2 whenever
k > m, from which it follows that

nH
(2)
2 :Sm,k

=
(

k − 1

2

)
−

(
m − 1

2

)
.
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Let’s define

N(m, k) = 4
nH

(2)
2 :Sk,m

nH
(2)
1 :Sk,m

+ 3 = 4

(
k−1

2

) − (
m−1

2

)
k + (

m
2

) − m
+ 3,

where m, k ∈ Z+. If N = N(m, k) for some m and k, then define Gm,k to be the union of
Sm,k and N − k − 1 isolated vertices whenever N ∈ Z is at least k + 1. Then it follows
that Gm,k is of order N . If k = m, except when k = m = 2, then N < k + 1. Notice also
that G1,k

∼= G2,k . Thus, we assume that k > m ≥ 1 throughout this article. Moreover, the
size of the automorphism group of Gm,k is computed as follows:

|Aut(Gm,k)| = (N − k − 1)! �k−m+1
d=1

(∣∣{j | j ∈ {1, . . . , m}, d (Gm,k)
j = d

}∣∣)!

Theorem 4.1. Gm,k is 2-edge-balanced of index λ = 4k(k−1)(N−3)!
(N+1)|Aut(Gm,k )| if and only if

N ∈ Z is at least k + 1.

Proof. It is immediate by Theorem 3.1 and the index follows from the computation of
the length of the orbit of Gm,k . �

Let’s now consider the values of m, k ∈ Z+ such that N ∈ Z is at least k + 1. Our
computation shows that

N = 4k2 − 6k − A

2k + A
= 2k − A − 3 + A(2 + A)

2k + A
, (3)

where A = m2 − 3m. Thus, we are interested in the values of m, k ∈ Z+ so that N ≥ k +
1 and A(2+A)

2k+A
∈ Z, since 2k − A − 3 ∈ Z. Notice also that 2k + A �= 0, since k > m ≥ 1.

In particular, we let A(2 + A) = 0, then the nonzero integer solutions are m = 1, 2, 3.
This results in the following corollary.

Corollary 4.1. Gm,k is 2-edge-balanced for any k > m, where m ∈ {1, 2, 3}.
In what follows, we first let m ∈ {1, 2, 3} and then analyze the case m ≥ 4.

4.1. m = 1 or m = 2

Let G be one of the graphs G1,k or G2,k . Since N(1, k) = N(2, k) = 2k − 1, there are
exactly k − 2 isolated vertices in G, so we have the following corollary.

Corollary 4.2. For every k > 1, there is a graphical 2 − ((2k−1
2 ), k, (k−1)(2k−4)!

(k−2)! ) design.

4.2. m = 3

In this section, we consider the graph G = G3,k . We partition the set of all such graphs
into classes according to their automorphism groups. The automorphism group of G is
Sk−4 if d

(G)
j are all distinct (Class I), and S3 × Sk−4 when d

(G)
j are all equal (Class II). If

exactly two of d
(G)
j are equal (Class III), then the automorphism group of G is S2 × Sk−4.

Journal of Combinatorial Designs DOI 10.1002/jcd
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G3,6

Class I II III

FIGURE 2. Graphs with m = 3 and k = 6.

See Fig. 2 for graphs of size 6 from different classes. If we let G3,k be in Class II, then
we have the following corollary.

Corollary 4.3. For any k ≥ 4 divisible by 3, there is a graphical 2 − ((2k−3
2 ), k, k(2k−6)!

3(k−4)! )

design.

Let’s now consider the graphs in Classes I and III, then we have the following result.

Corollary 4.4. For any k ≥ 4, there are graphical 2 − ((2k−3
2 ), k, 2k(2k−6)!

(k−4)! ) and 2 −
((2k−3

2 ), k, k(2k−6)!
(k−4)! ) designs.

In what follows, we compute the number of nonisomorphic graphs in Classes I and
III. There is exactly one graph in Class II if 3 | k, where k ≥ 4 is the size of the graph.

Consider the equation ∑
d

(G)
j = k, (4)

where k ≥ 4 and d
(G)
j ≥ 1. The total number of solutions for (4) is (k−1

2 ). Let’s now fix

k and consider the solutions for (4), where there are exactly two of d
(G)
j are equal, in the

following cases:

Case 1. k is odd: Without loss of generality, assume that d
(G)
1 = d

(G)
2 and d

(G)
1 �=

d
(G)
3 �= d

(G)
2 . Then,∣∣∣∣∣

{
d

(G)
3 :

k − d
(G)
3

2
∈ Z, 1 ≤ d

(G)
3 ≤ k − 2

}∣∣∣∣∣ = |{1, 3, . . . , k − 2}| =
⌈

k − 2

2

⌉
.

This implies that the number of nonisomorphic graphs in Class III is � k−2
2 
 if 3 � |k and

� k−2
2 
 − 1 if 3 | k.
Case 2. k is even: Similarly, we determine that the number of non-isomorphic graphs

in Class III is k−2
2 if 3 � | k and k−2

2 − 1 if 3 | k.

However, the total number of solutions for (4), under the condition that there are exactly
two of d

(G)
j are equal, is three times the number of non-isomorphic graphs in Class III.

Note also that there are exactly six corresponding graphs in Class I for a single solution

Journal of Combinatorial Designs DOI 10.1002/jcd
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TABLE I. Number of nonisomorphic graphs G3,k in different classes.

Class I Class II Class III

k ≥ 4 odd 3 | k
(k−1

2
)−3� k−2

2 
+2

6 1 � k−2
2 
 − 1

3 � | k
(k−1

2
)−3� k−2

2 

6 0 � k−2

2 


k ≥ 4 even 3 | k
(k−1

2
)−3 k−2

2 +2

6 1 k−2
2 − 1

3 � | k
(k−1

2
)−3 k−2

2

6 0 k−2
2

TABLE II. Some graphical 2-designs with m = 3 and small k ≥ 4.

k n v b r index λ Class # of graphical 2-designs

4 5 10 60 24 8 III ≥1
5 7 21 2,520 600 120 III ≥2
6 9 36 181,440 30,240 4,320 I ≥1

30,240 5,040 720 II ≥1
90,720 15,120 2,160 III ≥1

for (4). Thus, Table I provides with the number of nonisomorphic graphs in different
classes and Table II the parameters for some graphical 2-designs with some small k.

4.3. m ≥ 4

In this section, we focus on the following two questions:

1. Does there exist an integer-valued polynomial (function) K such that Gm,K is 2-
edge-balanced for any m ≥ 4?

2. Does there exist a pair of integer-valued polynomials (functions) K and M such that
GM,K is 2-edge-balanced whenever M ≥ 4?

In this sense, we let k = K in (3):

N = 2K − A − 3 + A(2 + A)

2K + A
,

where A = m2 − 3m. We note that degree of A(2 + A) is 4, then if the degree of K as a
polynomial over m is at least 5, we let m = 1, 2, 3 and therefore N = 2K − A − 3 ∈ Z

as we discuss above. In the following, we consider some polynomials K of degree at
most 4 with the motivation of finding new families of 2-edge-balanced graphs.

Journal of Combinatorial Designs DOI 10.1002/jcd
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4.3.1. Degree 1
Let K = am + b ∈ Q[m], a �= 0, then consider

N = 4(a2 − 1)m2 + 4(2ab − 3a + 3)m + 4(b2 − 3b)

m2 + (2a − 3)m + 2b
+ 3.

Thus, we have that

N ∈ Z if and only if 4(a2 − 1) = 4(2ab − 3a + 3)

2a − 3
= 2(b − 3) ∈ Z,

for any m. This implies that a ∈ {−1,− 1
2 }. If a = −1, then K = −m + 3 < 0 for m ≥ 4.

Moreover, N = 0 if a = − 1
2 . Hence, there is not a pair of a �= 0, b ∈ Q such that Gm,K

is 2-edge-balanced for any m ≥ 4. However, there may still be some values for a, b

that result in 2-edge-balanced graphs for certain m values. Among many examples, we
provide with some examples of polynomials K that satisfy our conditions. Realize that
K is of degree 1 over m and degree 2 over the parameter t .

(i) Let a = 1 + t , b = −1 − 2t and M1 = 1 + 2t , t ∈ Z+ \ {1}, then we have that

K1 = 2t2 + t,

N1 = 2t2 + 2t − 1 ∈ Z, and

N1 − K1 = t − 1 ≥ 1.

(ii) Let a = 1 + t , b = −t and M2 = 2t , t ∈ Z+ \ {1}, then we have that

K2 = 2t2 + t,

N2 = 2t2 + 3t ∈ Z, and

N2 − K2 = 2t ≥ 1.

4.3.2. Degree 2
Let K = am2 + bm + c ∈ Q[m], a �= 0, then

N = Q + R1m + R0

D
+ 3,

where

R0 = 2(2a + 1)c2 − (22a2 + 12ab + 2b2 + 4a + 1)c

8a3 + 12a2 + 6a + 1
, and

R1 = −2(3(4a − 1)b2 + 2a3 − 15a2 + 2b3 + (22a2 − 14a + 1)b − 2((2a + 1)b + 6a2 + 3a)c + 3a

8a3 + 12a2 + 6a + 1
.

Set R0 = 0, then one solution is that c = 0. Thus, we substitute c = 0 in R1 = 0. This
gives rise to two solutions for b, namely b = 1 − a and b = −3a. Another solution for
R0 = 0 is that c = (22a2 + 12ab + 2b2 + 4a + 1)/(2a + 1). This solution implies that
b = −3a or b = −5a − 1 in R1 = 0. In the following we discuss some polynomials with
coefficients based on these solutions.
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(i) K = am2 + (1 − a)m, a ∈ Z+.
Let m ≡ 2 or 3 (mod 2a + 1), where a ∈ Z+, then we write M3 = 2 + (2a + 1)t
and M4 = 3 + (2a + 1)t , where t ∈ Z+. Then we compute that

K3 = (4a3 + 4a2 + a)t2 + (6a2 + 5a + 1)t + 2a + 2,

N3 = 4(2a3 + a2)t2 + 4(3a2 + 2a)t + 4a + 3 ∈ Z, and

N3 − K3 = (4a3 − a)t2 + (6a2 + 3a − 1)t + 2a + 1 ≥ 1.

and

K4 = (4a3 + 4a2 + a)t2 + (10a2 + 7a + 1)t + 6a + 3,

N4 = 4(2a3 + a2)t2 + 4(5a2 + 2a)t + 12a + 3 ∈ Z, and

N4 − K4 = (4a3 − a)t2 + (10a2 + a − 1)t + 6a ≥ 1.

(ii) K = am2 − 3am, a ∈ Z+.
Let m ≡ 1 or 2 (mod 2a + 1), where a ∈ Z+, then we write M5 = 1 + (2a + 1)t ,
where t ∈ Z+ except when a = t = 1, and M6 = 2 + (2a + 1)t , where t ∈ Z+. Then
we have that

K5 = (4a3 + 4a2 + a)t2 − (2a2 + a)t − 2a,

N5 = 4(2a3 + a2)t2 − 4a2t − 4a − 1 ∈ Z, and

N5 − K5 = (4a3 − a)t2 − (2a2 − a)t − 2a − 1 ≥ 1.

and

K6 = (4a3 + 4a2 + a)t2 + (2a2 + a)t − 2a,

N6 = 4(2a3 + a2)t2 + 4a2t − 4a − 1 ∈ Z, and

N6 − K6 = (4a3 − a)t2 + (2a2 − a)t − 2a − 1 ≥ 1.

(iii) K = am2 − 3am + 2a + 1, a ∈ Z+.
Let m ≡ 0 or 3 (mod 2a + 1), where a ∈ Z+, then we write M7 = (2a + 1)t , where
t ∈ Z+ except when a = t = 1, and M8 = 3 + (2a + 1)t , where t ∈ Z+. Then we
compute that

K7 = (4a3 + 4a2 + a)t2 − 3(2a2 + a)t + 2a + 1,

N7 = 4(2a3 + a2)t2 − 12a2t + 4a − 1 ∈ Z, and

N7 − K7 = (4a3 − a)t2 − 3(2a2 − a)t + 2a − 2 ≥ 1.

and

K8 = (4a3 + 4a2 + a)t2 + 3(2a2 + a)t + 2a + 1,

N8 = 4(2a3 + a2)t2 + 12a2t + 4a − 1 ∈ Z, and

N8 − K8 = (4a3 − a)t2 + 3(2a2 − a)t + 2a − 2 ≥ 1.

Journal of Combinatorial Designs DOI 10.1002/jcd
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(iv) K = am2 − (5a + 1)m + 24a+3
2a+1 , a ∈ Z \ {0}.

Let’s assume one of the following cases for a and m:

(i) (a,m) ∈ {(−5, 4), (−5, 5), (−2, 4), (−2, 5), (−1, 4), (−1, 5), (−1, 6)}.
(ii) (a,m) ∈ {(1,m) | m ≥ 6}.

(iii) (a,m) ∈ {(4,m) | m ≥ 5}.
It follows that K ∈ Z is at least m + 1 for any m ≥ 4. However, we are interested in
the cases satisfying that N ∈ Z is at least k + 1. If (a,m) = (−2, 5), then N = 11.
Let us now assume that a = 1 and m ≡ 0 or 1 (mod 3), where m ≥ 9. If we write
M9 = 3t or M10 = 1 + 3t , then t ∈ Z+ \ {1, 2}. Then we have that

K9 = 9t2 − 18t + 9,

N9 = 12t2 − 28t + 15 ∈ Z, and

N9 − K9 = 3t2 − 10t + 6 ≥ 1.

and

K10 = 9t2 − 12t + 4,

N10 = 12t2 − 20t + 7 ∈ Z, and

N10 − K10 = 3t2 − 8t + 3 ≥ 1.

Let’s consider the case that (a,m) = (−2, 5), then we have the following results.

Corollary 4.5. G5,10 is 2-edge-balanced.

Corollary 4.6. There exists a graphical 2 − (55, 10, 30·8!
|Aut(G5,10)| ) design.

4.3.3. Degree 3
Let K = am3 + bm2 + cm + d ∈ Q[m], a �= 0, then

N = N(m, K) = Q + R2m
2 + R1m + R0

D
+ 3,

where

R0 = (12a + 2b + 1)d

4a2
,

R1 = 2(12a + 2b + 1)c − 24a2 − 4ad − 36a − 6b − 3

8a2
and

R2 = 4(6a + 1)b + 44a2 − 4ac + 4b2 + 18a + 1

8a2
.

Set R0 = 0, then one solution stems from the equation 12a + 2b + 1 = 0. Thus, we
substitute b = (−1 − 12a)/2 in R1 = 0 and R2 = 0. This implies that c = 11a + 3/2
and d = −6a. Let M11 = 2at , where a, t ∈ Z+ except when (a, t) ∈ {(1, 1), (1, 2)}, then
we compute that

Journal of Combinatorial Designs DOI 10.1002/jcd
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K11 = 8a4t3 − 2(12a3 + a2)t2 + (22a2 + 3a)t − 6a,

N11 = 16a4t3 − 8(6a3 + a2)t2 + (44a2 + 12a + 1)t − 12a − 3 ∈ Z, and

N11 − K11 = 8a4t3 − 6(4a3 + a2)t2 + (22a2 + 9a + 1)t − 6a − 3 ≥ 1.

Another solution for R0 = 0 is that d = 0. Thus, we let d = 0 in R1 = 0 and R2 = 0
and this results in three sets of solutions where a �= 0:

(i) Let b = −5a − 1/2, c = 6a + 3/2, and M12 = 1 + 2at , where a, t ∈ Z+ except
when a = t = 1, then

K12 = 8a4t3 − 2(4a3 + a2)t2 − (2a2 − a)t + 2a + 1,

N12 = 16a4t3 − 8(2a3 + a2)t2 − (4a2 − 4a − 1)t + 4a + 1 ∈ Z, and

N12 − K12 = 8a4t3 − 2(4a3 + 3a2)t2 − (2a2 − 3a − 1)t + 2a ≥ 1.

(ii) Let b = −4a − 1/2, c = 3a + 3/2, and M13 = 2 + 2at , where a, t ∈ Z+, then

K13 = 8a4t3 + 2(4a3 − a2)t2 − (2a2 + a)t − 2a + 1,

N13 = 16a4t3 + 8(2a3 − a2)t2 − (4a2 + 4a − 1)t − 4a + 1 ∈ Z, and

N13 − K13 = 8a4t3 + 2(4a3 − 3a2)t2 − (2a2 + 3a − 1)t − 2a ≥ 1.

(iii) Let b = −3a − 1/2, c = 2a + 3/2, and M14 = 3 + 2at , where a, t ∈ Z+, then

K14 = 8a4t3 + 2(12a3 − a2)t2 + (22a2 − 3a)t + 6a,

N14 = 16a4t3 + 8(6a3 − a2)t2 + (44a2 − 12a + 1)t + 12a − 3 ∈ Z, and

N14 − K14 = 8a4t3 + 6(4a3 − a2)t2 + (22a2 − 9a + 1)t + 6a − 3 ≥ 1.

4.3.4. Degree 4
Let K = am4 + bm3 + cm2 + dm + e ∈ Q[m], a �= 0, then

N = N(m, K) = Q + R3m
3 + R2m

2 + R1m + R0

D
+ 3,

where

R0 = − e

2a
, R1 = −12a + 2d − 3

4a
,

R2 = 22a − 2c − 1

4a
and R3 = −6a + b

2a
.

We set Ri = 0 and this implies that b = −6a, c = (−1 + 22a)/2, d = (3 − 12a)/2,

and e = 0. However, these assumptions do not give rise to a particular set of m values
so that our requirements are satisfied. In the following we provide with some examples
of monic polynomials K that result in some graphical 2-designs for certain m values.
However, we note that in part (i) and (iii) K is of degree 2 over the parameter t although
it is of degree 4 over m.
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(i) Let a = 1, b = −3 − 3t , c = −b, d = e = 0, and M15 = 2 + 3t , t ∈ Z+, then we
have that

K15 = 9t2 + 12t + 4,

N15 = 12t2 + 20t + 7 ∈ Z, and

N15 − K15 = 3t2 + 8t + 3 ≥ 1.

(ii) Let a = 1, b = −3 − 3t , c = −b, d = e = 0, and M16 = 1 + 4t , t ∈ Z+, then we
compute that

K16 = 64t4 − 32t3 − 12t2 + 4t + 1,

N16 = 128t4 − 64t3 − 40t2 + 12t + 3 ∈ Z, and

N16 − K16 = 64t4 − 32t3 − 28t2 + 8t + 2 ≥ 1.

(iii) Let a = 1, b = −4 − 3t , c = −b, d = e = 0, and M17 = 3 + 3t , t ∈ Z+, then

K17 = 9t2 + 18t + 9,

N17 = 12t2 + 28t + 15 ∈ Z, and

N17 − K17 = 3t2 + 10t + 6 ≥ 1.

Let Ki and Mi , i ∈ {1, . . . , 17}, be as above. If i ∈ {1, 2, 9, 10, 15, 16, 17} and t ∈ Z+

except when t = 1 for i ∈ {1, 2, 9, 10} and t = 2 for i ∈ {9, 10}, then we have that

Corollary 4.7. GMi (t),Ki (t) is 2-edge-balanced.

Corollary 4.8. There are infinite families of graphical 2-designs.

If i ∈ {3, 4, 5, 6, 7, 8, 11, 12, 13, 14} and a, t ∈ Z+ except when a = t = 1 for i ∈
{5, 8, 12}, then we have that

Corollary 4.9. GMi (a,t),Ki (a,t) is 2-edge-balanced.

Corollary 4.10. There are infinite families of polynomials each of which results in
infinite families of graphical 2-designs.

5. FURTHER RESULTS ON 2-EDGE-BALANCED GRAPHS

Let G be a graph of order n and size k. Then, nH
(2)
1 :G + nH

(2)
2 :G = (k2), from which it

follows that

nH
(2)
2 :G

nH
(2)
1 :G

=
(
k
2

) − nH
(2)
1 :G

nH
(2)
1 :G

.
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TABLE III. Some m, k values resulting in 2-edge-balanced graphs Gm,k.

m k ≤ 10000

4 10
5 10, 15, 25, 55
6 21, 27, 36, 51, 81, 171
7 21, 28, 46, 56, 70, 91, 126, 196, 406
8 36, 40, 50, 64, 85, 100, 120, 148, 190, 260, 400, 820
9 36, 45, 57, 81, 99, 141, 162, 189, 225, 351, 477, 729, 1485
10 49, 55, 70, 85, 91, 105, 133, 145, 175, 217, 245, 280, 325, 385, 469, 595, 805, 1225,

2485
11 55, 66, 76, 88, 121, 136, 154, 176, 220, 286, 316, 352, 396, 451, 616, 748, 946, 1276,

1936, 3916
12 78, 81, 111, 126, 144, 166, 216, 243, 276, 342, 441, 486, 540, 606, 936, 1134, 1431,

1926, 2916, 5886
13 78, 91, 100, 130, 155, 195, 221, 265, 325, 364, 507, 595, 650, 715, 793, 1365, 1651,

2080, 2795, 4225, 8515
14 105, 154, 196, 209, 231, 287, 352, 385, 469, 495, 781, 847, 924, 1015, 1639, 1925,

2926, 3927, 5929
15 105, 120, 144, 162, 170, 183, 225, 274, 300, 330, 365, 378, 456, 495, 540, 690, 729,

820, 1002, 1080, 1170, 1275, 1548, 1730, 2250, 2640, 3186, 4005, 5370, 8100

For G to be 2-edge-balanced, we require

n =
4(

(
k
2

) − nH
(2)
1 :G)

nH
(2)
1 :G

+ 3

to be an integer. Hence, nH
(2)
1 :G must divide 2k(k − 1). Based on this condition, we present

some 2-edge-balanced graphs G in Table IV in which we adopt the following notation:

Graph-theoretic:

En —empty graph (graph of order n with no edges).

Pn —path of length n.

Cn —cycle of length n.

Group-theoretic:

Dn —dihedral group of order 2n.

6. CONCLUSION

In this article, we show the existence of new infinite families of 2-edge-balanced
graphs. Table III lists all m, k (4 ≤ m ≤ 15, m < k ≤ 10, 000) values such that Gm,k is
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2-edge-balanced. A natural question is whether the Alltop’s method [1] could be de-
veloped to obtain t-edge-balanced graphs (t ≥ 3) and produce new infinite families of
t-edge-balanced graphs.

REFERENCES

[1] W. O. Alltop, On the construction of block designs, J Combin Theory 1 (1966), 501–502.

[2] A. Betten, M. Klin, R. Laue, and A. Wassermann, Graphical t-designs via polynomial Kramer–
Mesner matrices, Discrete Math 197/198 (1999), 83–109.

[3] B. Bollobas, Modern Graph Theory, vol. 184 of Graduate Texts in Mathematics, Springer-
Verlag, New York, 1998.

[4] Y. M. Chee and P. Kaski, An enumeration of graphical designs, J Combin Des 16 (2008), 70–85.

[5] Y. M. Chee and D. L. Kreher, “Graphical designs,” in The CRC Handbook of Combinato-
rial Designs, C. J. Colbourn, J. H. Dinitz (Editors), 2nd ed., CRC Press, Boca Raton, 2007,
pp. 490–493.

Journal of Combinatorial Designs DOI 10.1002/jcd


