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Abstract Liquid–liquid equilibrium (LLE) data are

important in chemical industry for the design of separation

equipments, and it is troublesome to determine experi-

mentally. In this paper, a new method for correlation of

ternary LLE data is presented. The method is implemented

by using a combined structure that uses genetic algorithm

(GA)–trained neural network (NN). NN coefficients that

satisfy the criterion of equilibrium were obtained by using

GA. At the training phase, experimental concentration data

and corresponding activity coefficients were used as input

and output, respectively. At the test phase, trained NN was

used to correlate the whole experimental data by giving

only one initial value. Calculated results were compared

with the experimental data, and very low root-mean-square

deviation error values are obtained between experimental

and calculated data. By using this model tie-line and

solubility curve data of LLE can be obtained with only a

few experimental data.

Keywords LLE � Neural network � Genetic algorithm �
Activity coefficients

1 Introduction

In the chemical process industries, fluid mixtures are often

separated into their components by diffusional operations

such as distillation, absorption, and extraction. Design of

such separation equipments requires quantitative estimates

of the partial equilibrium properties of fluid mixtures [1].

The partial equation properties of liquid mixtures are

mainly presented with LLE data. For example, an organic

phase is required in order to separate a chemical compo-

nent from an initial aqueous solution via extraction meth-

ods. In this case, at the end of the process, the component

to be separated has got LLE data in both organic and

aqueous phases. These LLE data can be either determined

experimentally or predicted/estimated by well-known

thermodynamics models. Experimentally determination of

LLE data is time and energy consumed. On the other hand,

the conventional model equations (NRTL, Margules,

UNIFAC, UNIQUAC) do not give always accurate results

for each liquid mixture, where infinite variation of chem-

ical components is available.

In the literature, LLE data are generally estimated using

thermodynamic models based on the well-known funda-

mental phase equilibrium criterion of equality of chemical

potential in both phases. These models are called generally

as ‘‘activity coefficient models,’’ and many empirical and

semitheoretical equations exist for estimating activity

coefficients of binary mixtures containing polar and/or

nonpolar species [2].

Different methods have been suggested in the literature

for phase equilibrium calculations. In the literature, NN

and GA usually have been used for estimating vapor–liquid

equilibria (VLE) [3–5]. GA has been also used to obtain the

interaction parameters of known methods such as NRTL

and UNIQUAC [6]. In these methods, activity coefficient

models are used to obtain LLE. The aim of this work is to

develop a new model which uses only a few experimental

data for estimating the whole LLE data for a wide range of

mixture variations. Experimental equilibrium data for these

systems were taken from literature [7]. The method esti-

mates LLE data by using a combined structure that consists
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of NN and GA. NN structure that is used in this work is

multilayer feed-forward network with one hidden layer. In

the literature, H. Ghanadzadeh’s paper uses a different NN

structure that is called GMDH type NN which is based on

Kolmogorov–Gabor polynomial [8].

2 Phase equilibria problem

2.1 Activity and activity coefficient

Activity is a measure of the ‘‘effective concentration’’ of a

species in a mixture. Activity and activity coefficient and

their estimation are important concepts for equilibrium

calculations. The activity of component i at some temper-

ature, pressure, and composition is defined as the ratio of

the fugacity of i at these conditions to the fugacity of i in

the standard state, that is a state at the same temperature as

that of the mixture and at some specified condition of

pressure and composition [9].

aiðT ;P; xÞ �
fiðT ;P; xÞ

fiðT ;P0; x0Þ ð1Þ

where P0 and x0 are, respectively, an arbitrary but specified

pressure and composition. The fugacity may be looked

upon as a sort of corrected pressure that will describe the

behavior of an actual gas in the manner of an ideal gas [10].

The activity coefficient ci is the correction factor which

measures the departure of a solution from ideal behavior

for a given standard state. It is the ratio of the activity of

i to some convenient measure of the concentration of i,

usually the mole fraction [11].

ci �
ai

xi

ð2Þ

In the liquid mixture, all activity coefficients are directly

related to the molar excess Gibbs energy GE which is

defined by

GE ¼ RT
X

i

xilnci ð3Þ

where R is gas constant (8.314 J mol-1K-1) and T is

absolute temperature in Kelvin. A mathematical model,

preferably based on molecular considerations, provides a

convenient method for expressing GE as a function of

x. From this function an individual activity coefficient ci

for component i can be calculated from GE [12].

2.2 Activity coefficient models

In a liquid system composed of two phases, the Gibbs

energy of mixing of the individual phases, DG, may be

expressed as follows:

ðnI þ nIIÞDG ¼ nIDGI þ nIIDGII

ðconstraint : nI
i þ nII

i ¼ ni; i ¼ 1; 2; 3Þ ð4Þ

where ni is the total number of moles of component i and

DGI and DGII are the Gibbs energies of mixing corre-

sponding to nI moles of phase I and nII moles of phase II.

The molar Gibbs energy of mixing for either phase I or

II is the sum of the ideal and the excess molar Gibbs

energies of mixing:

DGI ¼ G
ðIÞ
id þ GEðIÞ ð5Þ

¼ RT
X

xI
i lnxI

i þ RT
X

xI
i lncI

i ð6Þ

¼ RT
X

xI
i lnaI

i ð7Þ

where ci is the activity coefficients and ai are activities.

The necessary and sufficient criterion of equilibrium is

that DG for the system is minimum. Since DG is minimum,

a differential change of composition occurring at equilib-

rium at fixed pressure and temperature will not produce any

change in DG and hence: dðDGÞP;T ¼ 0:

This criterion is a necessary, but not sufficient condition

of equilibrium. It does not help us in distinguishing

between a maximum, an inflection point, and a minimum.

The aforementioned necessary, but not sufficient condition,

may be stated in an alternative way: The activity ai for each

component must be the same in the two phases:

aI
i ¼ aII

i i ¼ 1; 2; 3
ðconstraint :

P
xI

i ¼
P

xII
i ¼ 1 i ¼ 1; 2; 3Þ ð8Þ

This criterion may be easy to use in practice, but it suffers

from not being sufficient. The maxima and the inflection

points may be avoided by a check for convexity of the

predicted DG� curve at the concentrations which are

found from the isoactivity criterion

xI
ic

I
i ¼ xII

i cII
i i ¼ 1; 2; 3 ð9Þ

where ci is the activity coefficient of component i [13].

3 Neural network

NNs were inspired by the power, flexibility, and robustness

of the biological brain. They were computational analogs

of the basic biological components of a brain (i.e., neurons,

synapses, and dendrites). NNs consist of many simple

mathematical elements that work together in parallel and in

series. A NN model can be seen in Fig. 1. Each neuron has

many inputs and only one output, and this output is the

input of the other neurons.

As shown in Fig. 2, a neuron model consists of a sum-

ming junction and an activation function. Here,

x1; x2; x3; . . .xn are inputs; w1;w2;w3; . . .wn are weight
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coefficients; b is the bias and y is the output. In this model,

the output equation can be given as the following:

y ¼ f
Xn

i¼1

wixi þ b

 !
ð10Þ

where f(x) is activation function [14].

3.1 Training process

A training process can be viewed as the problem of

determining network architecture and weight coefficients

so that neural network can perform a special task. Learning

rule is an equation set by which all or some of the weight

coefficients change so as to modify the response of each

neuron in time. By this way, NN can adapt itself to get the

desired response.

NNs are learnt by example data instead of programming.

The network usually must learn the weight coefficients

from available training set. Learning process can be divi-

ded into two groups: supervised and unsupervised learning.

In supervised learning, both the input and the response are

given to the system. For each input, obtained response and

desired response are compared. To get the minimum dif-

ference, weight coefficients are changed. After an accept-

able error is obtained, learning process is stopped and then

these weight coefficients can be used with the data that are

not used in learning process. NN begins in a random state

and learns using repeated processing of a data training set,

which is a set of inputs with target outputs. Learning pro-

cess occurs because the error between NN output and the

target output is calculated and used to adjust the weighted

synapses of the NN. This continues until errors are small

enough or no more weight changes are occurring. Thus,

NN is trained and the weights are fixed. The trained NN

can be used for new inputs to perform estimation or clas-

sification of tasks [15].

4 Genetic algorithm

Genetic algorithm is a heuristic search algorithm that is

inspired by the biological evolution process and used to

find the solution of the optimization problems. Algorithm is

started with a set of possible solutions. This set of solutions

is called as population and represented by chromosomes

[16].

One common application of genetic algorithm is func-

tion optimization, where the goal is to find a set of

parameter values that maximize a multiparameter function

(fitness function).

4.1 Genetic algorithm operators

The basic form of genetic algorithm consists of three types

of operators: selection, crossover, and mutation. Selection

operator selects chromosomes in the population for repro-

duction. Crossover decomposes two distinct solutions and

then randomly mixes their parts to form new solutions.

Mutation randomly alters some of gene values in a chro-

mosome from its initial state. This operation results in new

gene values, and better solution values can be obtained

from this new gene values.

4.2 Basic genetic algorithm

A simple genetic algorithm works as follows:

• Start with a randomly picked population (candidate

solutions to a problem).

• Calculate the fitness values of each chromosome in the

population.

Inputs Outputs

Hidden Layer

Fig. 1 Neural network model with input, hidden, and output layers

f(·)

w1

w2

wn

b

x2

xn

y

x1

Fig. 2 Neuron model with input and output
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• Create new population by repeating the following steps:

– Using fitness probabilities select a pair of parent

chromosomes from the current population.

– Cross over the pair at a randomly chosen point to

form two offspring.

– Mutate the two offspring and place the obtained

chromosomes in the new population.

• Replace the current population with the new

population.

• Repeat process by starting from fitness value calcula-

tion step [17].

5 Proposed NN model

The proposed NN model was used to estimate the activity

coefficients of ternary LLE data. Experimental data were

used for the input of the network, and corresponding

activity coefficients have been selected for the output as

shown in Fig. 3. The proposed NN structure is a multilayer

feed-forward network with one hidden layer. In NN, hidden

layers are layers that connect input to output via a set of

neurons. In this work for each of experimental sets, five

neurons were used in the hidden layers. Since activity

coefficient model has a nonlinear structure and to introduce

this nonlinearity into NN, hyperbolic tangent sigmoid

function was used in the hidden layer as activation function

that is given in Eq. (11). In the output, no activation

function was used.

f ðxÞ ¼ e2x � 1

e2x þ 1
ð11Þ

In this figure x1, x2, and x3 represent the experimental

data sets of solvent or water phase and ci shows corre-

sponding activity coefficients. Weight coefficients of NN

were determined numerically by using a hybrid method

that uses genetic algorithm and a search algorithm by

minimizing the following objective function.

Fa ¼
XN

j¼1

X3

i¼1

xI
ijc

I
ij � xII

ij c
II
ij

� �2

,
xI

ijc
I
ij þ xII

ij c
II
ij

� �2

ð12Þ

where xij
I and xij

II stand for the experimental mole fraction of

component i in water-rich and solvent-rich phases,

respectively, along tie-line, j, cij
I and cij

II are the corre-

sponding activity coefficients calculated by NN model, and

N is the total number of tie-lines [13].

For minimization, MATLAB optimization toolbox was

used. First, genetic algorithm was used to obtain initial

values, and then search function was used to obtain final

values. By using this hybrid search method for each data

set, objective function minimization process was repeated

until no further minimization is possible. After training

process, any single mole fraction of water, in water-rich

phase including experimental values, was used for testing.

Test process was carried out as follows: Firstly, any

single mole fraction value of water that randomly picked

from water-rich phase (x1
I ) was taken as known value.

Then, the mole fraction of acid in water phase (x2
I ) and

mole fractions of water (x1
II) and acid (x2

II) in solvent-rich

phase were selected as free parameters. Then by using

these mole fractions, activity coefficients of water and

solvent phase mole fractions were obtained by the trained

NN structure. Finally, the following objective function was

minimized to obtain the tie-lines. If k shows any tie-line

that corresponds to the known water data in the water

phase, the objective function Fb was minimized under the

given constraints.

Fig. 3 Proposed NN model

Table 1 Model tie-line data for water (1) ? acetic acid (2) ?

dimethyl maleate (3) at T = 298.2 K

Water-rich phase Solvent-rich phase

x1
I x2

I x3
I x1

II x2
II x3

II

0.9800 0.0091 0.0109 0.1420 0.0392 0.8188

0.9700 0.0170 0.0130 0.1938 0.0622 0.7441

0.9600 0.0253 0.0147 0.2529 0.0827 0.6644

0.9500 0.0332 0.0168 0.3137 0.0995 0.5868

0.9400 0.0403 0.0197 0.3730 0.1117 0.5154

0.9300 0.0468 0.0232 0.4315 0.1197 0.4488

0.9200 0.0529 0.0271 0.4910 0.1240 0.3850

0.9100 0.0589 0.0311 0.5528 0.1251 0.3221

0.9000 0.0651 0.0349 0.6160 0.1235 0.2605

0.8900 0.0714 0.0386 0.6765 0.1198 0.2037

0.8800 0.0776 0.0424 0.7278 0.1150 0.1573

0.8700 0.0832 0.0468 0.7661 0.1101 0.1238

0.8600 0.0878 0.0522 0.7930 0.1058 0.1011

0.8500 0.0914 0.0586 0.8100 0.1023 0.0877
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Fb ¼
P3

i¼1

xI
ikc

I
ik � xII

ikc
II
ik

� �2
= xI

ikc
I
ik þ xII

ikc
II
ik

� �2

constraints : xI
1k þ xI

2k þ xI
3k ¼ 1xII

1k þ xII
2k þ xII

3k ¼ 1

xI
1k� 0 i ¼ 1; 2; 3

xII
1k� 0 i ¼ 1; 2; 3

ð13Þ

Minimization was obtained in two steps. In the first step

genetic algorithm was used to obtain initial condition of the

second step. In the second step a MATLAB function,

named fminsearch, was used to get the solution that gives

minimum RMSD errors. fminsearch uses the simplex

search method of Lagarias [18]. This is a direct search

method that does not use numerical or analytic gradients.

This algorithm can be applied to discrete optimization

problems, where derivate-based optimization methods

cannot be used.

6 Results and discussion

The benchmarking system involves the liquid–liquid

equilibrium data correlations for the ternary systems of

water (1) ? carboxylic acid (2) ? dimethyl maleate (3).

Formic, acetic, propionic, and butyric acids were used as

carboxylic acid. The calculated tie-line data were obtained

by increasing the water mole fraction in steps of 0.01 and

shown in Tables 1, 2, 3, 4. The experimental and correlated

data of obtained water (1) ? carboxylic acid (2) ? dime-

thyl maleate (3) systems have been shown in Table 5 in

which xi
I and xi

II refer to mole fraction of the ith component

in the aqueous and solvent phases, respectively. The

RMSD values for the studied systems were also listed in

Table 2 Model tie-line data for water (1) ? butyric acid (2) ?

dimethyl maleate (3) at T = 298.2 K

Water-rich phase Solvent-rich phase

x1
I x2

I x3
I x1

II x2
II x3

II

0.9800 0.0112 0.0088 0.1199 0.0221 0.8580

0.9700 0.0214 0.0086 0.1587 0.0354 0.8059

0.9600 0.0313 0.0087 0.1893 0.0456 0.7652

0.9500 0.0409 0.0091 0.2137 0.0540 0.7323

0.9400 0.0504 0.0096 0.2338 0.0612 0.7050

0.9300 0.0597 0.0103 0.2508 0.0676 0.6816

0.9200 0.0688 0.0112 0.2659 0.0732 0.6609

0.9100 0.0776 0.0124 0.2795 0.0784 0.6420

0.9000 0.0862 0.0138 0.2924 0.0833 0.6243

0.8900 0.0945 0.0155 0.3045 0.0880 0.6075

0.8800 0.1025 0.0175 0.3163 0.0925 0.5912

0.8700 0.1104 0.0196 0.3278 0.0971 0.5751

0.8600 0.1182 0.0218 0.3395 0.1019 0.5586

0.8500 0.1258 0.0242 0.3517 0.1071 0.5412

0.8400 0.1332 0.0268 0.3644 0.1125 0.5231

0.8300 0.1401 0.0299 0.3772 0.1179 0.5049

0.8200 0.1465 0.0335 0.3897 0.1232 0.4871

0.8100 0.1524 0.0376 0.4018 0.1282 0.4699

0.8000 0.1580 0.0420 0.4136 0.1333 0.4532

0.7900 0.1634 0.0466 0.4250 0.1382 0.4368

0.7800 0.1684 0.0516 0.4359 0.1429 0.4212

0.7700 0.1731 0.0569 0.4464 0.1474 0.4062

0.7600 0.1774 0.0626 0.4564 0.1518 0.3918

0.7500 0.1813 0.0687 0.4659 0.1559 0.3781

0.7400 0.1849 0.0751 0.4751 0.1599 0.3650

0.7300 0.1882 0.0818 0.4841 0.1637 0.3523

0.7200 0.1911 0.0889 0.4928 0.1673 0.3399

0.7100 0.1937 0.0963 0.5013 0.1709 0.3278

0.7000 0.1959 0.1041 0.5097 0.1742 0.3161

0.6900 0.1979 0.1121 0.5181 0.1775 0.3044

0.6800 0.1996 0.1204 0.5265 0.1807 0.2928

0.6700 0.2009 0.1291 0.5350 0.1838 0.2813

0.6600 0.2020 0.1380 0.5436 0.1868 0.2696

0.6500 0.2027 0.1473 0.5522 0.1896 0.2582

0.6400 0.2031 0.1569 0.5611 0.1922 0.2466

0.6300 0.2031 0.1669 0.5703 0.1947 0.2350

Table 3 Model tie-line data for water (1) ? formic acid (2) ?

dimethyl maleate (3) at T = 298.2 K

Water-rich phase Solvent-rich phase

x1
I x2

I x3
I x1

II x2
II x3

II

0.9800 0.0092 0.0108 0.1801 0.0448 0.7751

0.9700 0.0181 0.0119 0.2185 0.0612 0.7203

0.9600 0.0265 0.0135 0.2606 0.0757 0.6637

0.9500 0.0347 0.0153 0.3063 0.0892 0.6045

0.9400 0.0427 0.0173 0.3538 0.1012 0.5450

0.9300 0.0504 0.0196 0.4007 0.1111 0.4881

0.9200 0.0575 0.0225 0.4444 0.1187 0.4369

0.9100 0.0642 0.0258 0.4837 0.1241 0.3922

0.9000 0.0702 0.0298 0.5188 0.1274 0.3538

0.8900 0.0756 0.0344 0.5501 0.1290 0.3209

0.8800 0.0821 0.0379 0.5765 0.1324 0.2910

0.8700 0.0867 0.0433 0.6017 0.1324 0.2659

0.8600 0.0911 0.0489 0.6242 0.1323 0.2435

0.8500 0.0951 0.0549 0.6446 0.1316 0.2237

0.8400 0.0989 0.0611 0.6632 0.1307 0.2061

0.8300 0.1023 0.0677 0.6802 0.1296 0.1902

0.8200 0.1054 0.0746 0.6959 0.1282 0.1759

0.8100 0.1083 0.0817 0.7103 0.1267 0.1630

0.8000 0.1110 0.0890 0.7236 0.1252 0.1511

0.7900 0.1134 0.0966 0.7360 0.1235 0.1405

0.7800 0.1156 0.1044 0.7475 0.1217 0.1308
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Table 4 Model tie-line data for

water (1) ? propionic acid (2) ?

dimethyl maleate (3) at

T = 298.2 K

Water-rich phase Solvent-rich phase

x1
I x2

I x3
I x1

II x2
II x3

II

0.9800 0.0084 0.0116 0.2279 0.0473 0.7249

0.9700 0.0158 0.0142 0.2656 0.0579 0.6764

0.9600 0.0228 0.0172 0.2995 0.0751 0.6254

0.9500 0.0298 0.0202 0.3298 0.0800 0.5902

0.9400 0.0366 0.0234 0.3583 0.0890 0.5527

0.9300 0.0431 0.0269 0.3850 0.0971 0.5179

0.9200 0.0494 0.0306 0.4104 0.1043 0.4853

0.9100 0.0556 0.0344 0.4347 0.1107 0.4547

0.9000 0.0613 0.0387 0.4845 0.1204 0.3950

0.8900 0.0671 0.0429 0.4845 0.1218 0.3937

0.8800 0.0725 0.0475 0.4941 0.1237 0.3822

0.8700 0.0777 0.0523 0.5153 0.1271 0.3576

0.8600 0.0827 0.0573 0.5346 0.1297 0.3357

0.8500 0.0873 0.0627 0.5527 0.1317 0.3156

0.8400 0.0918 0.0682 0.5700 0.1331 0.2969

0.8300 0.0960 0.0740 0.5864 0.1341 0.2794

0.8200 0.0999 0.0801 0.6022 0.1347 0.2631

0.8100 0.1036 0.0864 0.6172 0.1350 0.2478

0.8000 0.1071 0.0929 0.6316 0.1348 0.2336

0.7900 0.1103 0.0997 0.6453 0.1345 0.2202

0.7800 0.1134 0.1066 0.6584 0.1338 0.2077

0.7700 0.1161 0.1139 0.6709 0.1329 0.1962

0.7600 0.1187 0.1213 0.6829 0.1318 0.1852

Table 5 Experimental and model tie-line data for water (1) ? carboxylic acid (2) ? dimethyl maleate (3) at T = 298.2 K

Water-rich phase Solvent-rich phase

x1 x2 x3 x1 x2 x3

Exp. Model Exp. Model Exp. Model Exp. Model Exp. Model Exp. Model

Water (1) ? butyric acid (2) ? dimethyl maleate (3) RMSD = 9.28 9 10-5

0.9760 0.9760 0.0153 0.0153 0.0087 0.0087 0.1366 0.1366 0.0279 0.0279 0.8355 0.8355

0.9571 0.9571 0.0341 0.0341 0.0088 0.0088 0.1969 0.1969 0.0482 0.0482 0.7549 0.7549

0.9370 0.9370 0.0532 0.0532 0.0098 0.0098 0.2391 0.2391 0.0632 0.0632 0.6977 0.6977

0.8987 0.8987 0.0873 0.0873 0.0140 0.0140 0.2940 0.2940 0.0839 0.0839 0.6221 0.6221

0.8575 0.8575 0.1201 0.1201 0.0224 0.0224 0.3425 0.3425 0.1032 0.1032 0.5543 0.5543

0.8132 0.8132 0.1504 0.1505 0.0364 0.0363 0.3978 0.3981 0.1265 0.1267 0.4757 0.4753

Water (1) ? acetic acid (2) ? dimethyl maleate (3) RMSD = 4.56 9 10-5

0.9783 0.9783 0.0104 0.0104 0.0113 0.0113 0.1501 0.1501 0.0433 0.0433 0.8066 0.8066

0.9585 0.9585 0.0265 0.0265 0.0150 0.0150 0.2621 0.2621 0.0855 0.0855 0.6524 0.6524

0.9357 0.9356 0.0432 0.0432 0.0212 0.0212 0.3987 0.3988 0.1157 0.1157 0.4856 0.4855

0.9048 0.9049 0.0620 0.0620 0.0331 0.0331 0.5849 0.5850 0.1246 0.1246 0.2904 0.2904

Water (1) ? propionic acid (2) ? dimethyl maleate (3) RMSD = 3.3 9 10-3

0.9758 0.9758 0.0115 0.0115 0.0127 0.0127 0.2443 0.2443 0.0518 0.0518 0.7039 0.7038

0.9584 0.9584 0.0240 0.0238 0.0176 0.0178 0.3042 0.3068 0.0723 0.0836 0.6234 0.6096

0.9314 0.9314 0.0422 0.0422 0.0264 0.0264 0.3814 0.3813 0.0960 0.0960 0.5227 0.5226

0.8975 0.8975 0.0628 0.0628 0.0397 0.0397 0.4829 0.4836 0.1206 0.1207 0.3965 0.3956
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Table 5 for experimental and corresponding calculated

data. RMSD values are found varying between

4.56 9 10-5 and 3.3 9 10-3. The correlated results and

solubility curve data were plotted in Figs. 4, 5, 6, and 7

along with the experimental values.

7 Conclusion

In this paper, a new method for correlation of ternary LLE

data is presented. The method is implemented by using a

combined structure that uses genetic algorithm (GA)–

trained neural network (NN). The LLE data were correlated

using the NN-based activity coefficient models. The cor-

relation with the NN model gives much better results than

the NRTL and UNIQUAC equations for the studied sys-

tems [7]. It is apparent from the figures that the solubility

curve and tie-line data agree well with the calculated data

obtained from the proposed method. In this study water ?

Table 5 continued

Water-rich phase Solvent-rich phase

x1 x2 x3 x1 x2 x3

Exp. Model Exp. Model Exp. Model Exp. Model Exp. Model Exp. Model

0.8492 0.8492 0.0877 0.0877 0.0631 0.0631 0.5542 0.5541 0.1318 0.1318 0.3140 0.3141

Water (1) ? formic acid (2) ? dimethyl maleate (3) RMSD = 1.14 9 10-4

0.9707 0.9707 0.0175 0.0175 0.0118 0.0118 0.2157 0.2157 0.0601 0.0601 0.7243 0.7242

0.9519 0.9519 0.0332 0.0332 0.0149 0.0149 0.2975 0.2973 0.0867 0.0867 0.6158 0.6160

0.9165 0.9165 0.0599 0.0599 0.0236 0.0236 0.4587 0.4587 0.1208 0.1208 0.4205 0.4205

0.8830 0.8830 0.0808 0.0810 0.0362 0.0360 0.5683 0.5681 0.1325 0.1328 0.2992 0.2991
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Fig. 4 Experimental and calculated LLE data for water–formic acid–

dimethyl maleate ternary system
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Fig. 5 Experimental and calculated LLE data for water–acetic acid–

dimethyl maleate ternary system
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Fig. 6 Experimental and calculated LLE data for water–propionic

acid–dimethyl maleate ternary system
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carboxylic acid ? dimethyl maleate systems were evalu-

ated, and of course, more systems will be processed in the

studies of future. As shown in this work this method has

potential to obtain tie-line and solubility curve data of LLE

by using quite fewer experimental data.
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dimethyl maleate ternary system
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