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Abstract. In this paper, the inverse problem of finding a coefficient in a second
order elliptic equation is investigated. The conditions for the existence and uniqueness
of the classical solution of the problem under consideration are established. Numerical
tests using the finite-difference scheme combined with an iteration method is presented
and the sensitivity of this scheme with respect to noisy overdetermination data is
illustrated.
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1 Introduction

Consider the equation

utt(x, t) + uxx(x, t) = a(t)u(x, t) + f(x, t) (1.1)

in the interior the domain DT = {(x, t) : 0 ≤ x ≤ 1: 0 ≤ t ≤ T} with the
boundary conditions:

u(x, 0) = ϕ(x), ut(x, T ) = ψ(x), 0 ≤ x ≤ 1, (1.2)

u(0, t) = u(1, t), ux(1, t) = 0, 0 ≤ t ≤ T (1.3)

and the overdertermination condition∫ 1

0

u(x, t) dx = h(t), 0 ≤ t ≤ T, (1.4)

where f(x, t), ϕ(x), ψ(x) and h(t) are the given functions, u(x, t) and a(t) are
the unknown functions.
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Definition 1. We call the pair {u(x, t), a(t)} the classical solution of inverse
boundary value problem (1.1)–(1.4), if the following conditions are satisfied:

1) The function u(x, t) is continuous in DT together with all its derivatives
contained in the equation (1.1);

2) the function a(t) is continuous on [0,T];

3) problem (1.1)–(1.4) is satisfied in the ordinary sense.

The problem of identifying a coefficient in an elliptic equation is an inter-
esting problem for many scientists. For surveys on the subject, we refer the
reader to [5, 7, 11,18] and the references therein.

Nonlocal problems are widely for mathematical modeling of various process
of physics, chemistry, ecology and industry. For example in [2], the authors con-
sidered a nonlocal elliptic problem appearing in the theory of plasma. Nonclas-
sical boundary and initial-boundary value problems with integral and discrete
nonlocal boundary conditions were studied for various equations.(see [2,13,15]
and reference there in)

Various inverse problems for partial differential equations with nonlocal
boundary conditions were studied in [9, 15]

In [18], the elliptic problem for the equation

−∆u = c(x)u+ f(x)h(x, y) + g(x, y)

in the rectangle is considered. Two inverse problems of finding the coefficient
c(x) and the right-hand side f(x) from local boundary conditions are investi-
gated in that paper. Existence and uniqueness conditions are derived for the
inverse problems. The study is performed in the class of continuously differen-
tiable functions whose derivatives satisfy a Hölder condition.

In [7], the authors investigate the convergence rates for total variation reg-
ularization of the problem of identifying (i) the coefficient q in the Neumann
problem for the elliptic equation −div(q∇u) = f , and (ii) the coefficient a in
the Neumann problem for the elliptic equation -∆u+ au = f . They regularize
these problems by correspondingly minimizing the convex functionals.

In [15], the inverse coefficient problem of the equation

uxx + sign(y)uyy − b2u = f(x)

with nonlocal boundary condition is considered. Some necessary and sufficient
conditions for the uniqueness of solution of the inverse problem are found.

In [11], for the elliptic equation

−∇(p(x)∇v) + λq(x)v = f, x ∈ Ω ⊂ Rn,

the problem of determining when one or more of the coefficient functions p,
q, and f are defined uniquely by a knowledge of one or more of the solution
functions v = vp,q,f,λ is considered.

In the present paper, inverse coefficient problem for elliptic equation is con-
sidered. This problem has nonlocal boundary and integral overdetermination
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condition. It should be pointed out that papers, when nonlocal inverse elliptic
problems are considered mainly deal with local additional condition. Here in
this paper the problem has integral overdetermination condition.

The paper is organized as follows: In Section 2, the existence and uniqueness
of the solution of inverse problem (1.1)–(1.4) is proved by using the Fourier
method. In Section 3, the numerical procedure for the solution of the inverse
problem using the finite-difference scheme combined with an iteration method is
given. Finally, in Section 4, numerical experiments are presented and discussed.

2 Existence and Uniqueness of the Solution of the Inverse
Problem

For investigating problem (1.1)–(1.4), firstly we consider the following problem:

y′′(t) = a(t)y(t), 0 ≤ t ≤ T, (2.1)

y(0) = 0, y′(T ) = 0, (2.2)

where a(t) ∈ C[0, T ] is the given function, y = y(t) is the unknown function,
and if y(t) is the solution of problem (2.1)–(2.2) then y(t) is continuous on
[0, T ] together with all its derivatives contained in equation (2.1) and satisfying
conditions (2.1)–(2.2) in the ordinary sense.

The following lemma is proved.

Lemma 1. Let
∥∥a(t)

∥∥
C[0,T ]

≤ R and

1

2
T 2R < 1, (2.3)

where R is a constant. Then problem (2.1)–(2.2) has only a trivial solution.

Proof. It is easy to see that the homogeneous problem associated to (2.1) has
only a trivial solution. Then it is known [12] that the homogeneous problem
has one Green’s function and boundary value problem (2.1)–(2.2) is equivalent
to the integral equation

y(t) =

∫ T

0

G(t, τ)a(τ)y(τ) dτ, 0 ≤ t ≤ T, (2.4)

where

G(t, τ) =

{
−t, t ∈ [0, τ ],

−τ, t ∈ [τ, T ].

Having denoted Ay(t) =
∫ T
0
G(t, τ)a(τ)y(τ) dτ , we write (2.4) in the form

y(t) = Ay(t) (2.5)

and A : C [0, T ]→ C [0, T ].

Math. Model. Anal., 19(2):241–256, 2014.
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It is easy to see that the operator A is continuous in the space C[0, T ].
Let us show that A is a contraction mapping in C [0, T ]. Indeed, for any y(t),
y(t) ∈ C[0, T ] we have:

∥∥A(y(t)
)
−A

(
y(t)

)∥∥
C[0,T ]

≤ 1

2

∥∥a(t)
∥∥
C[0,T ]

T 2
∥∥y(t)− y(t)

∥∥
C[0,T ]

. (2.6)

Then, using (2.3) in (2.6) we obtain A is a contraction mapping in C[0, T ].
Therefore, equation (2.5) has a unique solution y(t) ∈ C [0, T ], by Banach
fixed point theorem. Thus, integral equation (2.4) has a unique solution in
C[0, T ] and consequently, boundary value problem (2.1)–(2.2) also has a unique
solution in C[0, T ]. Since y(t) = 0 is the solution of boundary value problem
(2.1)–(2.2), then it has only trivial solution. ut

Consider the following equation:

h′′(t)− ux(0, t) = a(t)h(t) +

∫ 1

0

f(x, t) dx, 0 ≤ t ≤ T. (2.7)

The following lemma is valid.

Lemma 2. Let ϕ(x), ψ(x) ∈ C[0, 1], h(t) ∈ C2[0, T ], h(t) 6= 0 for t ∈ [0, T ],
f(x, t) ∈ C (DT ) and the consistency conditions∫ 1

0

ϕ(x) dx = h(0),

∫ 1

0

ψ(x) dx = h′(T ) (2.8)

be satisfied. Then the following statements are valid :

1. Each classical solution {u(x, t), a(t)} of problem (1.1)–(1.4) is the solution
of problem (1.1)–(1.3), (2.7) as well ;

2. each solution {u(x, t), a(t)} of problem (1.1)–(1.3), (2.7) is a classical
solution of the problem (1.1)–(1.4), if

1

2
T 2
∥∥a(t)

∥∥
C[0,T ]

< 1. (2.9)

Proof. Let {u(x, t), a(t)} be a solution of problem (1.1)–(1.4). It is seen from
(1.4) that∫ 1

0

ut(x, t) dx = h′(t),

∫ 1

0

utt(x, t) dx = h′′(t), 0 ≤ t ≤ T. (2.10)

Further, using (1.3) in (1.1) we have:

d2

dt2

∫ 1

0

u(x, t) dx−ux(0, t)=a(t)

∫ 1

0

u(x, t) dx+

∫ 1

0

f(x, t) dx, 0 ≤ t ≤ T. (2.11)

Hence, from (1.4) and (2.10), (2.7) is obtained.
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Now, suppose that {u(x, t), a(t)} is a solution of problem (1.1)–(1.3), (2.7)
and (2.9) is satisfied. Then, from (2.7) and (2.11) we get:

d2

dt2

(∫ 1

0

u(x, t) dx− h(t)
)

= a(t)
(∫ 1

0

u(x, t) dx− h(t)
)
, 0 ≤ t ≤ T. (2.12)

From (1.2) and (2.8) we have:
∫ 1

0

u(x, 0) dx− h(0) =

∫ 1

0

ϕ(x) dx− h(0) = 0,∫ 1

0

ut(x, T ) dx− h′(T ) =

∫ 1

0

ψ(x) dx− h′(T ) = 0.

(2.13)

From (2.12), (2.13) and Lemma 1 the condition (1.4) is obtained.2 ut

It is known that the sequences of the functions

X0(x) = 2, X2k−1(x) = 4 cosλkx, X2k(x) = 4(1− x) sinλkx, (2.14)

Y0(x) = x, Y2k−1(x) = x cosλkx, Y2k(x) = sinλkx, k = 1, 2, . . .

form in L2(0, 1) a biorthogonal system [6], and system (2.14) forms a basis in
L2(0, 1), where λk = 2πk (k = 1, 2, . . .) [8]. They are also Riesz bases in L2(0, 1)
(see [9]). Then any function g(x) ∈ L2(0, 1) is expanded in biorthogonal series

g(x) =

∞∑
k=0

gkXk(x),

where gk =
(
g(x), Yk(x)

)
, k = 0, 1, . . ., here ( , ) is the scalar product in L2(0, 1).

The estimates
1

2

∥∥g(x)
∥∥2
L2(0,1)

≤
∞∑
k=0

g2k ≤
∥∥g(x)

∥∥2
L2(0,1)

are valid for any function g(x) in L2(0, 1) [6, 8].
Under the suppositions g(x) ∈ C2i−1 [0, 1], g(2i)(x) ∈ L2(0, 1) and

g(2s)(0) = g(2s)(1), g(2s+1)(1) = 0 (s = 0, i− 1; i ≥ 1) the estimations are
valid:

∞∑
k=1

(
λ2ik g2k

)2 ≤ 1

2

∥∥g(2i)(x)
∥∥2
L2(0,1)

, (2.15)

∞∑
k=1

(
λ2ik g2k−1

)2 ≤ 1

2

∥∥g(2i)(x)x+ 2ig(2i−1)(x)
∥∥2
L2(0,1)

,

where

∞∑
k=1

(
λ2ik g2k

)2
=

∞∑
k=1

(
λ2ik

∫ 1

0

g(x)Yk(x) dx
)2

=

∞∑
k=1

(
λ2ik

∫ 1

0

g(x) sinλkx dx
)2
,

if we use integration by parts (2i) times and we use Cauchy inequalities we
obtain (2.15). Similarly the other estimation is obtained.

Math. Model. Anal., 19(2):241–256, 2014.
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Under the suppositions g(x) ∈ C [0, 1] and g′(x) ∈ L2(0, 1) the estimations
are valid:

∞∑
k=1

(λkg2k)
2 ≤ 1

2

∥∥g′(x)
∥∥2
L2(0,1)

,

∞∑
k=1

(λkg2k−1)
2 ≤ 1

2

∥∥g′(x)x+ g(x)
∥∥2
L2(0,1)

.

(2.16)

Under the suppositions g(x) ∈ C2i [0, 1], g(2i+1)(x) ∈ L2(0, 1), g(2s)(0) =
g(2s)(1), g(2s+1)(1) = 0 (i ≥ 1; s = 0, i) the estimations are valid:

∞∑
k=1

(
λ2i+1
k g2k

)2 ≤ 1

2

∥∥g(2i+1)(x)
∥∥2
L2(0,1)

, (2.17)

∞∑
k=1

(
λ2i+1
k g2k−1

)2 ≤ 1

2

∥∥g(2i+1)(x)x+ (2i+ 1) g(2i)(x)
∥∥2
L2(0,1)

. (2.18)

For investigating problem (1.1)–(1.3), (2.7), consider the following spaces:
The space B2

3,T [10] can be described as consisting of all functions u(x, t) of the
form

u(x, t) =

∞∑
k=1

uk(t)Xk(x)

considered on DT , with the norm
∥∥u(x, t)

∥∥
B2

3,T

= JT (u), where

JT (u) ≡
∥∥uo(t)∥∥C[0,T ]

+

( ∞∑
k=1

(
λ3k
∥∥u2k−1(t)

∥∥
C[0,T ]

)2)1/2

+

( ∞∑
k=1

(
λ3k
∥∥u2k(t)

∥∥
C[0,T ]

)2)1/2

.

The space E3
T can be described as consisting of vector functions {u(x, t), a(t)}

such that u(x, t) ∈ B2
3,T , a(t) ∈ C [0, T ] with the norm

‖z‖E3
T

=
∥∥u(x, t)

∥∥
B2

3,T

+
∥∥a(t)

∥∥
C[0,T ]

.

It is obvious that E3
T and B2

3,T are Banach spaces. The solution of the problem
(1.1)–(1.3) can be written in the form:

u(x, t) =

∞∑
k=1

uk(t)Xk(x), (2.19)

where uk(t) =
∫ 1

0
u(x, t)Yk(x) dx is a solution of the following system:

u′′0(t) = F0(t;u, a), 0 ≤ t ≤ T, (2.20)

u′′2k(t)− λ2ku2k(t) = F2k(t;u, a), 0 ≤ t ≤ T ; k = 1, 2, . . . ,

u′′2k−1(t)− λ2ku2k−1(t)=F2k−1(t;u, a) + 2λku2k(t), 0 ≤ t ≤ T ; k = 1, 2, . . . ,

uk(0) = ϕk, u
′
k(T ) = ψk, k = 0, 1, . . . ,
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where

Fk(t;u, a) = a(t)uk(t) + fk(t), fk(t) =

∫ 1

0

f(x, t)Yk(x) dx,

ϕk =

∫ 1

0

ϕ(x)Yk(x) dx, ψk =

∫ 1

0

ψ(x)Yk(x) dx, k = 0, 1, . . . .

Solving the problem (2.20) we find:

u0(t) = ϕ0 + ψ0t+

∫ T

0

G0(t, τ)F0(τ ;u, a) dτ, (2.21)

u2k(t) =
cosh(λk(T − t))

cosh(λkT )
ϕ2k +

sinh(λkt)

λk cosh(λkT )
ψ2k +

∫ T

0

Gk(t, τ)F2k(τ ;u, a) dτ,

u2k−1(t) =
cosh(λk(T − t))

cosh(λkT )
ϕ2k−1 +

sinh(λkt)

λk cosh(λkT )
ψ2k−1

+

∫ T

0

Gk(t, τ)F2k−1(τ ;u, a) dτ +
1

cosh2(λkT )

×
{[
T sh(λkt) + t ch(λkT ) sh

(
λk(T − t)

)]
ϕ2k +

[
−T sinh(λkT ) sinh(λkt)

+ t cosh(λkT ) cosh(λkt)−
1

λk
cosh(λkT ) sinh(λkt)

] 1

λk
ψ2k

}
+

∫ T

0

Gk(t, τ)
(∫ T

0

Gk(t, ξ)F2k(ξ;u, a) dξ
)
dτ,

where

G0(t, τ) =

{
−t, t ∈ [0, τ ] ,

−τ, t ∈ [τ, T ] ,
Gk(t, τ) =

{
g1k(t, τ), t ∈ [0, τ ] ,

g2k(t, τ), t ∈ [τ, T ] ,

g1k(t, τ) =
−1

2λk cosh(λkT )
[sinh(λk(T + t− τ))− sinh(λk(T − (t+ τ)))] ,

g2k(t, τ) =
1

2λk cosh(λkT )
[sinh(λk(T − (t+ τ)))− sinh(λk(T − (t− τ)))] .

After substituting (2.21) into (2.19), we get:

u(x, t) =
(
ϕ0 + ψ0t+

∫ T

0

G0(t, τ)F0(τ ;u, a) dτ
)
X0(x)

+

∞∑
k=1

{cosh(λk(T − t))
cosh(λkT )

ϕ2k +
sinh(λkt)

λk cosh(λkT )
ψ2k

+

∫ T

0

Gk(t, τ)F2k(τ ;u, a) dτ
}
X2k(x)

+

∞∑
k=1

{cosh(λk(T − t))
cosh(λkT )

ϕ2k−1 +
sinh(λkt)

λk cosh(λkT )
ψ2k−1

Math. Model. Anal., 19(2):241–256, 2014.
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+

∫ T

0

Gk(t, τ)F2k−1(τ ;u, a) dτ

+
1

cosh2(λkT )

{[
T sinh(λkt) + t cosh(λkT ) sinh

(
λk(T − t)

)]
ϕ2k

+
[
−T sinh(λkT ) sinh(λkt) + t cosh(λkT ) cosh(λkt)

− 1

λk
cosh(λkT ) sinh(λkt)

] 1

λk
ψ2k

}
+

∫ T

0

Gk(t, τ)
(∫ T

0

Gk(t, ξ)F2k(ξ;u, a) dξ
)
dτ
}
X2k−1(x). (2.22)

From (2.7), (2.19) and (2.21) we obtain:

a(t) = h−1(t)
{
h′′(t)−

∫ 1

0

f(x, t) dx− 4

∞∑
k=1

λk

[cosh(λk(T − t))
cosh(λkT )

ϕ2k

+
sinh(λkt)

λk cosh(λkT )
ψ2k +

∫ T

0

Gk(t, τ)F2k(τ ;u, a) dτ
]}
. (2.23)

Thus the solution of problem (1.1)–(1.3), (2.7) is reduced to the solution of
system (2.22), (2.23).

Using the definition of the solution of the problem (1.1)–(1.3), (2.7), similar
to [16] we prove the following lemma.

Lemma 3. If {u(x, t), a(t)} is any solution of problem (1.1)–(1.3), (2.7), then
the functions

uk(t) =

∫ 1

0

u(x, t)Yk(x) dx, k = 0, 1, . . .

satisfy system (2.21) on [0, T ].

Now, in the space E3
T consider the operator Φ(u, a) =

{
Φ1(u, a), Φ2(u, a)

}
,

where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=1

ũk(t)Xk(x), Φ2(u, a) = ã(t)

and ũ0(t), ũ2k(t), ũ2k−1(t), k = 1, 2, . . ., and ã(t) are equal to the right hand
sides of (2.21) and (2.23), respectively. It is easy to see that

sinh(λkt)

cosh(λkT )
≤ 1, 0 ≤ t ≤ T, cosh(λkt)

cosh(λkT )
≤ 2, 0 ≤ t ≤ T,

sinh(λk (T − t))
coshλkT )

≤ 2, 0 ≤ t ≤ T, sinh(λk (T + t− τ))

cosh(λkT )
≤ 1, 0 ≤ t ≤ τ ≤ T,

sinh(λk (T − (t+ τ)))

cosh(λkT )
≤ 1, 0 ≤ t ≤ τ ≤ T,

sinh(λk (T − (t+ τ)))

cosh(λkT )
≤ 1,

sinh(λk (T − (t− τ)))

cosh(λkT )
≤ 1, 0 ≤ τ ≤ t ≤ T.
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Taking into account these relations, with the help of simple transformations
we find:∥∥ũ0(t)

∥∥
C[0,T ]

≤ |ϕ0|+ T |ψ0|+ 2T
√
T
(∫ T

0

∣∣fo(τ)
∣∣2 dτ)1/2

+ 2T 2
∥∥a(t)

∥∥
C[0,T ]

∥∥u0(t)
∥∥
C[0,T ]

, (2.24)

( ∞∑
k=1

(
λ3k
∥∥ũ2k(t)

∥∥
C[0,T ]

)2)1/2 ≤ 4
( ∞∑
k=1

(
λ3k |ϕ2k|

)2)1/2
+ 2
( ∞∑
k=1

(
λ2k |ψ2k|

)2)1/2

+ 2
√
T
(∫ T

0

∞∑
k=1

(
λ2k
∣∣f2k(τ)

∣∣)2 dτ)1/2
+ 2T

∥∥a(t)
∥∥
C[0,T ]

( ∞∑
k=1

(
λ2k
∥∥u2k(t)

∥∥
C[0,T ]

)2)1/2
, (2.25)

( ∞∑
k=1

(
λ3k
∥∥ũ2k−1(t)

∥∥
C[0,T ]

)2)1/2 ≤ 4
√

2
( ∞∑
k=1

(
λ3k |ϕ2k−1|

)2)1/2
+ 2
√

2
( ∞∑
k=1

(
λ2k |ψ2k−1|

)2)1/2
+ 2
√

2T
(∫ T

0

∞∑
k=1

(
λ2k
∣∣f2k−1(τ)

∣∣)2 dτ)1/2
+ 2
√

2T
∥∥a(t)

∥∥
C[0,T ]

( ∞∑
k=1

(
λ2k
∥∥u2k−1(t)

∥∥
C[0,T ]

)2)1/2
+ 4T

( ∞∑
k=1

(
λ3k |ϕ2k|

)2)1/2

+ 2
√

2 (1 + 3T )
( ∞∑
k=1

(
λ2k |ψ2k|

)2)1/2
+ 4
√

2T
√
T

(∫ T

0

∞∑
k=1

(
λk
∣∣f2k(τ)

∣∣)2 dτ)1/2
+ 4
√

2T 2
∥∥a(t)

∥∥
C[0,T ]

( ∞∑
k=1

(
λk
∥∥u2k(t)

∥∥
C[0,T ]

)2)1/2
, (2.26)

∥∥ã(t)
∥∥
C[0,T ]

≤
∥∥h−1(t)

∥∥
C[0,T ]

{∥∥∥h′′(t)− ∫ 1

0

f(x, t) dx
∥∥∥
C[0,T ]

+
4√
6

( ∞∑
k=1

(
λ2k |ϕ2k|

)2)1/2
+

2√
6

( ∞∑
k=1

(
λk |ψ2k|

)2)1/2
+

2√
6

√
T
(∫ T

0

∞∑
k=1

(
λk
∣∣f2k(τ)

∣∣)2 dτ)1/2
+

2√
6
T
∥∥a(t)

∥∥
C[0,T ]

( ∞∑
k=1

(
λk
∥∥u2k(t)

∥∥
C[0,T ]

)2)}
. (2.27)

Suppose that the data of problem (1.1)–(1.3), (2.7) satisfy the following
conditions:
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(C1) ϕ(x) ∈ C2[0, 1], ϕ′′′(x) ∈ L2(0, 1), ϕ(0) = ϕ(1), ϕ′(1) = 0, ϕ′′(0) = ϕ′′(1);

(C2) ψ(x) ∈ C1[0, 1], ψ′′(x) ∈ L2(0, 1), ψ(0) = ψ(1), ψ′(1) = 0;

(C3) f(x, t), fx(x, t) ∈ C(DT ); fxx(x, t) ∈ L2(DT ), f(0, t)=f(1, t), fx(1, t)=0,
0 ≤ t ≤ T ;

(C4) h(t) ∈ C2[0, T ], h(t) 6= 0, ∀t ∈ [0, T ].

Then, considering (2.15)–(2.18) in (2.24)–(2.27) we get:∥∥ũ(x, t)
∥∥
B2

3,T

≤ A1(T ) +B1(T )
∥∥a(t)

∥∥
C[0,T ]

∥∥u(x, t)
∥∥
B2

3,T

, (2.28)∥∥ã(t)
∥∥
C[0,T ]

≤ A2(T ) +B2(T )
∥∥a(t)

∥∥
C[0,T ]

∥∥u(x, t)
∥∥
B3

2,T

, (2.29)

where

A1(T ) =
∥∥ϕ(x)x

∥∥
L2(0,1)

+ T
∥∥ψ(x)x

∥∥
L2(0,1)

+ 2T
√
T
∥∥f(x, t)

∥∥
L2(DT )

+ 2
√

2(1 + T )
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+
√

2(1 +
√

2 + 3
√

2T )
∥∥ψ′′(x)

∥∥
L2(0,1)

+
√

2T (1 + 2
√

2T )
∥∥fxx(x, t)

∥∥
L2(DT )

+ 4
∥∥ϕ′′′(x)x+ 3ϕ′′(x)

∥∥
L2(0,1)

+ 2
∥∥ψ′′(x)x+ 2ψ′(x)

∥∥
L2(0,1)

+ 2
√
T
∥∥fxx(x, t)x+ 2fx(x, t)

∥∥
L2(DT )

,

B1(T ) = 2(1 +
√

2)T + 2(1 + 2
√

2)T 2,

A2(T ) =
∥∥h−1(t)

∥∥
C[0,T ]

{∥∥∥h′′(t)− ∫ 1

0

f(x, t) dx
∥∥∥
C[0,T ]

+
2
√

3

3

∥∥ϕ′′(x)
∥∥
L2(0,1)

+

√
3

3

∥∥ψ′(x)
∥∥
L2(0,1)

+

√
3T

3

∥∥fx(x, t)
∥∥
L2(DT )

}
,

B2(T ) =

√
3

3
T
∥∥h−1(t)

∥∥
C[0,T ]

.

From inequalities (2.28), (2.29) we deduce:∥∥ũ(x, t)
∥∥
B3

2,T

+
∥∥ã(t)

∥∥
C[0,T ]

≤ A(T ) +B(T )
∥∥a(t)

∥∥
C[0,T ]

∥∥u(x, t)
∥∥
B2

3,T

, (2.30)

where A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ).
So, we can prove the following theorem:

Theorem 1. Let conditions (C1)–(C4) be satisfied, and(
A(T ) + 2

)2
B(T ) < 1. (2.31)

Then problem (1.1)–(1.3), (2.7) has a unique solution in the sphere K =
KR(‖z‖E3

T
≤ R = A(T ) + 2) of the space E3

T .

Proof. In the space E3
T consider the equation

z = Φz, (2.32)
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where z = {u, a}, the components Φi(u, a) (i = 1, 2) of the operator Φ(u, a) are
determined by the right hand sides of equations (2.22) and (2.23).

Consider the operator Φ(u, a) in the sphere K = KR from E3
T . Similar

to (2.30), we get that for any z, z1, z2 ∈ KR the following estimations are
valid:

‖Φz‖E3
T
≤ A(T ) +B(T )

∥∥a(t)
∥∥
C[0,T ]

∥∥u(x, t)
∥∥
B3

2,T

, (2.33)

‖Φz1 − Φz2‖E3
T
≤ B(T )R

(∥∥a1(t)− a2(t)
∥∥
C[0,T ]

+
∥∥u1(x, t)− u2(x, t)

∥∥
B2

3,T

)
.

Then, using (2.31), it follows from estimations (2.33) that the operator Φ acts
in the sphere K = KR and it is a contraction mapping. Therefore, in the sphere
K = KR, the operator Φ has a unique fixed point {u, a} that is a solution of
equation (2.32).

The function u(x, t), as the element of the spaceB2
3,T , has continuous deriva-

tives u(x, t), ux(x, t) and uxx(x, t) in DT . Now, from (2.20) we get:∥∥u′′0(t)
∥∥
C[0,T ]

≤
∥∥a(t)

∥∥
C[0,T ]

∥∥u0(t)
∥∥
C[0,T ]

+
∥∥∥∥f(x, t)

∥∥
C[0,T ]

∥∥
L2(0,1)

,( ∞∑
k=1

(
λk
∥∥u′′2k(t)

∥∥
C(0,T )

)2)1/2

≤
√

2

( ∞∑
k=1

(
λ3k
∥∥u2k(t)

∥∥
C(0,T )

)2)1/2

+
∥∥∥∥a(t)ux(x, t) + fx(x, t)

∥∥
C[0,T ]

∥∥
L2(0,1)

,( ∞∑
k=1

(
λk
∥∥u′′2k−1(t)

∥∥
C(0,T )

)2)1/2

≤
√

3

( ∞∑
k=1

(
λ3k
∥∥u2k−1(t)

∥∥
C(0,T )

)2)1/2

+
√

6
∥∥uxx(x, t)

∥∥
C(DT )

+

√
3

2

∥∥∥∥a(t)
(
ux(x, t)x+ u(x, t)

)
+ fx(x, t)x+ f(x, t)

∥∥
C[0,T ]

∥∥
L2(0,1)

.

Hence it follows that utt(x, t) is continuous in DT .
It is easy to verify that equation (1.1) and conditions (1.2), (1.3) and (2.7)

are satisfied in the ordinary sense. Consequently, {u(x, t), a(t)} is a solution of
problem (1.1)–(1.3), (2.7), and by Lemma 3 it is unique. ut

The following theorem is proved by means of Lemma 2.

Theorem 2. Let all the conditions of Theorem 1,

1

2

(
A(T ) + 2

)
T 2 < 1

and consistency conditions∫ 1

0

ϕ(x) dx = h(0),

∫ 1

0

ψ(x) dx = h′(T ).

be satisfied. Then in the sphere K = KR(‖z‖E3
T
≤ A(T ) + 2) of the space E3

T ,

problem (1.1)–(1.4) has a unique classical solution.
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Remark 1. The condition (2.32) in Theorem 1 implies that the mapping P act-
ing in the sphere KR is contraction mapping, this condition is sufficient for
applying Banach fixed point theorem, Therefore, the unique solvability of prob-
lem (1.1)–(1.3), (2.7) is obtained . This problem is equivalent to the original
problem (1.1)–(1.4) under similar condition in Theorem 2. To check these
conditions is not easy but they are satisfied for small T .

Remark 2. The existence and uniqueness of the solution of inverse problem
(1.1)–(1.3) are obtained in a sphere KR under some sufficient conditions. These
conditions are also satisfied for small T . Such a condition is popular in the
theory of inverse BVP (see [3, 4, 9, 14]). The investigation method in [3, 4]
allows them to continue local solution to global solution.

3 Numerical Procedure

We use the finite difference method with an iteration to problem (1.1)–(1.4) [17].
We subdivide the intervals [0, 1] and [0, T ] into subintervals M and N of

equal lengths h = 1
M and τ = T

N , respectively.
The finite difference scheme for (1.1)–(1.4) is as follows:

uj+1
i − 2uji + uj−1i

τ2
+
uji+1 − 2uji + uji−1

h2
= ajuji + f ji , (3.1)

u0i = φi, uNi = τΨi + uN−1i , (3.2)

uj0 = ujM , ujM−1 = ujM+1, (3.3)

where 1 ≤ i ≤M and 0 ≤ j ≤ N are the indices for the spatial and time steps
respectively, uji = u(xi, tj), a

j
i = a(tj), φi = ϕ(xi), Ψi = ψ(xi), f

j
i = f(xi, tj),

xi = ih, tj = jτ .
From (3.1) we can write

uji =
1

2(h2 + τ2) + h2τ2aj
(
h2
(
uj+1
i +uj−1i

)
+τ2

(
uji+1+uji−1

)
−h2τ2f ji

)
. (3.4)

Now let us construct the iteration. First, integrating the equation (1.1)
with respect to x from 0 to 1 and using (1.3) and (1.4), we obtain

a(t) =
h′′(t)− ux(0, t)−

∫ 1

0
f(x, t) dx

h(t)
.

The finite difference approximation of this equation

aj =
[(hj+1 − 2hj + hj−1)/τ2]− [(uj1 − u

j
0)/h]− (fin)j

hj
,

where hj = h(tj), (fin)j =
∫ 1

0
f(x, tj) dx, j = 0, 1, . . . , N .

We denote the values of aj , uji at the s-th iteration step aj(s), u
j(s)
i , re-

spectively. In numerical computation, since the time step is very small, we can



An Inverse Problem for an Elliptic Equation 253

take aj+1(0) = rj , u
j+1(0)
i = uji , j = 0, 1, 2, . . . , N , i = 1, 2, . . . ,M . At each

(s+ 1)-th iteration step we first determine aj+1(s+1) from the formula

aj+1(s+1) =
[(hj+2 − 2hj+1 + hj)/τ2]− [(u

j+1(s)
1 − uj+1(s)

0 )/h]− (fin)j+1

hj+1
.

Then from (3.4) we determine

u
j+1(s+1)
i =

(h2(u
j+2(s)
i + u

j(s)
i ) + τ2(u

j+1(s)
i+1 + u

j+1(s)
i−1 )− h2τ2f ji )

2(h2 + τ2) + h2τ2aj+1(s+1)
.

If the difference of values between two iterations reaches the prescribed
tolerance, the iteration is stopped and we accept the corresponding values

aj+1(s+1), u
j+1(s+1)
i (i = 1, 2, . . . ,M) as aj+1, uj+1

i (i = 1, 2, . . . ,M , j =
0, 2, . . . , N − 1), respectively.

4 Numerical Examples and Discussions

In this section, we present two examples to illustrate the efficiency of the nu-
merical method described in the previous section.

Example 1. Consider inverse problem (1.1)–(1.4), with

f(x, t) = −
(
1 + cos(2πx)

)
exp(6t)− (2π)2

(
1 + cos(2πx)

)
exp(t),

ϕ(x) = 1 + cos(2πx), ψ(x) =
(
1 + cos(2πx)

)
exp(T ),

h(t) = exp(t), x ∈ [0, 1] , t ∈ [0, T ] .

It is easy to check that the exact solution of problem (1.1)–(1.4) is{
a(t), u(x, t)

}
=
{

1 + exp (5t) ,
(
1 + cos(2πx)

)
exp(t)

}
.

Let us apply the scheme of the previous section for the step sizes h = 0.01,
τ = h. Figure 1 shows the exact and the numerical solutions of {a(t), u(x, T )},
when T = 1 and the input data (1.4) is exact.
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a) b)

Figure 1. The exact and numerical solutions for T = 1: a) a(t), b) u(x, T ).

From these figures it can be seen that the agreement between the numerical
and exact solutions for a(t) and u(x, T ) is good.

Math. Model. Anal., 19(2):241–256, 2014.



254 Y.T. Mehraliyev and F. Kanca

0 0.5 1
0

10

20

30
(b)

t

a
(t

)

0 0.5 1
0

10

20

30
(c)

t

a
(t

)

0 0.5 1
0

10

20

30
(a)

t

a
(t

)

Figure 2. The numerical solutions of a(t) (a) for 0% noisy data, (b) for 3% noisy data,
(c) for 5% noisy data.

Example 2. Consider inverse problem (1.1)–(1.4), with

f(x, t) = −(1− x) sin(2πx) exp(4t)

−
[
(2π)2(1− x) sin(2πx) + 4π cos(2πx)

]
exp(t),

ϕ(x) = (1− x) sin(2πx), ψ(x) = (1− x) sin(2πx) exp(T ),

h(t) =
1

2π
exp(t), x ∈ [0, 1] , t ∈ [0, T ] .

It is easy to check that the exact solution of problem (1.1)–(1.4) is{
a(t), u(x, t)

}
=
{

1 + exp (3t) , (1− x) sin(2πx) exp(t)
}
.

Let us apply the scheme of the previous section for the step sizes h = 0.01,
τ = h.

Next, we will illustrate the stability of the numerical solution with respect
to the noisy overdetermination data (1.4), defined by the function

hγ(t) = h(t)(1 + γθ), (4.1)

where γ is the percentage of noise and θ are random variables generated from
a uniform distribution in the interval [−1, 1]. Figures 2 and 3 show the ex-
act and the numerical solution of {a(t), u(x, t)} when the input data (1.4) is
contaminated by γ = 3% and 5% noise.

Numerical differentiation is used to compute the values of h′′(t) and ux(0, t)
in the formula a(t) It is well known that numerical differentiation is slightly
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Figure 3. The numerical solutions of u(x, T ) for T = 1, (a) for 0% noisy data, (b) for 3%
noisy data, (c) for 5% noisy data.

ill-posed and it can cause some numerical difficulties. One can apply the cubic
spline function technique [1] to get a decent accuracy. The condition number
of the system grows, if the overdetermination data h(t) fast decreases in t.
Therefore it causes some numerical difficulties.

5 Conclusion

The inverse problem of finding a coefficient in a second order elliptic equation
with nonlocal boundary and integral overdetermination conditions has been
considered. This inverse problem has been investigated from both theoretical
and numerical points of view. In the theoretical part of the article, the con-
ditions for the existence and uniqueness of the problem have been established.
In the numerical part, the sensitivity of finite-difference scheme combined with
an iteration method with respect to noisy overdetermination data has been
illustrated.
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