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A CHARACTERIZATION OF TOTALLY UMBILICAL HYPERSURFACES
OF A SPACE FORM BY GEODESIC MAPPING

E. O. Canfes and A. Ozdeger UDC 517.9

The idea of considering the second fundamental form of a hypersurface as the first fundamental form of
another hypersurface has found very useful applications in Riemannian and semi-Riemannian geometry,
especially when trying to characterize extrinsic hyperspheres and ovaloids. Recently, T. Adachi and
S. Maeda gave a characterization of totally umbilical hypersurfaces in a space form by circles. In our
paper, we give a characterization of totally umbilical hypersurfaces of a space form by means of geodesic

mapping.

1. Introduction

Let M, and M, be two hypersurfaces of a space form M, 1 [3-5] and let g, ¢’ and g be the respective
positive-definite metric tensors. By V, V', and V we denote the corresponding connections induced by g, ¢,
and g.

In the present paper, we choose the first fundamental form of M;, as

J =, (1.1)

where w is the second fundamental form of M,, which is supposed to be positive-definite and o is a differentiable
function defined on M.

Let {z'}, {2/'}, and {y“} be the respective coordinate systems in M, M}, and M, and let f be a one-
to-one differentiable mapping of M,, upon M;, defined by

o' = fiat, 2?2, i=1,2,...,n, (1.2)

where f' are smooth functions defined on M,,. Also let the corresponding Jacobian be nonvanishing. Then it is
clear that the corresponding points of M,, and M, are represented by the same set of coordinates and that the
coordinate vectors are in correspondence.

Let R, R, and R’ be the covariant curvature tensors of M, 1, M,, and M},, respectively, and let K be the
Riemannian curvature of Mn+1-

Thus, we have'

Ry .= K450, — 5.9.5)- (1.3)
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On the other hand, under the condition (1.3), the Codazzi equations

oy dy? Ay* B

N?

Viwij = Vi + Ry, 0xt OxJ Oxk

and the Gauss equation

_ 9yP oy oy OyF

Rijl = R, ;. D 97 Dk Bl (Wikwji — wiwik)
transform, respectively, into
Viwij — Viwip = 0 (1.4)
and
Rijri = K(girgji — 9agik) + (wikwji — wiwjk), (1.5)

where N” are the components of the unit normal vector field of M,, [4].

2. Relationship Between the Connections V and V'’

It is well known that the connection coefficients of a Riemannian space whose metric tensor is g are given
by [5]

1
Il = §glh (0igjn + 0jgin — Ongij), O = 9ok (2.1

Replacing ¢ in (2.1) by the metric tensor ¢’ of M, given by (1.1), after necessary calculations, we first find
the connection coefficients I'}; of M, as

1 Ik Ik
= 379" (Ojwin + O — Opwig) + (0;0)5% + (8;0)0" — (0k0) g g ;- (2.2)
On the other hand, for the covariant derivative of the second fundamental tensor w of M,,, we have [3, 4]

Viwji, = Oiwjr, — Tiswne — Thawjn. (2.3)
As a result of cyclic permutations of the indices i, j, and k, we obtain two more equations:

_ h h
Vjwii = Ojwii — I'ijjwne — T'jwin, (2.4)
kaij = Okwij — Fll}:iwhj — szwih. (25)

Subtracting (2.5) from the sum of (2.3) and (2.4) and using the Codazzi equations (1.4), we find

Viwjk = 8Z-wjk + 8]-%-;9 — 8kwij — QwhkF?j. (2.6)
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In view of (2.6), relation (2.2) turns into

1
Tl =T + 80,0 + 0ldio — ¢ g ;000 + ieQ"g”’“viwjk. 2.7)

Relation (2.7) is the desired relation for the connection coefficients of M,, and Mj,.
3. Geodesic Mappings of M,, upon M,

If the map f defined by (1.2) transforms every geodesic in M, into a geodesic in Mj,, then f is called
a geodesic mapping of M,, into M,,.

The hypersurfaces M,, and M;, are in geodesic correspondence if and only if the respective connection coef-
ficients Fl}-bj and FZL of M,, and Mj, satisfy the relation [3]

Tl =Tk + 85k + Ojabj, (3.1)

where 1), are the components of some 1-form which is known to be a gradient.
We first prove the following lemma which is necessary for our subsequent presentation.

Lemma 3.1. Let M, and M,, be hypersurfaces of the space form M, 1 and let the metric tensor of M, be
defined by (1.1). If M,, and M), are in geodesic correspondence, then the 1-form )y, is the gradient of 20.

Proof. Since V' is a metric connection, we have
0 = Vigi; = Ongi; — 91Tk — 9l
Hence, with the help of (1.1) and (3.1), we obtain
0 = 2w;j0ko + Viwij — 2¢wi; — Yiwkj — Yjwi. (3.2)
Changing the order of the indices j and k in (3.2), we find
0 = 2w;,0j0 + Vwir, — 2¢wir, — Yiwkj — Yrwyi. (3.3)
Subtracting (3.3) from (3.2) and setting
br = thx — 20k0 (3.4)
in (3.3), we conclude that
Wi Pk — wik@; = 0, (3.5)
where we have used the Codazzi equations (1.4).

Note that, since 1, is a gradient, it follows from (3.4) that ¢y, is also a gradient. Multiplying (3.5) by €*° and
using (1.1), we obtain

brgij — bigi, = 0. (3.6)



646 E. O. CANFES AND A. OZDEGER

J

At the same time, multiplying (3.6) by ¢’ 7 and finding the sum with respect to ¢ and j, we conclude, for n > 1,

that
o1 = 0. (3.7

The combination of (3.4) and (3.7) yields ¢ = 20y0.
We now prove the following theorem:

Theorem 3.1. The hypersurface M, of a space form M, 1 is totally umbilical if and only if M, can be
geodesically mapped upon M)},.
Proof. Sufficiency. Let y be a geodesic through the point p € M,, defined by zt = :cl(s) and let s be the arc

length of ~. Then the normal curvature, say k,,, of M, in the direction of +, i.e., in the direction of — is given

ds
by the formula [4]

dxt da?

n = Wji— ——.
T ds ds

K (3.8)

. da® dad dak : . o , .
Multiplying (3.2) by ds ds ds finding the sum with respect to 4, j, and k,, and using (3.8), we obtain
s ds ds
A OO W O WO OV BN
R s R 0s ds ds Fas ) Yds )" Tds )" '

Since 1y is a gradient, there exists a differentiable function 1) such that ¥, = Jp. On the other hand,
differentiating (3.8) covariantly in the direction of + and using the Frenet’s formula [3]

dzt\ dzF »
\Y — = !
< M ds > ds 9

where k,, is the geodesic curvature and U is the unit principal normal vector field of ~y relative to M,,, we find

de* det de? dky, dxd
i) = 9 i nt —. 3.10
(Vi) ds ds ds ds frg “ij 717 ds ( )

We now use relation (3.10) in (3.9) and recall that v is a geodesic (k4 = 0) in M,,. This yields

D (500 42) ] 2,

ozt ozt ozt ds
or
0 dzt
[W (ln|ﬁn+2a4¢)] —=0 (3.11)

along ~.
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On the other hand, by (1.1) and (3.11), we find

2 da’ dz!
Y ds ds

12

ds'® = g’ijda:’da:] = e2awl~jdw’dm] =e ds?® = €% kpds?,

whence it follows that «,, > 0. Further, relation (3.1) implies that
In x,, + 20 — 49 = const = C; (3.12)

along ~.
By Lemma 3.1, ¢ = 20 + Cy, Cy = Const and, therefore, (3.12) gives

Ky = €57, (3.13)
where c is an arbitrary positive constant.

It follows from (3.13) that the lines of curvature of M,, are indeterminate at all points of M,,. Consequently,
M, is totally umbilical.

_ H
Necessity. Assume that M, is a totally umbilical hypersurface of M, which means that w;; = —g;;
n

where H is the mean curvature of M,,. In this case, relation (1.1) becomes
H
95 = P*9ij (p2 = e2”n> (3.14)

and, hence, M,, and M, are conformal.
Relation (1.5) now implies that

H2
Riji = (K + nQ> (9ikgj1 — 9i9jk)
2

showing that M,, has the constant curvature K + —5 - Thus, H is constant.
n

We now show that M,, can also be geodesically mapped upon Mj,. Since M, is conformal to Mj,, their
connection coefficients are related by [6]

h
T =Tl + i+ 00 — g (o= Ve, o' =g"pt). (3.15)

To show that this conformal mapping between M,, and Mj, is also a geodesic mapping, according to (3.15)
and (3.1) it is necessary to find a 1-form 1, such that

F?j + 5?%' + 5?%’ = F?j + 5?,01‘ + (Szhpj - gijph
or

(Wi — pi) + Ol (y — pj) + gijp" = 0. (3.16)
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Transvecting (3.16) by g%/, we get
9" (Wi = pi) + 9" (W5 — ps) +np" =0
or
29" (i — pi) + np" = 0. (3.17)
Multiplying (3.17) by gj; and finding the sum over h, we get
2pj + (n—2)pj = 0.

Thus, by virtue of (3.14), we find

2 —
Y= (2\/7;@) 0;e?, H>0.

With this choice of 1, the conformal mapping mentioned above also becomes a geodesic mapping.
Theorem 1.1 is proved.

In the special case where o = 0 throughout M,,, i.e., ¢ = w, we can mention some properties of M,, which
is in the geodesic correspondence with My, :

1. From Lemma 3.1 and relation (3.1), we conclude that any geodesic mapping of M,, upon Mj, is connec-
tion preserving.

2. It follows from (3.13) that M, has constant normal curvature along each geodesic through a point
pE M,.

3. The underlying geodesic mapping is a homothety.
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