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BRIEF COMMUNICATIONS

A CHARACTERIZATION OF TOTALLY UMBILICAL HYPERSURFACES
OF A SPACE FORM BY GEODESIC MAPPING

E. Ö. Canfes and A. Özdeğer UDC 517.9

The idea of considering the second fundamental form of a hypersurface as the first fundamental form of
another hypersurface has found very useful applications in Riemannian and semi-Riemannian geometry,
especially when trying to characterize extrinsic hyperspheres and ovaloids. Recently, T. Adachi and
S. Maeda gave a characterization of totally umbilical hypersurfaces in a space form by circles. In our
paper, we give a characterization of totally umbilical hypersurfaces of a space form by means of geodesic
mapping.

1. Introduction

Let Mn and M ′
n be two hypersurfaces of a space form M̄n+1 [3–5] and let g, g′ and ḡ be the respective

positive-definite metric tensors. By ∇, ∇′, and ∇̄ we denote the corresponding connections induced by g, g′,

and ḡ.
In the present paper, we choose the first fundamental form of M ′

n as

g′ = e2σω, (1.1)

where ω is the second fundamental form of Mn which is supposed to be positive-definite and σ is a differentiable
function defined on Mn.

Let {xi}, {x′i}, and {yα} be the respective coordinate systems in Mn, M
′
n, and M̄n+1 and let f be a one-

to-one differentiable mapping of Mn upon M ′
n defined by

x′i = f i(x1, x2, . . . , xn), i = 1, 2, . . . , n, (1.2)

where f i are smooth functions defined on Mn. Also let the corresponding Jacobian be nonvanishing. Then it is
clear that the corresponding points of Mn and M ′

n are represented by the same set of coordinates and that the
coordinate vectors are in correspondence.

Let R̄, R, and R′ be the covariant curvature tensors of M̄n+1, Mn, and M ′
n, respectively, and let K̄ be the

Riemannian curvature of M̄n+1.

Thus, we have1

R̄
βγδε

= K̄(ḡ
βδ
ḡγε − ḡβε ḡγδ). (1.3)
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1 In what follows, the Latin indices i, j, k, . . . run from 1 to n, while the Greek indices α, β, and γ run from 1 to n+ 1.
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On the other hand, under the condition (1.3), the Codazzi equations

∇kωij −∇jωik + R̄
βγδε

Nβ ∂y
γ

∂xi
∂yδ

∂xj
∂yε

∂xk
= 0

and the Gauss equation

Rijkl = R̄
βγδε

∂yβ

∂xi
∂yγ

∂xj
∂yδ

∂xk
∂yε

∂xl
+ (ωikωjl − ωilωjk)

transform, respectively, into

∇kωij −∇jωik = 0 (1.4)

and

Rijkl = K̄(gikgjl − gilgjk) + (ωikωjl − ωilωjk), (1.5)

where Nβ are the components of the unit normal vector field of Mn [4].

2. Relationship Between the Connections ∇ and ∇′

It is well known that the connection coefficients of a Riemannian space whose metric tensor is g are given
by [5]

Γlij =
1

2
glh (∂igjh + ∂jgih − ∂hgij), ∂k =

∂

∂xk
. (2.1)

Replacing g in (2.1) by the metric tensor g′ of M ′
n given by (1.1), after necessary calculations, we first find

the connection coefficients Γ′l
ij of M ′

n as

Γ′l
ij =

1

2
e2σg′

lk
(∂jωik + ∂iωjk − ∂kωij) + (∂jσ)δli + (∂iσ)δlj − (∂kσ)g′

lk
g′ij . (2.2)

On the other hand, for the covariant derivative of the second fundamental tensor ω of Mn, we have [3, 4]

∇iωjk = ∂iωjk − Γhijωhk − Γhikωjh. (2.3)

As a result of cyclic permutations of the indices i, j, and k, we obtain two more equations:

∇jωki = ∂jωki − Γhijωhk − Γhkjωih, (2.4)

∇kωij = ∂kωij − Γhkiωhj − Γhkjωih. (2.5)

Subtracting (2.5) from the sum of (2.3) and (2.4) and using the Codazzi equations (1.4), we find

∇iωjk = ∂iωjk + ∂jωik − ∂kωij − 2ωhkΓ
h
ij . (2.6)
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In view of (2.6), relation (2.2) turns into

Γ′l
ij = Γlij + δli∂jσ + δlj∂iσ − g′

lk
g′ij∂kσ +

1

2
e2σg′

lk∇iωjk. (2.7)

Relation (2.7) is the desired relation for the connection coefficients of Mn and M ′
n.

3. Geodesic Mappings of Mn upon M ′
n

If the map f defined by (1.2) transforms every geodesic in Mn into a geodesic in M ′
n, then f is called

a geodesic mapping of Mn into M ′
n.

The hypersurfaces Mn and M ′
n are in geodesic correspondence if and only if the respective connection coef-

ficients Γhij and Γ′h
ij of Mn and M ′

n satisfy the relation [3]

Γ′i
jk = Γijk + δijψk + δikψj , (3.1)

where ψk are the components of some 1-form which is known to be a gradient.
We first prove the following lemma which is necessary for our subsequent presentation.

Lemma 3.1. Let Mn and M ′
n be hypersurfaces of the space form M̄n+1 and let the metric tensor of M ′

n be
defined by (1.1). If Mn and M ′

n are in geodesic correspondence, then the 1-form ψk is the gradient of 2σ.

Proof. Since ∇′ is a metric connection, we have

0 = ∇′
kg

′
ij = ∂kg

′
ij − g′ljΓ′l

ik − g′liΓ′l
jk.

Hence, with the help of (1.1) and (3.1), we obtain

0 = 2ωij∂kσ +∇kωij − 2ψkωij − ψiωkj − ψjωki. (3.2)

Changing the order of the indices j and k in (3.2), we find

0 = 2ωik∂jσ +∇jωik − 2ψjωik − ψiωkj − ψkωji. (3.3)

Subtracting (3.3) from (3.2) and setting

φk = ψk − 2∂kσ (3.4)

in (3.3), we conclude that

ωijφk − ωikφj = 0, (3.5)

where we have used the Codazzi equations (1.4).
Note that, since ψk is a gradient, it follows from (3.4) that φk is also a gradient. Multiplying (3.5) by e2σ and

using (1.1), we obtain

φkg
′
ij − φjg′ik = 0. (3.6)
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At the same time, multiplying (3.6) by g′ij and finding the sum with respect to i and j, we conclude, for n > 1,

that

φk = 0. (3.7)

The combination of (3.4) and (3.7) yields ψk = 2∂kσ.

We now prove the following theorem:

Theorem 3.1. The hypersurface Mn of a space form M̄n+1 is totally umbilical if and only if Mn can be
geodesically mapped upon M ′

n.

Proof. Sufficiency. Let γ be a geodesic through the point p ∈Mn defined by xi = xi(s) and let s be the arc

length of γ. Then the normal curvature, say κn, of Mn in the direction of γ, i.e., in the direction of
dxi

ds
, is given

by the formula [4]

κn = ωij
dxi

ds

dxj

ds
. (3.8)

Multiplying (3.2) by
dxi

ds

dxj

ds

dxk

ds
, finding the sum with respect to i, j, and k, , and using (3.8), we obtain

2κn(∂kσ)
dxk

ds
+ (∇kωij)

dxk

ds

dxi

ds

dxj

ds
− 2

(
ψk
dxk

ds

)
κn −

(
ψi
dxi

ds

)
κn −

(
ψj
dxj

ds

)
κn = 0. (3.9)

Since ψk is a gradient, there exists a differentiable function ψ such that ψk = ∂kψ. On the other hand,
differentiating (3.8) covariantly in the direction of γ and using the Frenet’s formula [3]

(
∇k

dxi

ds

)
dxk

ds
= κg

1
ηi,

where κg is the geodesic curvature and
1
η is the unit principal normal vector field of γ relative to Mn, we find

(∇kωij)
dxk

ds

dxi

ds

dxj

ds
=
dκn
ds
− 2κg ωij

1
ηi
dxj

ds
. (3.10)

We now use relation (3.10) in (3.9) and recall that γ is a geodesic (κg = 0) in Mn. This yields

[
∂κn
∂xi

+

(
2
∂σ

∂xi
− 4

∂ψ

∂xi

)
κn

]
dxi

ds
= 0,

or [
∂

∂xi
(ln |κn|+ 2σ − 4ψ)

]
dxi

ds
= 0 (3.11)

along γ.
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On the other hand, by (1.1) and (3.11), we find

ds′
2

= g′ijdx
idxj = e2σωijdx

idxj = e2σωij
dxi

ds

dxj

ds
ds2 = e2σκnds

2,

whence it follows that κn > 0. Further, relation (3.1) implies that

lnκn + 2σ − 4ψ = const = C1 (3.12)

along γ.
By Lemma 3.1, ψ = 2σ + C2, C2 = Const and, therefore, (3.12) gives

κn = ce6σ, (3.13)

where c is an arbitrary positive constant.
It follows from (3.13) that the lines of curvature of Mn are indeterminate at all points of Mn. Consequently,

Mn is totally umbilical.

Necessity. Assume that Mn is a totally umbilical hypersurface of M̄n+1 which means that ωij =
H

n
gij

where H is the mean curvature of Mn. In this case, relation (1.1) becomes

g′ij = ρ2gij

(
ρ2 = e2σ

H

n

)
(3.14)

and, hence, Mn and M ′
n are conformal.

Relation (1.5) now implies that

Rijkl =

(
K̄ +

H2

n2

)
(gikgjl − gilgjk)

showing that Mn has the constant curvature K̄ +
H2

n2
. Thus, H is constant.

We now show that Mn can also be geodesically mapped upon M ′
n. Since Mn is conformal to M ′

n, their
connection coefficients are related by [6]

Γ′h
ij = Γhij + δhj ρi + δhi ρj − gijρh

(
ρi = ∇iρ, ρh = gthρt

)
. (3.15)

To show that this conformal mapping between Mn and M ′
n is also a geodesic mapping, according to (3.15)

and (3.1) it is necessary to find a 1-form ψk such that

Γhij + δhj ψi + δhi ψj = Γhij + δhj ρi + δhi ρj − gijρh

or

δhj (ψi − ρi) + δhi (ψj − ρj) + gijρ
h = 0. (3.16)
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Transvecting (3.16) by gij , we get

gih(ψi − ρi) + gjh(ψj − ρj) + nρh = 0

or

2gih(ψi − ρi) + nρh = 0. (3.17)

Multiplying (3.17) by ghj and finding the sum over h, we get

2ψj + (n− 2)ρj = 0.

Thus, by virtue of (3.14), we find

ψj =

(
2− n
2
√
n

√
H

)
∂je

σ, H > 0.

With this choice of ψj , the conformal mapping mentioned above also becomes a geodesic mapping.
Theorem 1.1 is proved.

In the special case where σ = 0 throughout Mn, i.e., g′ = ω, we can mention some properties of Mn which
is in the geodesic correspondence with M ′

n :

1. From Lemma 3.1 and relation (3.1), we conclude that any geodesic mapping of Mn upon M ′
n is connec-

tion preserving.

2. It follows from (3.13) that Mn has constant normal curvature along each geodesic through a point
p ∈Mn.

3. The underlying geodesic mapping is a homothety.
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