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a b s t r a c t

This paper presents a new bivariate Pseudo–Gompertz distribution that sprouts from the
classical Gompertz distribution and possesses the features of pseudo-distribution func-
tions. In addition to some standard properties of the proposed distribution, distributions
of order statistics and their concomitants for samples drawn from the new distribution are
obtained. The survival and hazard functions of the concomitants are shown and their val-
ues are tabled. Interpretations of the results are given in connection with risk events and
risk management.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

TheGompertz distribution is awidely used probability distribution in themodeling of lifetimes of components of physical
systems and organisms of biological populations [1]. Life tables for human beings, in particular, are constructed on the basis
of the distributions like the Gompertz distribution. Specifically, it is an empirically veritable parametric probability model
that is used to express age specific probabilities of lifetime and mortality or hazard rates for lives in human populations.
Detailed examples of such important uses of the Gompertz distribution are given by [2–4].

A bivariate distribution F (x, y) for a pair of random variables (X, Y ) expresses the dependence between X and Y as
embedded in its functional form and parameters. When X or Y is related with each other through a real-valued function
φ(·), then the distribution that emerges from F (x, y) is a pseudo-distribution with φ(·) included in its set of parameters.
It is obvious that φ(x) must satisfy the condition that the pseudo distribution has all the properties to be a probability
distribution. A pseudo-distribution that has a stationary distribution property is introduced by [5], way back in sixties,
by redefining several parameters of a probability function. The Wishart distribution under singularity is discussed in [6]
where Pseudo–Wishart distributions are obtained by tackling with the causes of singularity. The work in [7] concentrates
on a bivariate Gompertz distribution and finds a Gompertz-type distribution with the use of some suitable functions that tie
some concerned random variables with each other. A generalization of the Gompertz distribution is proposed in [8] by some
parametrizations that enables the application of some survival models with empirically identifiable mortality concepts.
Thus, the interest in theory and methods about the Gompertz distribution is progressive.
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Recently, a class of pseudo-distributions is introduced by [9] as the probability distribution models for several linear
combinations of random variables in the stochastic modeling attempts. Along the lines that combinations of random
variables are of concern, our paper introduces a bivariate Pseudo–Gompertz distribution arising from the bivariate Gompertz
distribution.

Concomitants are useful accompaniments in statistical modeling that may stand as random variables of interest in
connection with order statistics of random samples. For such a situation, order statistics and their concomitants are taken
under consideration in the current paper for the Pseudo–Gompertz distribution.

In the following sections; order statistics and concomitants are mentioned first and then the new bivariate Pseudo–
Gompertz distribution is presented. A next step is the construction of the distribution of the concomitants of order statistics
for the presented Pseudo–Gompertz distribution and the derivation of the survival and hazard functions for them. Some
implications of the results are provided for reliability and risk modeling throughout the sections.

2. Order statistics and concomitants

A random sample of (X1, Y1), (X2, Y2), . . . , (Xn, Yn) from a bivariate distribution with bivariate distribution function
F (x, y) yields order statistics of the first coordinate as (X1:n, X2:n, . . . , Xn:n) such that Xi:n ≤ Xj:n for i < j. If the pairs
(Xi, Yi) , i = 1, 2, . . . , n, are ordered by their X variates according to (X1:n, X2:n, . . . , Xn:n), then the Y variate associated
with the r-th order statistic Xr:n of X , denoted by Y[r:n], 1 ≤ r ≤ n, is called the concomitant of the r-th order statistic. For a
detailed overview of concomitants, we refer to [10,11].

Concomitants are used inmany applied areas where a population characteristic Y is investigated with respect to another
characteristicX of the samepopulation. Such applications are expedient in the riskmanagement fields like system reliability,
finance and actuarial sciences where losses due to frailties or defaults are of ultimate concern. Recently, tolerance intervals
for bivariate quantiles of two dependent random variables are obtained in [12] by using the concomitants of order statistics.
Another recent work by [13] considers the concomitants of the generalized order statistics as a unified model for ordered
random variables.

An observed sample from a population helps to determine the underlying probability distribution model F (x, y) for the
(X, Y )pair and theirmarginal probability distribution functions F(x) and F(y). By the use of F (x, y) as the parent distribution,
the probability distributionmodels for the r-th order statistic Xr:n of X, 1 ≤ r ≤ n, and the distribution and density functions
for the concomitants Y[r:n] of Xr:n can be obtained. The essential expressions for such functions are clearly derived and shown
by [14,10,11]. Following them, the general definitions of the probability distribution and density functions for Y[r:n] are
shown below as standard definitions for a random variable in general:

FY[r:n](y) =


∞

−∞

F(y | x)fXr:n(x)dx (1)

and

fY[r:n](y) =


∞

−∞

f (y | x)fXr:n(x)dx (2)

where F (y | x) and f (y | x) are the conditional distribution and density functions of Y given X . The density function of an
r-th order statistic is defined as

fXr:n(x) =
n!

(r − 1)! (n − r)!
f (x) [F(x)]r−1 [1 − F(x)]n−r . (3)

The joint distribution of two order statistics Xr:n ≤ Xs:n is expressed as;

fXr:n,Xs:n(x1, x2) =
n!

(r − 1)! (s − r)! (n − s)!
f (x1)f (x2) [F (x1)]r−1 [F (x2)− F (x1)]s−r−1 [1 − F (x2)]n−s . (4)

And, the joint distribution of two concomitants is given by

fY[r:n],Y[s:n](y1, y2) =


∞

−∞

 x2

−∞

f (y1 | x1)f (y2 | x2)fXr:n,Xs:n(x1, x2)dx1dx2. (5)

The dependence structure of the concomitants implicit in the function above is discussed by [11]. The general expressions
given here are used in the following sections where a new bivariate Pseudo–Gompertz distribution is presented.
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3. The bivariate Pseudo–Gompertz distribution

A new class of pseudo-distributions for linear combinations of random variables is introduced by [15] for the statistical
applications where an actual distribution cannot be used easily. Some other pseudo-distributions have been introduced
afterwards in a similar way. Following the pseudo-distributions obtained by [16,17,9], among them, we obtain a bivariate-
Gompertz distribution as presented below.

The Gompertz distribution with parameters λ and µ1 for a random variable X has the following density function

fX (x; λ,µ1) = λeµ1x exp

−
λ

µ1


eµ1x − 1


, µ1 > 0, λ > 0, x > 0. (6)

Suppose that another random variable Y also has a Gompertz distribution with parameters φ(x) and µ2, where φ(x) is a
real valued function of the random variable X . Then, the density function of Y is given by

fY |X=x (y;φ(x), µ2 | x) = φ(x)eµ2y exp

−
φ(x)
µ2


eµ2y − 1


, µ2 > 0, φ(x) > 0, y > 0. (7)

Using the marginal densities defined in Eqs. (6) and (7) above, the bivariate Pseudo–Gompertz distribution is obtained
as the compound distribution of X and Y with density function;

f (x, y) = λφ(x)eµ1xeµ2y exp

−
λ

µ1


eµ1x − 1


−
φ(x)
µ2


eµ2y − 1


,

µ1 > 0, µ2 > 0, λ > 0, φ(x) > 0, y > 0, x > 0, (8)

which follows from f (x, y) = fX (x; λ,µ1) fY |X=x (y;φ(x), µ2 | x).
Depending upon various choices of function φ(x), several distributions can be generated from this general density

function. Adopting φ(x) = eµ1x − 1, the following form of bivariate Pseudo–Gompertz distribution is obtained:

f (x, y) = λ

eµ1x − 1


eµ1xeµ2y exp


−

eµ1x − 1

  λ

µ1
+
(eµ2y − 1)

µ2


, µ1, µ2, λ, y, x > 0. (9)

The φ(x) function can be determined by the users in accordance to their needs of modeling. Here, the essential condition
is that F (x, y) =


x


y f (x, y) dydx must satisfy all the properties to be a probability distribution function. It can easily be

checked that f (x, y) above is a bivariate density function as proved in Appendix A of the paper.
The plots of the density function expressed in (9) are displayed below. From the plots, it is seen that the joint density has

a long right tail as compared to its left tail.
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The marginal distributions of X and Y are derived from Eq. (9) as

f (x) = λeµ1x exp

−
λ

µ1


eµ1x − 1


and f (y) = eµ2y

λ

µ1


λ

µ1
+
(eµ2y − 1)

µ2

−2

, respectively.



S. Yörübulut, O.L. Gebizlioglu / Journal of Computational and Applied Mathematics 247 (2013) 68–83 71

The joint distribution function corresponding to f (x, y) in (9) is

F (x, y) =

 y

0

 x

0
λ

eµ1x − 1


eµ1xeµ2y exp


−

eµ1x − 1

  λ

µ1
+
(eµ2y − 1)

µ2


dxdy

=
λ

µ1


exp


(eµ2y−1)

µ2
− eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1


− 1



(eµ2y−1)

µ2
+

λ
µ1

 +


1 − exp


−
λ

µ1


eµ1x − 1


. (10)

So, the joint survival function, that follows from (10) above, is

S (x, y) = 1 − F1(x)− F2(y)+ F (x, y)

where F1(x) ve F2(y) are the marginal distribution functions of X and Y , respectively, and they are obtained for the bivariate
Pseudo–Gompertz distribution, using Eq. (10), as follows:

F1(x) = Lim
y→∞

F (x, y) = 1 − exp


−
λ

µ1


eµ1x − 1


and

F2(y) = Lim
x→∞

F (x, y) = 1 −
λµ2

µ1 (eµ2y − 1)+ µ2λ
.

From the joint and marginal distribution functions above, the corresponding joint survival function is found as

S (x, y) =
λµ2

µ1 (eµ2y − 1)+ µ2λ
exp


(eµ2y − 1)

µ2
− eµ1x


(eµ2y − 1)

µ2
+
λ

µ1


+
λ

µ1


.

The plots of the joint survival function are displayed below. The plots indicate that the survival function decreases faster
in value as the values of λ and µ1 increase.
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4. Distribution of the concomitants

In this section, we obtain the distribution of the concomitant of the r-th order statistics for the bivariate Pseudo–
Gompertz distribution, given in Eq. (10). This distribution is derived by placing in Eq. (2) the density function of the r-th
order statistics for the random variable X ,

fXr:n(x) =
n!

(r − 1)! (n − r)!
λeµ1x


1 − exp


−
λ

µ1


eµ1x − 1

r−1 
exp


−
λ

µ1


eµ1x − 1

n−r+1

=
λeµ1xn!

(r − 1)! (n − r)!

r−1
h=0

(−1)h

r − 1
h


e−

λ
µ1 (e

µ1x−1)(n−r+h+1)
, µ1, λ, x > 0. (11)
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The conditional density function f (y | x), shown below as derived from (9), is also needed for deriving the density func-
tion of the concomitant:

f (y | x) =

eµ1x − 1


eµ2y exp


−
(eµ1x − 1)

µ2


eµ2y − 1


, µ1, µ2, x, y > 0. (12)

Placing Eqs. (11) and (12) in Eq. (2), the density function of the concomitant of the r-th order statistic Xr:n from the
bivariate Pseudo–Gompertz distribution is found as:

fY[r:n](y) =
eµ2yλn!

(r − 1)! (n − r)!

r−1
h=0

(−1)h

r − 1
h


×


∞

0
e−

λ
µ1 (e

µ1x−1)(n−r+h+1) eµ1x − 1

eµ1x exp


−
(eµ1x − 1)

µ2


eµ2y − 1


dx

=
µ1eµ2yn!

λ (r − 1)! (n − r)!

r−1
h=0

(−1)h

r − 1
h


h + n − r + 1 +

µ1 (eµ2y − 1)
µ2λ

−2

. (13)

Here, the random variable X may be taken as the lifetime of a unit or live at age x and Y may be the lifetime of another
unit or live at age y whose relation with X is built by φ(x) in their joint distribution function. Accordingly, the (Xr:n, Y[r:n])
pair stands for the r-th order lifetime and the lifetime of the r-th order concomitant in a random sample of n observations.
The distribution obtained above can then be used for risk modeling purposes on the basis of the life contingencies of the
pairs of ranked lifetimes and their concomitants.

A more useful form of the density function given above is derived below by using the results given in [18,19].
Consider Eq. (13) and let µ1(eµ2y−1)

µ2λ
+ n − r + 1 = a,

r−1
h=0

(−1)h

r − 1
h


h + n − r + 1 +

µ1 (eµ2y − 1)
µ2λ

−2

=

r−1
h=0

(−1)h

r − 1
h


1

(h + a)2
(14)

and
r−1
h=0


r − 1
h


(−1)h

h + a
=

(r − 1)!
a(a + 1) · · · (a + r − 1)

= g(a)

= a−1

r − 1 + a
r − 1

−1

, a ∉ (0,−1, . . . ,−(r − 1)) . (15)

Note that there is a connection between g(a) defined above and the Gamma function. Since

0(a) =


∞

0
ta−1e−tdt, a > 0

0(a) =
0(a + 1)

a
=
0(a + 2)
a (a + 1)

= · · · =
0(a + r)

a (a + 1) · · · (a + r − 1)
, (16)

we can re-expresses Eq. (15), as shown in [19], by using expression (16);

g(a) =

r−1
h=0


r − 1
h


(−1)h

h + a
=

(r − 1)!
a (a + 1) · · · (a + r − 1)

=
(r − 1)!0(a)
0 (a + r)

.

Differentiating g(a)with respect to its argument, we get

g ′(a) = −

r−1
h=0


r − 1
h


(−1)h

(h + a)2
= g(a) {ψ(a)− ψ (a + r)} , (17)

where the digamma function ψ(a) is the logarithmic derivative of 0(a) such that

ψ(a) =
d
da

log0(a) =
0′(a)
0(a)

.

It is known that a harmonic number of order n is

H(n) =

n
k=1

1
k

=

n
k=1


n
k


(−1)k+1 1

k
for k = 1, 2, . . . , n.
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The connection between the harmonic number and the digamma function is,

{ψ (a + r)− ψ(a)} =

a+r−1
h=a

1
h

= H(a+r−1) − H(a−1). (18)

Therefore, using the Eqs. (17) and (18), we re-express Eq. (14);

r−1
h=0


r − 1
h


(−1)h

(h + a)2
= g(a) {ψ (a + r)− ψ(a)}

=
(r − 1)!0(a)
0 (a + r)


H(a+r−1) − H(a−1)


. (19)

Consequently, the density function for the concomitant Y[r:n] in (13) with µ1(eµ2y−1)
µ2λ

+ n − r + 1 = a can be re-written as

fY[r:n](y) =

µ1eµ2y0 (n + 1)0

n − r +

µ1(eµ2y−1)
µ2λ

+ 1


H
n+

µ1(eµ2y−1)
µ2λ

 − H
n−r+

µ1(eµ2y−1)
µ2λ




λ0 (n − r + 1)0

n +

µ1(eµ2y−1)
µ2λ

+ 1
 . (20)

This function is used in the following section for deriving the relevant survival and hazard functions.

5. Survival and hazard functions

When the randomvector (X, Y ) is defined as the lifetimes of twounits or lives at a certain timepointwith observable ages,
the remaining lifetime probabilities can be computed by using the general definition of a survival function, S(t) = 1− F(t),
for each of (X, Y ).

In this section, we derive the survival and hazard functions for Y[r:n]. These functions are useful for the survival analysis
with regard to any parent probability distribution. Using expression (13), the distribution function FY[r:n](y) can be written
as

FY[r:n](y) =

 y

0
fY[r:n](t)dt

=

 y

0

λn!
(r − 1)! (n − r)!µ1

r−1
h=0

(−1)h

r − 1
h


eµ2t


λ

µ1
(n − r + h + 1)+


eµ2t − 1


µ2

−2

dt

=
n!

(r − 1)! (n − r)!

r−1
h=0

(−1)h

r − 1
h


1

(h + n − r + 1)

 µ1(eµ2y−1)
µ2λ

(h + n − r + 1)+
µ1(eµ2y−1)

µ2λ


 . (21)

A more useful form of this distribution function is constructed below. Using

r−1
h=0

(−1)h

r − 1
h


1

(h + c)


b

(h + c + b)


=
0(c)0(r)
0 (c + r)

−
0 (c + b)0(r)
0 (c + b + r)

(22)

and letting n − r + 1 = c, µ1(eµ2y−1)
µ2λ

= b in the distribution function (21), we obtain

FY[r:n](y) =
n!

(r − 1)! (n − r)!

0 (n − r + 1)0(r)
0 (n − r + 1 + r)

−

0


n − r + 1 +

µ1(eµ2y−1)
µ2λ


0(r)

0


n − r + 1 +

µ1(eµ2y−1)
µ2λ

+ r



= 1 −

0 (n + 1)0

n − r +

µ1(eµ2y−1)
µ2λ

+ 1


0 (n − r + 1)0

n +

µ1(eµ2y−1)
µ2λ

+ 1
 . (23)

Using Eq. (23), the survival function for the concomitant is found as

SY[r:n](y) = 0(n + 1)0

n − r +

µ1 (eµ2y − 1)
µ2λ

+ 1

/0(n − r + 1)0


n +

µ1 (eµ2y − 1)
µ2λ

+ 1

. (24)
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Furthermore, the hazard or mortality rate function, in the general form of h(y) = f (y) [S(y)]−1, for the concomitant of
the r-th order statistics from the bivariate pseudo-Gompertz distribution is obtained as

hY[r:n](y) =
fY[r:n](y)

SY[r:n](y)
=
µ1eµ2y

λ


H

n+
µ1(eµ2y−1)

µ2λ

 − H
n−r+

µ1(eµ2y−1)
µ2λ



. (25)

It is seen that the survival and hazard functions for Y[r:n] are functions of n, r, µ1, µ2 and λ, given φ(x). The random
variable X does not appear in expression (25), but its order of magnitude r and the sample size n do. So does the observable
value y of Y[r:n].

Considering a system consisting of a number of components each with a pair of units whose ages are observable, and
concentrating on these components as a matter of reliability investigation, the reliability of the system can be assessed by
the survival and hazard functions. (X, Y ) being the lifetimes of the first and the second units of a component, respectively,
a sample of n observations {(X1, Y1) , . . . , (Xn, Yn)}, at a given time, on the system components yields the order statistics
and their concomitants


X1:n, Y[1:n]


, . . . ,


Xr:n, Y[r:n]


, . . . ,


Xn:n, Y[n:n]


. Assuming that the proper running of the system

relies on the lifetimes of these components, the matter of the system reliability reduces to the survival of at least one of the
units in the components. In this regard, the survival function SY[r:n](y) in Eq. (24) states the probability of the random event
Y[r:n] ≥ y


for the r-th concomitant as the second unit of a component.

The probability of the hazardous event that the second unit of a component fails within the small interval (y, y + dy) is
P

y < Y[r:n] < y + dy | Y[r:n] > y


= hY[r:n](y)dy, given that SY[r:n](y) ≠ 0, which is nothing but the hazard rate or mortality

rate expressed in Eq. (25), above.
A loss may exceed some endurable limits for a system due to the hazardous events as described above. Therefore, it is

imperative to analyze and manage the technical and economic risks of the systems through the system reliability measures
like the survival and hazard functions shown here.

The survival and hazard functions, under the bivariate Pseudo–Gompertz distribution model, for Xr:n and for the
{Xr:n, Y[r:n]} can be similarly derived. The derivations are elaborated in Appendix B. All these functionswill be used in another
application example presented below.

In the areas of finance and insurance, the lifetimes andmortality rates of human beings are themost essential elements in
risk modeling. For instance, liabilities inherent in credit loans or insurance policies bear financial loss risks due to high costs
of non-performance cases or contingent claims situations that arise in connection with the lifetime durations or the deaths
of the individuals. The death of loan borrowers is a financial default for a loan lender that results in the loss of a planned
cash flow of dept payments. Similarly, the death of the owner of a life insurance with a death benefit contract may cause an
extra loss to an insurer if the death occurs earlier than an actuarially expected future time, Or, if the benefit amount exceeds
an allocated reserve amount. In such situations, measures can be taken against the risks of excessive losses by using risk
preventing or loss reducing tools like hedging and reinsurance. The books by [20,21], among many others, lucidly present
the concepts of risk management for the system reliability, finance and insurance areas.

Assume that there exists a sample of observations {(X1, Y1), . . . , (Xn, Yn)}, at a given time, on the lifetimes of pairwise
insureds from an insurance portfolio. Consider the order statistic and concomitant pairs {(X1:n, Y[1:n]), . . . , (Xr:n, Y[r:n]),
. . . , (Xn:n, Y[n:n])} from this sample. Let u stand for the age of live with random lifetime X and v stand for the age of live
with random lifetime Y under concern. It is realistic to assume that the future lifetime of each live of the pair gets shorter as
their ages get larger. Therefore, the choice of the rank r for the order statistic Xr:n is a critical issue for the risk assessments,
with the loss prevention aims, as an indicator of the age level in the analysis. Suppose that the type of insurance under
concern is a whole life insurance with benefits payable at the moment of death. Here, the life insurance contracts can be in
two general categories known as the contracts for general and contingent life insurances. The contingent insurance contracts
provide benefits upon the order of death of a designated live and no benefit is paid if this does not happen. On the other
hand, under the general life insurance contracts, there are two major insurance status types known as the joint-life status
and the last-survivor status. The concepts and models about these contract categories and status types are well known in
the literature and we refer to [22, pp. 444–473,488–491] and [23, pp. 83–92] for their details.

The termination of the joint-life status is realizedwhen the first death of the pair (X, Y ) occurs.Whereas, the last-survivor
status terminates upon the last death of the pair of lives with lifetimes (X, Y ). So, the lifetime of the joint-life status is
‘‘min {T (u), T (v)}’’ and the lifetime of the last-survivor status is ‘‘max {T (u), T (v)}’’ where T (u) and T (v) denote the random
future lifetimes of the pair who are currently, that is at the time of the sample, at the ages of u and v, respectively. Then, the
death of either one or both of the two lives is a cause of benefit payment for a life insurer in the future time durations of
‘‘u+ T (u)’’ and ‘‘v+ T (v)’’. It is clear that not only the termination of the life insurance statuses but also the times until the
deaths are the matters of concern for the insurer who bears the liability of death benefits payments.

We first consider the last-survivor status typewith respect to future lifetimes T (u) and T (v) of the pair who are at ages of
u and v, respectively. Following [22,23] and their notation, the actuarial present value of the benefit payments, at the time
that the last-survivor status ends, is expressed as

Auv = Au + Av − Auv, (26)
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where ‘‘uv’’ denotes the joint-life status, ‘‘uv’’ denotes the last-survivor status, and the separate lives statuses are denoted
by ‘‘u and ‘‘v’’. Auv, Auv, Au and Av are actuarial present values, or the net single premium amounts, of the same insurance
applied to the respective statuses.

In order to express the components of the sum in Eq. (26), one needs to compute the future lifetime probabilities for each
of the defined statuses. Concerning the second component of the sum, there follows the computation of the probability that
the future lifetime of the concomitant, T (v), is at least t time amount;

P (T (v) > t) = P

Y[r:n] > v + t | Y[r:n] > v


=

P

Y[r:n] > v + t


P

Y[r:n] > v

 =
SY[r:n] (v + t)

SY[r:n](v)
= tpv (27)

where SY[r:n](·) functions are as defined in Eq. (24). The benefit payment to the concomitant becomes due at time just the
moment immediately after T (v)+v if the death of the insured occurs then. Let the present value of the benefit payment, say
w, which may be a level or a varying function of time t , be θ tw where θ t is the discount factor for a given force of interest.
The actuarial present value of this benefit payment is then calculated as

Av =


∞

0


θ tw


hY[r:n] (v + t) tpvdt (28)

where the hazard function (or mortality rate function) is as defined in Eq. (25) with y replaced by v+ t , and tpv is as defined
above in expression (27). Av is the basis of the age specific valuation of the cost that the insurer incurs, and it is a function
of the survival and hazard functions for the concomitant lifetime Y[r:n]. Note that, the larger the future lifetime and the age
of the concomitant live the smaller is the value of the survival function.

The actuarial presented value Au in Eq. (26) is computed as

Au =


∞

0


θ tw


hXr:n (u + t) tpudt (29)

where hXr:n(·) is expressed in Eq. (B.6) of Appendix B, and tpu is the probability that the first live in (X, Y ) at the age of uwill
live for a time duration of u + T (u), at least, where T (u) = t . Here, tpu can be calculated by using the survival function for
Xr:n, which is derived in the part (a) of Appendix B.

The value of Auv is calculated similarly as follows:

Auv =


∞

0


θ tw


hXr:n,Y[r:n] (u + t, v + t) tpuvdt (30)

with hXr:n,Y[r:n] (., .) standing as the joint hazard function, and tpuv standing as the joint survival function for Xr:n and Y[r:n].
Both functions are derived and clearly shown in part (b) of Appendix B.

Under the contingent life insurance contracts category, assume that the concomitant livewith lifetime Y is the designated
live, and the benefit is payable only if this live dies second. Following [22,23], again, the actuarial present value of the death
benefit for this case is expressed and calculated as

Auv2 = Av − Auv1 , (31)

where Av is already expressed in Eq. (28), and the second component is the actuarial present value of the death benefit
payable on the event that the concomitant live dies first at the age of v + t:

Auv1 =


∞

0


θ tw


tpuvhY[r:n] (v + t) dt. (32)

The characteristic behaviors of the survival and hazard functions for the concomitant Y[r:n] are Tabled below for n =

10, r = 1, . . . , 10, and 0.1 ≤ y ≤ 1 for the selected values of the parametersµ1, µ2 andλ of the bivariate Pseudo–Gompertz
distribution.

Table 1 contains the values of the survival function (24). Looking at these tables one can see that the survival probability
of the concomitant increases as the value of λ increases, holding y, r, µ1 and µ2 at a fixed level. For fixed λ, y, µ1, µ2; the
survival probability decreases while the rank r of the order statistic Xr:n increases. The table shows also that for the fixed
λ, r, µ1, µ2; values, the survival probability decreases as the value y of the concomitant Y[r:n] increases.

Table 2 contains the values of the hazard function in Eq. (25). It is seen that the hazard rate of the concomitant decreases
as the value of λ is increases, while holding y, r, µ1 and µ2 at fixed values. Further, for the fixed values of λ, y, µ1, µ2, the
hazard function increases as r increases, and it declines as y gets larger.

The behavior of the survival function of the concomitant live is presented in the graphics below. Fig. 1(a) displays that
the survival function of the concomitant Y[r:n] for y = 0.1, 0.5 and 1. It is seen that the survival function declines faster as
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Table 1
Survival function for the concomitant Y[r:n] .

y r
1 2 3 4 5 6 7 8 9 10

λ = 0.02

0.1 0.9901 0.9792 0.9671 0.9535 0.9378 0.9194 0.8970 0.8681 0.8267 0.7515
0.2 0.9804 0.9590 0.9356 0.9096 0.8802 0.8464 0.8060 0.7556 0.6868 0.5723
0.3 0.9708 0.9395 0.9055 0.8682 0.8268 0.7799 0.7254 0.6594 0.5733 0.4408
0.4 0.9615 0.9205 0.8766 0.8291 0.7772 0.7195 0.6540 0.5769 0.4806 0.3431
0.5 0.9523 0.9020 0.8488 0.7921 0.7310 0.6644 0.5904 0.5059 0.4045 0.2695
0.6 0.9432 0.8841 0.8223 0.7572 0.6881 0.6142 0.5339 0.4447 0.3418 0.2134
0.7 0.9344 0.8667 0.7968 0.7241 0.6482 0.5684 0.4835 0.3917 0.2899 0.1703
0.8 0.9257 0.8498 0.7723 0.6928 0.6110 0.5264 0.4384 0.3458 0.2467 0.1368
0.9 0.9171 0.8334 0.7488 0.6631 0.5763 0.4880 0.3981 0.3059 0.2107 0.1106
1.0 0.9087 0.8174 0.7262 0.6350 0.5439 0.4529 0.3619 0.2711 0.1804 0.0900

λ = 0.05

0.1 0.9960 0.9916 0.9867 0.9811 0.9746 0.9668 0.9572 0.9446 0.9261 0.8905
0.2 0.9921 0.9833 0.9736 0.9625 0.9499 0.9349 0.9165 0.8927 0.8584 0.7947
0.3 0.9881 0.9751 0.9607 0.9445 0.9259 0.9042 0.8778 0.8440 0.7962 0.7107
0.4 0.9842 0.9670 0.9480 0.9268 0.9027 0.8746 0.8409 0.7982 0.7390 0.6369
0.5 0.9803 0.9590 0.9355 0.9095 0.8801 0.8461 0.8058 0.7553 0.6865 0.5718
0.6 0.9765 0.9511 0.9233 0.8926 0.8582 0.8187 0.7723 0.7149 0.6381 0.5143
0.7 0.9727 0.9432 0.9112 0.8761 0.8369 0.7923 0.7403 0.6769 0.5935 0.4633
0.8 0.9689 0.9355 0.8994 0.8599 0.8162 0.7669 0.7099 0.6412 0.5525 0.4181
0.9 0.9651 0.9278 0.8877 0.8441 0.7961 0.7424 0.6809 0.6076 0.5146 0.3779
1.0 0.9614 0.9202 0.8762 0.8286 0.7766 0.7188 0.6532 0.5760 0.4796 0.3421

λ = 0.075

0.1 0.9973 0.9944 0.9911 0.9873 0.9830 0.9777 0.9713 0.9627 0.9500 0.9253
0.2 0.9947 0.9888 0.9823 0.9748 0.9662 0.9560 0.9434 0.9269 0.9028 0.8571
0.3 0.9921 0.9833 0.9735 0.9625 0.9498 0.9349 0.9165 0.8927 0.8583 0.7946
0.4 0.9894 0.9778 0.9649 0.9504 0.9338 0.9142 0.8904 0.8598 0.8162 0.7374
0.5 0.9868 0.9724 0.9564 0.9385 0.9180 0.8941 0.8652 0.8283 0.7764 0.6849
0.6 0.9842 0.9670 0.9479 0.9267 0.9026 0.8745 0.8408 0.7981 0.7388 0.6366
0.7 0.9816 0.9616 0.9396 0.9151 0.8874 0.8554 0.8171 0.7691 0.7032 0.5923
0.8 0.9790 0.9563 0.9313 0.9037 0.8725 0.8367 0.7942 0.7412 0.6695 0.5514
0.9 0.9765 0.9510 0.9232 0.8924 0.8580 0.8185 0.7720 0.7145 0.6377 0.5138
1.0 0.9739 0.9457 0.9151 0.8813 0.8437 0.8007 0.7505 0.6889 0.6075 0.4791

λ = 0.1

0.1 0.9980 0.9958 0.9933 0.9905 0.9872 0.9832 0.9784 0.9719 0.9622 0.9434
0.2 0.9960 0.9916 0.9867 0.9811 0.9745 0.9668 0.9572 0.9446 0.9261 0.8904
0.3 0.9940 0.9874 0.9801 0.9717 0.9621 0.9507 0.9366 0.9182 0.8914 0.8409
0.4 0.9920 0.9833 0.9735 0.9625 0.9498 0.9348 0.9165 0.8926 0.8582 0.7945
0.5 0.9901 0.9792 0.9670 0.9534 0.9377 0.9193 0.8968 0.8678 0.8264 0.7511
0.6 0.9881 0.9751 0.9606 0.9444 0.9258 0.9040 0.8776 0.8438 0.7959 0.7104
0.7 0.9861 0.9710 0.9542 0.9355 0.9141 0.8891 0.8589 0.8205 0.7666 0.6722
0.8 0.9842 0.9669 0.9479 0.9266 0.9025 0.8744 0.8406 0.7979 0.7386 0.6363
0.9 0.9822 0.9629 0.9416 0.9179 0.8911 0.8600 0.8228 0.7760 0.7117 0.6027
1.0 0.9803 0.9589 0.9354 0.9093 0.8798 0.8458 0.8053 0.7548 0.6858 0.5710

λ increases when order rank value r increases. The rate of decrease in the survival function gets higher for the increasing
values of the observable lifetime value y of the concomitant.

Fig. 1(b) displays that the survival function for the ranks of order r = 1, 5 and 10. As seen in the figure, the survival
function declines for the increasing values of lifetime y, and the rate of the decline becomes faster as r and λ values get
larger.

The behavior of the hazard function of the concomitant Y[r:n] are depicted in Fig. 2(a) and (b). As noticed from Fig. 2(a),
the hazard function tends to increase as r increases and as λ gets smaller. The rate of increase is slightly faster for the smaller
values of y. Fig. 2(b) presents that the hazard function has a declining shape for the increasing y values. It is also presented
in the figure that the level of the hazard function values gets higher as r , the order of the magnitude of the lifetime X , grows
large.

6. Conclusion

The bivariate Pseudo–Gompertz distribution that this paper introduces has many potential uses. The distribution suits
extremely well to the applications of lifetime modeling in reliability and survival analysis, financial risk modeling and
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Table 2
Hazard function for the concomitant Y[r:n] .

y r
1 2 3 4 5 6 7 8 9 10

λ = 0.02

0.1 0.0991 0.2091 0.3327 0.4737 0.6378 0.8340 1.0782 1.4011 1.8777 2.7877
0.2 0.0982 0.2071 0.3293 0.4685 0.6301 0.8228 1.0614 1.3745 1.8299 2.6647
0.3 0.0974 0.2052 0.3261 0.463 0.6226 0.8119 1.0451 1.3490 1.7850 2.5563
0.4 0.0965 0.2033 0.3228 0.4585 0.6154 0.8013 1.0294 1.3246 1.7428 2.4596
0.5 0.0957 0.2015 0.3197 0.4537 0.6083 0.7910 1.0142 1.3013 1.7031 2.3725
0.6 0.0949 0.1997 0.3166 0.4490 0.6013 0.7809 0.9995 1.2789 1.6655 2.2936
0.7 0.0941 0.1979 0.3136 0.4443 0.5946 0.7712 0.9853 1.2573 1.6300 2.2215
0.8 0.0933 0.1961 0.3106 0.4398 0.5880 0.7617 0.9716 1.2366 1.5962 2.1552
0.9 0.0925 0.1944 0.3077 0.4354 0.5816 0.7525 0.9582 1.2167 1.5641 2.0941
1.0 0.0918 0.1927 0.3049 0.4311 0.5753 0.7435 0.9453 1.1975 1.5336 2.0374

λ = 0.05

0.1 0.0399 0.0842 0.1340 0.1908 0.2571 0.3366 0.4357 0.5674 0.7637 1.1487
0.2 0.0398 0.0839 0.1335 0.1901 0.2560 0.3349 0.4332 0.5633 0.7560 1.1271
0.3 0.0396 0.0836 0.1330 0.1894 0.2549 0.3333 0.4307 0.5593 0.7485 1.1066
0.4 0.0395 0.0834 0.1326 0.1887 0.2539 0.3317 0.4282 0.5553 0.7412 1.0873
0.5 0.0394 0.0831 0.1321 0.1880 0.2528 0.3301 0.4258 0.5514 0.7341 1.0690
0.6 0.0393 0.0828 0.1317 0.1872 0.2517 0.3285 0.4234 0.5476 0.7272 1.0515
0.7 0.0392 0.0826 0.1312 0.1865 0.2507 0.3270 0.4210 0.5438 0.7204 1.0349
0.8 0.0391 0.0823 0.1308 0.1859 0.2496 0.3254 0.4187 0.5401 0.7138 1.0190
0.9 0.0390 0.0821 0.1303 0.1852 0.2486 0.3239 0.4164 0.5365 0.7074 1.0038
1.0 0.0388 0.0818 0.1340 0.1845 0.2476 0.3224 0.4142 0.5329 0.7011 0.9893

λ = 0.075

0.1 0.0266 0.0562 0.0894 0.1274 0.1717 0.2248 0.2911 0.3793 0.5110 0.7710
0.2 0.0266 0.0561 0.0893 0.1272 0.1713 0.2242 0.2901 0.3776 0.5077 0.7614
0.3 0.0265 0.0560 0.0891 0.1269 0.1709 0.2235 0.2891 0.3759 0.5045 0.7521
0.4 0.0265 0.0559 0.0889 0.1266 0.1704 0.2229 0.2880 0.3742 0.5013 0.7432
0.5 0.0264 0.0558 0.0887 0.1263 0.1700 0.2222 0.2870 0.3726 0.4982 0.7346
0.6 0.0264 0.0557 0.0886 0.1260 0.1696 0.2216 0.2860 0.3709 0.4951 0.7263
0.7 0.0264 0.0556 0.0884 0.1258 0.1692 0.2209 0.2851 0.3693 0.4921 0.7183
0.8 0.0263 0.0555 0.0882 0.1255 0.1687 0.2203 0.2841 0.3677 0.4891 0.7105
0.9 0.0263 0.0554 0.0880 0.1252 0.1683 0.2197 0.2831 0.3661 0.4862 0.7030
1.0 0.0262 0.0553 0.0879 0.1249 0.1679 0.2190 0.2821 0.3646 0.4833 0.6957

λ = 0.1

0.1 0.0200 0.0422 0.0671 0.0957 0.1289 0.1688 0.2186 0.2849 0.3840 0.5803
0.2 0.0200 0.0421 0.0671 0.0955 0.1287 0.1685 0.2181 0.2840 0.3822 0.5749
0.3 0.0199 0.0421 0.0670 0.0954 0.1285 0.1681 0.2175 0.2831 0.3805 0.5697
0.4 0.0199 0.0420 0.0669 0.0952 0.1283 0.1678 0.2170 0.2822 0.3787 0.5646
0.5 0.0199 0.0420 0.0668 0.0951 0.1281 0.1675 0.2165 0.2813 0.3770 0.5597
0.6 0.0199 0.0419 0.0667 0.0950 0.1279 0.1671 0.2160 0.2805 0.3754 0.5549
0.7 0.0199 0.0419 0.0666 0.0948 0.1276 0.1668 0.2155 0.2796 0.3737 0.5503
0.8 0.0198 0.0418 0.0666 0.0947 0.1274 0.1665 0.2150 0.2787 0.3721 0.5458
0.9 0.0198 0.0418 0.0665 0.0946 0.1272 0.1662 0.2144 0.2779 0.3704 0.5413
1.0 0.0198 0.0418 0.0664 0.0944 0.1270 0.1659 0.2139 0.2771 0.3688 0.5370

insurance product valuations as stressed in the manuscript. The combination of the variates in the random lifetimes vector
(X, Y ) by a real valued parameter function φ(x) is an essential feature of the model. This function must be a meaningful
function in the survival analysis and risk modeling attempts that parametrically relates a random lifetime Y with another
random lifetime X . The function must also satisfy that the joint distribution of (X, Y ) carries all the properties to be a
distribution function. The formofφ(·) function, that is presented in the paper, is an example of its kind and it can bemodified
according to the needs of the users.

The distribution, survival and hazard functions for the lifetimes with a Pseudo–Gompertz distribution model are
presented here in practical and useful forms that are achieved by utilizing Harmonic numbers and Gamma functions. An
exemplification of the survival and hazard functions are provided in the tables of the paper for some selected parameters
and values of the concerned variables. Similar tables can be constructed in a wider perspective for multiple lifetimes. In
particular, life tables for the general and contingentmultiple-life insurances can be constructedwith actuarial considerations
for the practical uses in finance and insurance areas. Similarly, by employing the results of this paper, more detailed survival
and hazard tables can be computed for the reliability analysis of the physical systemswith pairs of units in their components
where each unit functions as reserve unit for the other.
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Fig. 1. (a) Survival function for the concomitant Y[r:n] values of y = 0.1, y = 0.5, y = 1. (b) Survival function for the concomitant Y[r:n] values of r = 1,
r = 5, r = 10.

Appendix A

The computations below show that f (x, y) in expression (9) is the density function of a bivariate Pseudo–Gompertz
distribution:

F(x, y) =

 x

0

 y

0
f (x, y)dxdy

=

 y

0

 x

0
λ(eµ1x − 1)eµ1xeµ2x exp


−(eµ1x − 1)


λ

µ1
+
(eµ2y − 1)

µ2


dxdy

= 1 − exp


−
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
eµ1x − 1
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+


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
−
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− 1
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Lim
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Lim
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F (x, y) = 1 −

λµ2

µ1 (eµ2y − 1)+ µ2λ
.



S. Yörübulut, O.L. Gebizlioglu / Journal of Computational and Applied Mathematics 247 (2013) 68–83 79

Fig. 2. (a) Hazard function for the concomitant Y[r:n] values of y = 0.1, y = 0.5, y = 1. (b) Hazard function for the concomitant Y[r:n] values of r = 1,
r = 5, r = 10.

And, under the transformation (eµ1x − 1) = u, we can write

F(x, y) =


∞

0


∞

0
f (x, y) dxdy

=


∞

0


∞

0
λ

eµ1x − 1


eµ1xeµ2y exp


−

eµ1x − 1

  λ

µ1
+
(eµ2y − 1)

µ2


dxdy

=


∞

0

λ

µ1
eµ2y


∞

0
u exp


−u


λ

µ1
+
(eµ2y − 1)

µ2


dudy

=


∞

0

λ

µ1
eµ2y

1
λ
µ1

+
(eµ2y−1)

µ2

2 dy
which, under the transformation (eµ2y − 1) = v, turns out to be

F(x, y) =
λ

µ1µ2


∞

0

1
λ
µ1

+
v
µ2

2 dv
=

λ

µ1µ2

µ1µ2

λ
= 1.
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Appendix B

(a) The survival and hazard functions for Xr:n, under the Pseudo–Gompertz distribution, are derived and displayed below:
The probability density and distribution functions for Xr:n are

fXr:n(x) =
n!

(r − 1)! (n − r)!
λeµ1x


1 − exp


−
λ

µ1


eµ1x − 1

r−1 
exp


−
λ

µ1


eµ1x − 1

n−r+1

=
λeµ1xn!

(r − 1)! (n − r)!

r−1
h=0

(−1)h

r − 1
h


e−

λ
µ1 (e

µ1x−1)(n−r+h+1)
, (B.1)

and

FXr:n(x) =

 x

0
fX[r:n](x)dx

=

 x

0

n!
(r − 1)! (n − r)!

λeµ1x

1 − exp


−
λ

µ1


eµ1x − 1

r−1 
exp


−
λ

µ1


eµ1x − 1

n−r+1

dx (B.2)

which, after the transformation
eµ1x − 1


= u, µ1eµ1xdx = du,

turns out to be

=
n!

(r − 1)! (n − r)!
λ

µ1

 eµ1x−1

0


1 − exp


−
λ

µ1
u
r−1 

exp


−
λ

µ1
u
n−r+1

du.

Since the last component here can be expressed as
1 − exp


−
λ

µ1
u
r−1

=

r−1
h=0


r − 1
h


(−1)h


exp


−
λ

µ1
u
h

,

Eq. (B.2) reduces to

=
n!

(r − 1)! (n − r)!
λ

µ1

 eµ1x−1

0

r−1
h=0


r − 1
h


(−1)h


exp


−
λ

µ1
u
n−r+h+1

du

=
n!

(r − 1)! (n − r)!

r−1
h=0


r − 1
h


(−1)h

1
(n − r + h + 1)


1 − exp


−
λ

µ1


eµ1x − 1


(n − r + h + 1)


. (B.3)

This can be re-expressed by making use of the identity
r−1
h=0


r − 1
h


(−1)h

1
(a + h)

(1 − exp (−b (a + h)))

= e−ab


aeab (a − 1)!(r − 1)! − (a + r − 1)!2F1


a, r − 1, a + 1, e−b


a (a + r − 1)!

where 2F1 (a, b; c; z) =


∞

k=0
(a)k(b)k
(c)k

zk
k! is the Gauss Hypergeometric function as given in [18]. This function will be used

also in the rest of the expressions of Appendix B.
A simpler expression for (B.3) is given below by denoting n − r + 1 = a and λ

µ1
(eµ1x − 1) = b;

=
n!

(r − 1)!(n − r)!
e−

λ
µ1
(eµ1x−1)(n−r+1) 1

(n − r + 1)(n − r + 1 + r − 1)!

×


(n − r + 1)e

λ
µ1
(eµ1x−1)(n−r+1)

(n − r + 1 − 1)!(r − 1)! − (n − r + 1 + r − 1)!2F1

×


n − r + 1, 1 − r, 1 + n − r + 1, e−

λ
µ1 (e

µ1x−1)


=
n!

(r − 1)!(n − r)!
e−

λ
µ1
(eµ1x−1)(n−r+1) 1

(n − r + 1)n!

×


(n − r + 1)e

λ
µ1
(eµ1x−1)(n−r+1)

(n − r)!(r − 1)! − n!2F1

n − r + 1, 1 − r, 1 + n − r + 1, e−

λ
µ1
(eµ1x−1)


=

n!
(r − 1)!(n − r)!

e−
λ
µ1
(eµ1x−1)(n−r+1) 1

(n − r + 1)n!
(n − r + 1)e

λ
µ1
(eµ1x−1)(n−r+1)

(n − r)!(r − 1)!
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−
n!

(r − 1)!(n − r)!
e−

λ
µ1
(eµ1x−1)(n−r+1) 1

(n − r + 1)n!
n!2F1


n − r + 1, 1 − r, 1 + n − r + 1, e−

λ
µ1
(eµ1x−1)


= 1 −

n!
(r − 1)!(n − r + 1)!

e−
λ
µ1
(eµ1x−1)(n−r+1)

2F1

n − r + 1, 1 − r, n − r + 2, e−

λ
µ1
(eµ1x−1)


.

Therefore the distribution function for Xr:n is

FXr:n(x) = 1 −
n!

(r − 1)! (n − r + 1)!
e−

λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)

. (B.4)

By its definition, the survival function of SXr:n(x) = 1 − FXr:n(x) of Xr:n is

SXr:n(x) =
n!

(r − 1)! (n − r + 1)!
e−

λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)

. (B.5)

The hazard function for Xr:n is derived from the definition hXr:n(x) =
fXr:n (x)
SXr:n (x)

and shown below:

hXr:n(x) =

λeµ1xn!
(r−1)!(n−r)!

r−1
h=0
(−1)h


r − 1
h


e−

λ
µ1 (e

µ1x−1)(n−r+h+1)

n!
(r−1)!(n−r+1)! e

−
λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)
 . (B.6)

(b) The derivations of the joint survival and hazard functions for the {Xr:n, Y[r:n]} pair are shown in this part. It is known that,
by denoting fY[r:n](y | Xr:n = x) = f (y | x), the joint density function for the random vector {Xr:n, Y[r:n]} is expressed by
fXr:n,Y[r:n](x, y) = f (y | x)fXr:n(x) as shown in [24].
The joint survival and hazard functions have the forms of

SXr:n,Y[r:n](x, y) = S(y | x)SXr:n(x) and (B.7)

hXr:n,Y[r:n](x, y) = h(y | x)hXr:n(x), (B.8)

respectively. Then, using the joint density function of the Pseudo–Gompertz distribution

f (x, y) = λ

eµ1x − 1


eµ1xeµ2y exp


−

eµ1x − 1

  λ

µ1
+
(eµ2y − 1)

µ2


, µ1, µ2, λ, y, x > 0,

we obtain the joint survival function as follows:
Given the definitions SXr:n,Y[r:n](x, y) = S(y | x)SXr:n(x) and S(y | x) =

S(x,y)
S(x) , where

S (x, y) =
λµ2

µ1 (eµ2y − 1)+ µ2λ
exp


(eµ2y − 1)

µ2
− eµ1x


(eµ2y − 1)

µ2
+
λ

µ1


+
λ

µ1


and (B.9)

S(x) = exp


−
λ

µ1


eµ1x − 1


, (B.10)

there follows the conditional survival function

S(y | x) =

λµ2
µ1(eµ2y−1)+µ2λ

exp

(eµ2y−1)

µ2
− eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1


exp


−

λ
µ1
(eµ1x − 1)

 . (B.11)

Placing in (B.7) the expression in (B.11) and

SXr:n(x) =
n!

(r − 1)! (n − r + 1)!
e−

λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)


(B.12)

we obtain

SXr:n,Y[r:n](x, y) = S(y | x)SXr:n(x)

=

λµ2
µ1(eµ2y−1)+µ2λ

exp

(eµ2y−1)

µ2
− eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1


exp


−

λ
µ1
(eµ1x − 1)


×

n!
(r − 1)! (n − r + 1)!

e−
λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)

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SXr:n,Y[r:n](x, y) =
λµ2

µ1 (eµ2y − 1)+ µ2λ
exp


−

eµ1x − 1

  (eµ2y − 1)
µ2

+
λ

µ1
(n − r + 1)


×

n!
(r − 1)! (n − r + 1)! 2

F1

n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)

. (B.13)

Then, using these results, the probability that the two lives, currently at the ages of u and v, will live for at least t time
durations can be expressed:

P (T (u) > t, T (v) > t) = P

Xr:n > u + t, Y[r:n] > v + t | Xr:n > u, Y[r:n] > v


=

P

Xr:n > u + t, Y[r:n] > v + t


P

Xr:n > u, Y[r:n] > v

 =
SXr:n,Y[r:n] (u + t, v + t)

SXr:n,Y[r:n] (u, v)
= tpuv. (B.14)

The probability that the concomitant live lives for a time duration of t , at least, is

P (T (u) > t) = P (Xr:n > u + t | Xr:n > u)

=
P (Xr:n > u + t)
P (Xr:n > u)

=
SXr:n (u + t)

SXr:n(u)
= tpu. (B.15)

The joint hazard function, then, is found as

h(x, y) =

λ (eµ1x − 1) eµ1xeµ2y exp

− (eµ1x − 1)


λ
µ1

+
(eµ2y−1)

µ2


λµ2

µ1(eµ2y−1)+µ2λ
exp


(eµ2y−1)

µ2
− eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1

 . (B.16)

Further, the conditional hazard function, that uses (B.16) and h(x) = λeµ1x, is derived as

h (y | x) =
h (x, y)
h(x)

=

λ(eµ1x−1)eµ1xeµ2y exp

−(eµ1x−1)


λ
µ1

+
(eµ2y−1)

µ2


λµ2

µ1(eµ2y−1)+µ2λ
exp


(eµ2y−1)

µ2
−eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1


λeµ1x

=

(eµ1x − 1) eµ2y exp

− (eµ1x − 1)


λ
µ1

+
(eµ2y−1)

µ2


λµ2

µ1(eµ2y−1)+µ2λ
exp


(eµ2y−1)

µ2
− eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1

 . (B.17)

As the result; using (B.6) and (B.17) above, the sought joint hazard function is obtained; hXr:n,Y[r:n](x, y) = h(y | x)hXr:n(x)

=

 (eµ1x − 1) eµ2y exp

− (eµ1x − 1)


λ
µ1

+
(eµ2y−1)

µ2


λµ2

µ1(eµ2y−1)+µ2λ
exp


(eµ2y−1)

µ2
− eµ1x


(eµ2y−1)

µ2
+

λ
µ1


+

λ
µ1




×


λeµ1xn!

(r−1)!(n−r)!

r−1
h=0
(−1)h


r − 1
h


e−

λ
µ1 (e

µ1x−1)(n−r+h+1)

n!
(r−1)!(n−r+1)! e

−
λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n − r + 1, 1 − r, n − r + 2, e−

λ
µ1 (e

µ1x−1)

 . (B.18)

After the necessary simplifications, a simpler form of this function is obtained: hXr:n,Y[r:n](x, y) =
(µ1(eµ2y−1)+µ2λ)

µ2

(n−r+1)(eµ1x−1)eµ2yeµ1x
r−1

h=0(−1)h

r − 1
h


e
−
λ
µ1 (e

µ1x−1)(n−r+h+1)

e
−
λ
µ1 (e

µ1x−1)(n−r+1)
2F1


n−r+1,1−r,n−r+2,e

−
λ
µ1 (e

µ1x−1)
 .
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