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1. Introduction

The Gompertz distribution is a widely used probability distribution in the modeling of lifetimes of components of physical
systems and organisms of biological populations [1]. Life tables for human beings, in particular, are constructed on the basis
of the distributions like the Gompertz distribution. Specifically, it is an empirically veritable parametric probability model
that is used to express age specific probabilities of lifetime and mortality or hazard rates for lives in human populations.
Detailed examples of such important uses of the Gompertz distribution are given by [2-4].

A bivariate distribution F (x, y) for a pair of random variables (X, Y) expresses the dependence between X and Y as
embedded in its functional form and parameters. When X or Y is related with each other through a real-valued function
¢(-), then the distribution that emerges from F (x, y) is a pseudo-distribution with ¢(-) included in its set of parameters.
It is obvious that ¢ (x) must satisfy the condition that the pseudo distribution has all the properties to be a probability
distribution. A pseudo-distribution that has a stationary distribution property is introduced by [5], way back in sixties,
by redefining several parameters of a probability function. The Wishart distribution under singularity is discussed in [6]
where Pseudo-Wishart distributions are obtained by tackling with the causes of singularity. The work in [7] concentrates
on a bivariate Gompertz distribution and finds a Gompertz-type distribution with the use of some suitable functions that tie
some concerned random variables with each other. A generalization of the Gompertz distribution is proposed in [8] by some
parametrizations that enables the application of some survival models with empirically identifiable mortality concepts.
Thus, the interest in theory and methods about the Gompertz distribution is progressive.
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Recently, a class of pseudo-distributions is introduced by [9] as the probability distribution models for several linear
combinations of random variables in the stochastic modeling attempts. Along the lines that combinations of random
variables are of concern, our paper introduces a bivariate Pseudo-Gompertz distribution arising from the bivariate Gompertz
distribution.

Concomitants are useful accompaniments in statistical modeling that may stand as random variables of interest in
connection with order statistics of random samples. For such a situation, order statistics and their concomitants are taken
under consideration in the current paper for the Pseudo-Gompertz distribution.

In the following sections; order statistics and concomitants are mentioned first and then the new bivariate Pseudo-
Gompertz distribution is presented. A next step is the construction of the distribution of the concomitants of order statistics
for the presented Pseudo-Gompertz distribution and the derivation of the survival and hazard functions for them. Some
implications of the results are provided for reliability and risk modeling throughout the sections.

2. Order statistics and concomitants

A random sample of (X1, Y1), (X2, Y2), ..., (X, Y,) from a bivariate distribution with bivariate distribution function
F (x,y) yields order statistics of the first coordinate as (Xi.n, Xo:n, . . ., Xn:n) such that Xi, < X, for i < j. If the pairs
Xi,Y)), i = 1,2,...,n, are ordered by their X variates according to (X1.n, X2.n, - . ., Xn:n), then the Y variate associated
with the r-th order statistic X;., of X, denoted by Yj;.;;, 1 < r < n, is called the concomitant of the r-th order statistic. For a
detailed overview of concomitants, we refer to [10,11].

Concomitants are used in many applied areas where a population characteristic Y is investigated with respect to another
characteristic X of the same population. Such applications are expedient in the risk management fields like system reliability,
finance and actuarial sciences where losses due to frailties or defaults are of ultimate concern. Recently, tolerance intervals
for bivariate quantiles of two dependent random variables are obtained in [ 12] by using the concomitants of order statistics.
Another recent work by [13] considers the concomitants of the generalized order statistics as a unified model for ordered
random variables.

An observed sample from a population helps to determine the underlying probability distribution model F (x, y) for the
(X, Y) pair and their marginal probability distribution functions F (x) and F (y). By the use of F (x, y) as the parent distribution,
the probability distribution models for the r-th order statistic X;., of X, 1 < r < n, and the distribution and density functions
for the concomitants Y{,.,; of X;., can be obtained. The essential expressions for such functions are clearly derived and shown
by [14,10,11]. Following them, the general definitions of the probability distribution and density functions for Y., are
shown below as standard definitions for a random variable in general:

FY[r:n] (y) = / F(y | X)er;n (X)dx (‘1)
and
i@ = [0 0, .

where F (y | x) and f (y | x) are the conditional distribution and density functions of Y given X. The density function of an
r-th order statistic is defined as

n!
)= FI ' [1=F@]"". 3
fra® = T QO FIT 1= F) (3)
The joint distribution of two order statistics X., < Xs., is expressed as;
n'

DGl s @Y ) [F DI THF () = F )P 1= F ()]"™. 4)

S Xen (X1, X2) =
And, the joint distribution of two concomitants is given by
oo X2
it 003 = [ [ FO0 0702 100t (0,1 (5)
—0Q0 J —0Q

The dependence structure of the concomitants implicit in the function above is discussed by [11]. The general expressions
given here are used in the following sections where a new bivariate Pseudo-Gompertz distribution is presented.
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3. The bivariate Pseudo-Gompertz distribution

A new class of pseudo-distributions for linear combinations of random variables is introduced by [15] for the statistical
applications where an actual distribution cannot be used easily. Some other pseudo-distributions have been introduced
afterwards in a similar way. Following the pseudo-distributions obtained by [16,17,9], among them, we obtain a bivariate-
Gompertz distribution as presented below.

The Gompertz distribution with parameters A and . for a random variable X has the following density function

A
fx (X3 A, 1) = re1*exp [_7 (e — 1)] ., M1 >0, A>0 x>0. (6)
M1
Suppose that another random variable Y also has a Gompertz distribution with parameters ¢ (x) and w,, where ¢(x) is a
real valued function of the random variable X. Then, the density function of Y is given by

Frixer 0 6@, 12 | %) = p(R)€" exp [—d’;’z‘) ("2 — 1)} . >0, ¢ >0,y>0. (7)

Using the marginal densities defined in Eqs. (6) and (7) above, the bivariate Pseudo-Gompertz distribution is obtained
as the compound distribution of X and Y with density function;

fx,y) = rp(x)e"1*e!? exp [_)” (emx _ 1) — @ (euzy _ 1):| ,
Ha M2

I“L]>O’M2>Oa)">07¢(x)>osy>oax>o7 (8)

which follows from f (x, y) = fix (x; A, 1) frix=x V; (%), 112 | X).
Depending upon various choices of function ¢(x), several distributions can be generated from this general density
function. Adopting ¢ (x) = e*1* — 1, the following form of bivariate Pseudo-Gompertz distribution is obtained:

A e/‘Zy —1
fx,y)=Ax (e’“x - 1) et1%el2Y exp [— (e‘”" — 1) (7 + -1

)} M1, M2, A, y, x> 0. (9)
M1 M2

The ¢ (x) function can be determined by the users in accordance to their needs of modeling. Here, the essential condition
isthat F (x,y) = fx jy f (x,y) dydx must satisfy all the properties to be a probability distribution function. It can easily be
checked that f (x, y) above is a bivariate density function as proved in Appendix A of the paper.

The plots of the density function expressed in (9) are displayed below. From the plots, it is seen that the joint density has
a long right tail as compared to its left tail.
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The marginal distributions of X and Y are derived from Eq. (9) as

A A A (@ —1)\?
f(x) = re"™ exp [— (eM1* — 1)] and f(y) = ety — ( + ¥> , Trespectively.
m1 K1 \ M1 2
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The joint distribution function corresponding to f (x, y) in (9) is

Fxy) = /.V /X)\ (emx _ 1) eH1Xoht2y exp |:_ (emx _ ]) (i + w>] dxdy
o Jo

M1 “2

2 (C20 1)

M2 M1

3 [exp (2 —emn (220 4 2y 2) ] N (1 ~exp <_i(emx_ 1))). (10)

M1

So, the joint survival function, that follows from (10) above, is

Sxy)=1-FX -EKEy +FKxy

where F; (x) ve F,(y) are the marginal distribution functions of X and Y, respectively, and they are obtained for the bivariate
Pseudo-Gompertz distribution, using Eq. (10), as follows:

. A
Fi(x) = Lim F (x,y) = 1 — exp (—— (e — ])>
y=oo m
and

A2
1 (er2Y — 1) + pah

FR(y)=LmFx,y)=1-
X— 00

From the joint and marginal distribution functions above, the corresponding joint survival function is found as
A ety — 1 el — 1 A A

PP (U (LA

pr (eF2Y — 1) + pad M2 M2 28 28

The plots of the joint survival function are displayed below. The plots indicate that the survival function decreases faster
in value as the values of A and pq increase.
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4. Distribution of the concomitants

In this section, we obtain the distribution of the concomitant of the r-th order statistics for the bivariate Pseudo-
Gompertz distribution, given in Eq. (10). This distribution is derived by placing in Eq. (2) the density function of the r-th
order statistics for the random variable X,

— n! )L/MX 1 A M1X 1 ! A n1X 1 e
et = e = oe [ @] e e

Aelixn) 1 _ (%) (e
- mzunh (r h l>e i (DD A x> 0, (11)
r — 'n—r)!
h=0
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The conditional density function f (y | x), shown below as derived from (9), is also needed for deriving the density func-
tion of the concomitant:

(e** —1)
U2

Placing Eqgs. (11) and (12) in Eq. (2), the density function of the concomitant of the r-th order statistic X;., from the
bivariate Pseudo-Gompertz distribution is found as:

el2¥ \n!
me:(w%ﬂ@—miy ”( )

o 11X Mm1X
« / efﬁ(eﬂ —1)(n—r+h+1) (emx _ 1) "1 exp |:_ (e 1) (e"zy _ 1):| dx
0 M2

wietn! — p(r—1 i (e"¥ — 1)\ 7
= E -1 h — 14+ ——— . 13
AT —DIn—-n)! h:O( : h o HaA 1

Here, the random variable X may be taken as the lifetime of a unit or live at age x and Y may be the lifetime of another
unit or live at age y whose relation with X is built by ¢ (x) in their joint distribution function. Accordingly, the (X;.n, Y{r.n])
pair stands for the r-th order lifetime and the lifetime of the r-th order concomitant in a random sample of n observations.
The distribution obtained above can then be used for risk modeling purposes on the basis of the life contingencies of the
pairs of ranked lifetimes and their concomitants.

A more useful form of the density function given above is derived below by using the results given in [18,19].

; m (e -1) -
Consider Eq. (13) and let — o +n—r+1=aq,

r—1 _ M2y _ 1 r—1 1
Z(—l)h<rh1><h+n—r+l+%> =Y ( ; )(h+a)2 (14)

h=0 h=0

f@1x) = (e"*—1)e"? exp [— (e'Y — 1)] . M1, M2, X, ¥y > 0. (12)

and

ic_vew_ (r =1 — @
h+a aa+1)---(a+r—1) -8

h=0
-1
l(r_1+a) L ag(0,—1,...,—(1r—1)). (15)

r—1

Note that there is a connection between g(a) defined above and the Gamma function. Since

o0
I'(a) :f t*le7tdt, a>0
0

r 1 r 2 r
I(a) = @+ T@+2 (a+r) , (16)
a a(a+1) a(a+1)---(a+r—1)
we can re-expresses Eq. (15), as shown in [19], by using expression (16);
r—1 h
r—1\ (=1 (r—1! (r—1!T(a)
go=>) ("} = = :
pard h+a a(a+1)---(a+r—1) '@a+r)
Differentiating g (a) with respect to its argument, we get
r—1 h
, r—1\ (=1
g(@=— ( ) =g@{y@ -y (a+n}, (17)
,,Zo: h ) (h+a)?
where the digamma function v (a) is the logarithmic derivative of I' (@) such that
d I'(a)
— 1 r .
y(a) = —logl'(a) = @

It is known that a harmonic number of order n is

n 1 n n 1
Haw = ;E = ; <1<> (=DM fork=1,2,....n
k= —
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The connection between the harmonic number and the digamma function is,

a+r—1

W@+n-—v@l= 3 +=Haern —Ho. (18)

h=a

Therefore, using the Eqs. (17) and (18), we re-express Eq. (14);

r—1 1 (_1)’1
- Hir
= % (Hasr—1) —Ha-1) - .

Hny
Consequently, the density function for the concomitant Y., in (13) with % +n —r + 1 = acan be re-written as

y e (e )
wietrYr(n+1)r (n r+ = +1 H< +u1(e"2y 1)) H<n7r+‘”(euzy71))

no oA

fr:n(y): n
o Ar(n—r+1)r(n+’“(;7;i_l)+1)

This function is used in the following section for deriving the relevant survival and hazard functions.

5. Survival and hazard functions

When the random vector (X, Y) is defined as the lifetimes of two units or lives at a certain time point with observable ages,
the remaining lifetime probabilities can be computed by using the general definition of a survival function, S(t) = 1 — F(t),
for each of (X, Y).

In this section, we derive the survival and hazard functions for Y};.;;. These functions are useful for the survival analysis
with regard to any parent probability distribution. Using expression (13), the distribution function Fy,,, () can be written
as

Yy
FY[r:n] (y) = /(; fy[r:"] (t)dt

2
y A (er2t — 1)

- 1 L AR ISP Gt/ B
/(r—w(n—rm;( )< )e (ul(" TRt D ) ‘

wi(eH2Y—1)

n! =1 h 1 1 ok
= ————— > "'} . 21)
(r—])’(n—r)’h:O (h+n—r+1) ((h+n—r+l)+u](97)\]))
A more useful form of this distribution function is constructed below. Using
rf:(—l)” (r - 1) 1 < b > _T@Or@ re+bhr (22)
e h ) (h4+c) \(h+c+b) F(c+r) T(+b+r)
and lettingn —r 4+ 1=, % = b in the distribution function (21), we obtain
n (6”” 1)
n! T(n—r+1)T@) F("—r+1+ : )F(T)

A vy T e s F(n—r+1+w+r)

oA

I“(n—f—])l“(n—r—i—w—i—])

=1- (23)
F(n—r+1)F(n+M+l)
Using Eq. (23), the survival function for the concomitant is found as
eﬂZy —1 eﬂZy —1
Sy @) = T(n+ DT (n @D 1) JT(n—1+ 1T <n gD 1) . (24)
: H2A H2A
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Furthermore, the hazard or mortality rate function, in the general form of h(y) = f(y) [S(y)]~", for the concomitant of
the r-th order statistics from the bivariate pseudo-Gompertz distribution is obtained as

hY[r:n](.y) = fy[r:n] ) — e |: (

Sy[r:n] (_V) - A H U+M) B H(nr+“1(eu2yl))i| ’ (25)

HoA HoA

It is seen that the survival and hazard functions for Y., are functions of n, r, 1, i, and A, given ¢(x). The random
variable X does not appear in expression (25), but its order of magnitude r and the sample size n do. So does the observable
value y of Y.

Considering a system consisting of a number of components each with a pair of units whose ages are observable, and
concentrating on these components as a matter of reliability investigation, the reliability of the system can be assessed by
the survival and hazard functions. (X, Y) being the lifetimes of the first and the second units of a component, respectively,
a sample of n observations {(Xy, Y1), ..., Xy, Y,)}, at a given time, on the system components yields the order statistics
and their concomitants {(X1:n, Y1:n)) » - - -+ (Xems Yirem)) » - - - (Xnns Yineny) |- Assuming that the proper running of the system
relies on the lifetimes of these components, the matter of the system reliability reduces to the survival of at least one of the
units in the components. In this regard, the survival function SVirmy (y) in Eq. (24) states the probability of the random event
(Y[r;n] > y) for the r-th concomitant as the second unit of a component.

The probability of the hazardous event that the second unit of a component fails within the small interval (y, y + dy) is
Py <VYpm <y+dy| Yipm >y) = hy,,, (¢)dy, given that Sy (y) 0, which is nothing but the hazard rate or mortality
rate expressed in Eq. (25), above.

A loss may exceed some endurable limits for a system due to the hazardous events as described above. Therefore, it is
imperative to analyze and manage the technical and economic risks of the systems through the system reliability measures
like the survival and hazard functions shown here.

The survival and hazard functions, under the bivariate Pseudo-Gompertz distribution model, for X;., and for the
{Xr:n, Yir.m} can be similarly derived. The derivations are elaborated in Appendix B. All these functions will be used in another
application example presented below.

In the areas of finance and insurance, the lifetimes and mortality rates of human beings are the most essential elements in
risk modeling. For instance, liabilities inherent in credit loans or insurance policies bear financial loss risks due to high costs
of non-performance cases or contingent claims situations that arise in connection with the lifetime durations or the deaths
of the individuals. The death of loan borrowers is a financial default for a loan lender that results in the loss of a planned
cash flow of dept payments. Similarly, the death of the owner of a life insurance with a death benefit contract may cause an
extra loss to an insurer if the death occurs earlier than an actuarially expected future time, Or, if the benefit amount exceeds
an allocated reserve amount. In such situations, measures can be taken against the risks of excessive losses by using risk
preventing or loss reducing tools like hedging and reinsurance. The books by [20,21], among many others, lucidly present
the concepts of risk management for the system reliability, finance and insurance areas.

Assume that there exists a sample of observations {(X;, Y1), ..., (Xu, Y)}, at a given time, on the lifetimes of pairwise
insureds from an insurance portfolio. Consider the order statistic and concomitant pairs {(Xi.n, Yfi:n1)s - - - » Xren, Yireng)s
..y Xu:ns Yienp)} from this sample. Let u stand for the age of live with random lifetime X and v stand for the age of live
with random lifetime Y under concern. It is realistic to assume that the future lifetime of each live of the pair gets shorter as
their ages get larger. Therefore, the choice of the rank r for the order statistic X;., is a critical issue for the risk assessments,
with the loss prevention aims, as an indicator of the age level in the analysis. Suppose that the type of insurance under
concern is a whole life insurance with benefits payable at the moment of death. Here, the life insurance contracts can be in
two general categories known as the contracts for general and contingent life insurances. The contingent insurance contracts
provide benefits upon the order of death of a designated live and no benefit is paid if this does not happen. On the other
hand, under the general life insurance contracts, there are two major insurance status types known as the joint-life status
and the last-survivor status. The concepts and models about these contract categories and status types are well known in
the literature and we refer to [22, pp. 444-473,488-491] and [23, pp. 83-92] for their details.

The termination of the joint-life status is realized when the first death of the pair (X, Y) occurs. Whereas, the last-survivor
status terminates upon the last death of the pair of lives with lifetimes (X, Y). So, the lifetime of the joint-life status is
“min {T (u), T(v)}" and the lifetime of the last-survivor status is “max {T (u), T (v)}” where T (u) and T (v) denote the random
future lifetimes of the pair who are currently, that is at the time of the sample, at the ages of u and v, respectively. Then, the
death of either one or both of the two lives is a cause of benefit payment for a life insurer in the future time durations of
“u+T(u)” and “v + T(v)". It is clear that not only the termination of the life insurance statuses but also the times until the
deaths are the matters of concern for the insurer who bears the liability of death benefits payments.

We first consider the last-survivor status type with respect to future lifetimes T (1) and T (v) of the pair who are at ages of
u and v, respectively. Following [22,23] and their notation, the actuarial present value of the benefit payments, at the time
that the last-survivor status ends, is expressed as

A = Eu +Ev — A, (26)
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where “uv” denotes the joint-life status, “uv” denotes the last-survivor status, and the separate lives statuses are denoted
by “u and “v”. Agy, Auy, Ay and A, are actuarial present values, or the net single premium amounts, of the same insurance
applied to the respective statuses.

In order to express the components of the sum in Eq. (26), one needs to compute the future lifetime probabilities for each
of the defined statuses. Concerning the second component of the sum, there follows the computation of the probability that
the future lifetime of the concomitant, T (v), is at least t time amount;

P(T@) >t) =P Yy > v+t | Y > v)
P (Yirm > v +1¢) _ S @0
P (Yirm > v) Stira (V)

where Sy, (-) functions are as defined in Eq. (24). The benefit payment to the concomitant becomes due at time just the
moment immediately after T (v) 4 v if the death of the insured occurs then. Let the present value of the benefit payment, say
w, which may be a level or a varying function of time t, be 8w where 8° is the discount factor for a given force of interest.
The actuarial present value of this benefit payment is then calculated as

= tPv (27)

o0
A, :/ (0*w) hy,., (v + 1) podt (28)
0

where the hazard function (or mortality rate function) is as defined in Eq. (25) with y replaced by v - t, and ;p, is as defined
above in expression (27). A, is the basis of the age specific valuation of the cost that the insurer incurs, and it is a function
of the survival and hazard functions for the concomitant lifetime Yj.;;. Note that, the larger the future lifetime and the age
of the concomitant live the smaller is the value of the survival function.

The actuarial presented value A, in Eq. (26) is computed as

A, = / (6'w) hy,,,, (u+ 1) pyudt (29)
0

where hy,., (+) is expressed in Eq. (B.6) of Appendix B, and p,, is the probability that the first live in (X, Y) at the age of u will
live for a time duration of u 4+ T (u), at least, where T (u) = t. Here, ;p, can be calculated by using the survival function for
Xr.n, which is derived in the part (a) of Appendix B.

The value of A, is calculated similarly as follows:

o0
Ay = / (0°w) oy vy U+ £, 0+ 1) Puydt (30)
0

with hxr:n’y[r:"] (., .) standing as the joint hazard function, and ;p,, standing as the joint survival function for X;., and Yj..;;.
Both functions are derived and clearly shown in part (b) of Appendix B.

Under the contingent life insurance contracts category, assume that the concomitant live with lifetime Y is the designated
live, and the benefit is payable only if this live dies second. Following [22,23], again, the actuarial present value of the death
benefit for this case is expressed and calculated as

Euvz =A, — Ewﬂ , (31)

where A, is already expressed in Eq. (28), and the second component is the actuarial present value of the death benefit
payable on the event that the concomitant live dies first at the age of v + ¢:

o0
At =/ (0°w) tpuvhy,,, (v + ) dt. (32)
0

The characteristic behaviors of the survival and hazard functions for the concomitant Y[,.,; are Tabled below for n =
10,r =1,...,10,and 0.1 < y < 1for the selected values of the parameters (¢, i, and A of the bivariate Pseudo-Gompertz
distribution.

Table 1 contains the values of the survival function (24). Looking at these tables one can see that the survival probability
of the concomitant increases as the value of A increases, holding y, r, i1 and pu; at a fixed level. For fixed A, y, 1, uo; the
survival probability decreases while the rank r of the order statistic X;., increases. The table shows also that for the fixed
A, T, W1, 12; values, the survival probability decreases as the value y of the concomitant Y[,., increases.

Table 2 contains the values of the hazard function in Eq. (25). It is seen that the hazard rate of the concomitant decreases
as the value of A is increases, while holding y, r, ;1 and u, at fixed values. Further, for the fixed values of A, y, 11, 2, the
hazard function increases as r increases, and it declines as y gets larger.

The behavior of the survival function of the concomitant live is presented in the graphics below. Fig. 1(a) displays that
the survival function of the concomitant Yj.,j fory = 0.1, 0.5 and 1. It is seen that the survival function declines faster as
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Table 1
Survival function for the concomitant Y,.n.
y r
1 2 3 4 5 6 7 8 9 10
A =10.02

0.1 0.9901 09792 09671 09535 0.9378 09194 0.8970 08681 0.8267 0.7515
02 09804 09590 09356 09096 0.8802 0.8464 0.8060 0.7556 0.6868  0.5723
03 09708 09395 09055 0.8682 0.8268 0.7799 0.7254 0.6594 05733  0.4408
04 09615 09205 0.8766 0.8291 0.7772 07195 06540 0.5769 0.4806  0.3431
05 09523 09020 08488 0.7921 0.7310 0.6644 0.5904 05059 0.4045 0.2695
06 09432 08841 08223 07572 0.6881 0.6142 0.5339 04447 03418 0.2134
0.7 09344 08667 0.7968 0.7241 0.6482 05684 04835 0.3917 0.2899  0.1703
08 09257 0.8498 07723 0.6928 0.6110 0.5264 04384 03458 0.2467 0.1368
09 09171 0.8334 07488 0.6631 05763 04880 03981 03059 02107 0.1106
1.0 09087 08174 0.7262 0.6350 0.5439 04529 03619 02711 0.1804  0.0900

0.1 09960 09916 0.9867 09811 09746 09668 09572 0.9446 09261  0.8905
02 09921 09833 09736 09625 09499 09349 09165 0.8927 0.8584  0.7947
03 09881 09751 09607 09445 0.9259 0.9042 0.8778 08440 07962 0.7107
04 09842 09670 09480 09268 0.9027 0.8746 0.8409 07982 0.7390  0.6369
05 09803 09590 09355 09095 0.8801 0.8461 0.8058 0.7553 0.6865 0.5718
06 09765 09511 09233 08926 0.8582 0.8187 0.7723 07149 0.6381 0.5143
0.7 09727 09432 09112 08761 0.8369 0.7923 0.7403 0.6769 05935 0.4633
08 09689 09355 0.8994 0.8599 08162 07669 0.7099 0.6412 05525 0.4181
09 09651 09278 08877 0.8441 0.7961 0.7424 0.6809 0.6076 05146  0.3779
1.0 09614 09202 08762 0.8286 0.7766 07188 0.6532 0.5760 0.4796  0.3421

0.1 09973 09944 09911 09873 0.9830 0.9777 09713 09627 0.9500 0.9253
0.2 09947 09888 0.9823 09748 09662 09560 09434 0.9269 09028 0.8571
03 0.9921 09833 09735 09625 09498 0.9349 09165 0.8927 0.8583  0.7946
04 09894 09778 09649 09504 09338 09142 0.8904 08598 08162 0.7374
05 09868 09724 09564 09385 09180 0.8941 0.8652 0.8283 0.7764  0.6849
06 0.9842 09670 09479 09267 09026 0.8745 0.8408 07981 0.7388  0.6366
07 09816 09616 0939 09151 0.8874 0.8554 0.8171 07691 0.7032  0.5923
08 09790 09563 09313 09037 0.8725 0.8367 07942 07412 0.6695 0.5514
09 09765 09510 09232 08924 08580 0.8185 0.7720 0.7145 0.6377 0.5138
1.0 09739 09457 09151 08813 0.8437 0.8007 0.7505 0.6889 0.6075 0.4791

0.1 0.9980 09958 09933 09905 0.9872 0.9832 09784 09719 09622 0.9434
02 09960 0.9916 09867 09811 09745 0.9668 09572 09446 0.9261 0.8904
03 09940 09874 09801 09717 09621 09507 09366 09182 08914  0.8409
04 0.9920 09833 09735 09625 0.9498 0.9348 09165 0.8926 0.8582  0.7945
05 09901 09792 09670 09534 09377 09193 0.8968 0.8678 0.8264 0.7511
06 09881 09751 09606 09444 09258 09040 08776 0.8438 0.7959 0.7104
0.7 09861 09710 09542 09355 09141 0.8891 0.8589 0.8205 0.7666  0.6722
08 0.9842 09669 09479 09266 0.9025 0.8744 0.8406 07979 0.7386  0.6363
09 09822 09629 09416 09179 0.8911 0.8600 0.8228 07760 0.7117  0.6027
1.0 09803 09589 09354 0.9093 0.8798 0.8458 0.8053 0.7548 0.6858  0.5710

X increases when order rank value r increases. The rate of decrease in the survival function gets higher for the increasing
values of the observable lifetime value y of the concomitant.

Fig. 1(b) displays that the survival function for the ranks of order r = 1, 5 and 10. As seen in the figure, the survival
function declines for the increasing values of lifetime y, and the rate of the decline becomes faster as r and XA values get
larger.

The behavior of the hazard function of the concomitant Y}, are depicted in Fig. 2(a) and (b). As noticed from Fig. 2(a),
the hazard function tends to increase as r increases and as A gets smaller. The rate of increase is slightly faster for the smaller
values of y. Fig. 2(b) presents that the hazard function has a declining shape for the increasing y values. It is also presented
in the figure that the level of the hazard function values gets higher as r, the order of the magnitude of the lifetime X, grows
large.

6. Conclusion

The bivariate Pseudo-Gompertz distribution that this paper introduces has many potential uses. The distribution suits
extremely well to the applications of lifetime modeling in reliability and survival analysis, financial risk modeling and



S. Yoriibulut, O.L. Gebizlioglu / Journal of Computational and Applied Mathematics 247 (2013) 68-83 77

Table 2
Hazard function for the concomitant Y.
y T
1 2 3 4 5 6 7 8 9 10
A =0.02

0.1  0.0991 02091 03327 04737 0.6378 0.8340 1.0782 14011 18777 27877
02 0.0982 02071 03293 04685 0.6301 0.8228 10614 13745 18299 2.6647
03 0.0974 02052 03261 0.463 0.6226 08119  1.0451 13490 1.7850  2.5563
04 0.0965 02033 03228 04585 0.6154 0.8013 1.0294 13246 17428  2.4596
05 0.0957 02015 03197 04537 0.6083 07910 1.0142 13013 17031 2.3725
06 0.0949 0.1997 03166 04490 0.6013 0.7809 09995 12789  1.6655 2.2936
07 0.0941 0.1979 03136 0.4443 05946 07712 09853 12573 16300 2.2215
0.8 0.0933 0.1961 03106 04398 0.5880 0.7617 09716 1.2366 15962  2.1552
09 0.0925 0.1944 03077 04354 05816 0.7525 09582 12167 15641  2.0941
1.0 0.0918 0.1927 03049 04311 05753 07435 09453 1.1975 15336 2.0374

A =0.05

0.1 0.0399 0.0842 0.1340 0.1908 0.2571 03366  0.4357 05674 0.7637 1.1487
02 0.0398 0.0839 0.1335 0.1901 0.2560 0.3349 04332 05633 0.7560 1.1271
03 0.039 00836 0.1330 0.1894 0.2549 0.3333 04307 05593 0.7485 1.1066
04 0.0395 00834 0.1326 0.1887 0.2539 0.3317 04282 05553 0.7412  1.0873
05 0.0394 00831 0.1321 0.1880 0.2528 0.3301 04258 05514 0.7341  1.0690
06 0.0393 0.0828 0.1317 0.1872 0.2517 0.3285 04234 05476 0.7272 1.0515
07 0.0392 00826 0.1312 0.1865 0.2507 0.3270 0.4210 05438 0.7204 1.0349
08 0.0391 0.0823 0.1308 0.1859 0.2496 0.3254 04187 05401 0.7138  1.0190
09 0.0390 00821 0.1303 0.1852 0.2486 03239 04164 05365 0.7074 1.0038
1.0 0.0388 0.0818 0.1340 0.1845 0.2476 03224 0.4142 05329 0.7011  0.9893

A =0.075

0.1 0.0266 0.0562 0.0894 0.1274 0.1717 0.2248 02911 03793 05110 0.7710
0.2 0.0266 00561 0.0893 0.1272 0.1713  0.2242  0.2901 03776 05077 0.7614
03 0.0265 0.0560 0.0891 0.1269 0.1709 0.2235 0.2891 03759 0.5045 0.7521
04 0.0265 0.0559 00889 0.1266 0.1704 0.2229 02880 0.3742 05013 0.7432
05 0.0264 00558 0.0887 0.1263 0.1700 0.2222  0.2870 0.3726 04982  0.7346
06 0.0264 0.0557 0.0886 0.1260 0.1696 0.2216  0.2860 0.3709  0.4951 0.7263
0.7 0.0264 00556 0.0884 0.1258 0.1692 0.2209 0.2851 0.3693 0.4921 0.7183
0.8 0.0263 00555 0.0882 0.1255 0.1687 0.2203  0.2841 0.3677 04891 0.7105
09 0.0263 0.0554 00880 0.1252 0.1683 0.2197 02831 0.3661 0.4862 0.7030
1.0 0.0262 00553 0.0879 0.1249 0.1679 0.2190 0.2821 0.3646 0.4833  0.6957

A =0.1

0.1 0.0200 0.0422 0.0671 0.0957 0.1289 0.1688 0.2186 0.2849 0.3840  0.5803
0.2 0.0200 0.0421 0.0671 0.0955 0.1287 0.1685 02181 0.2840 0.3822  0.5749
03 0.0199 0.0421 0.0670 0.0954 0.1285 0.1681 02175 02831 0.3805 0.5697
04 0.0199 0.0420 00669 0.0952 0.1283 0.1678 02170 0.2822 0.3787  0.5646
05 0.0199 0.0420 0.0668 0.0951 0.1281 0.1675 02165 02813 0.3770  0.5597
06 0.0199 00419 0.0667 0.0950 0.1279 0.1671 0.2160 0.2805 0.3754  0.5549
0.7 0.0199 0.0419 00666 0.0948 0.1276 0.1668 0.2155 0.2796 0.3737 0.5503
08 0.0198 0.0418 0.0666 0.0947 0.1274 0.1665 02150 0.2787  0.3721  0.5458
09 0.0198 0.0418 0.0665 0.0946 0.1272 0.1662 0.2144 0.2779 03704 0.5413
1.0 0.0198 0.0418 0.0664 0.0944 0.1270 0.1659 02139 02771 0.3688  0.5370

insurance product valuations as stressed in the manuscript. The combination of the variates in the random lifetimes vector
(X, Y) by a real valued parameter function ¢ (x) is an essential feature of the model. This function must be a meaningful
function in the survival analysis and risk modeling attempts that parametrically relates a random lifetime Y with another
random lifetime X. The function must also satisfy that the joint distribution of (X, Y) carries all the properties to be a
distribution function. The form of ¢ (-) function, that is presented in the paper, is an example of its kind and it can be modified
according to the needs of the users.

The distribution, survival and hazard functions for the lifetimes with a Pseudo-Gompertz distribution model are
presented here in practical and useful forms that are achieved by utilizing Harmonic numbers and Gamma functions. An
exemplification of the survival and hazard functions are provided in the tables of the paper for some selected parameters
and values of the concerned variables. Similar tables can be constructed in a wider perspective for multiple lifetimes. In
particular, life tables for the general and contingent multiple-life insurances can be constructed with actuarial considerations
for the practical uses in finance and insurance areas. Similarly, by employing the results of this paper, more detailed survival
and hazard tables can be computed for the reliability analysis of the physical systems with pairs of units in their components
where each unit functions as reserve unit for the other.
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Fig. 1. (a) Survival function for the concomitant Yj,.,) values of y = 0.1,y = 0.5,y = 1. (b) Survival function for the concomitant Yj,.,; values of r = 1,
r=>5r=10.

Appendix A

The computations below show that f(x, y) in expression (9) is the density function of a bivariate Pseudo-Gompertz
distribution:

Fix.y) = f / £ (x,y)dxdy
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Fig. 2. (a) Hazard function for the concomitant Yj;.;; values of y = 0.1,y = 0.5,y = 1. (b) Hazard function for the concomitant Y., values of r = 1,
r=5r=10.

And, under the transformation (e*1* — 1) = u, we can write
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Appendix B

(a) The survival and hazard functions for X;.,, under the Pseudo-Gompertz distribution, are derived and displayed below:

The probability density and distribution functions for X;., are

n o A o r—1 A o n—r+1
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which, after the transformation
(eM*—1) =u, et dx = du,

turns out to be
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where ,F (a, b; c; z) = Z,fi @k 2 i the Gauss Hypergeometric function as given in [18]. This function will be used

©r K
also in the rest of the expressions of Appendix B.
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By its definition, the survival function of Sy, (x) = 1 — Fx,.,(x) of X, is
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The hazard function for X,., is derived from the definition hy,., (x) = and shown below:

Mo (X) = (B.6)

(b) The derivations of the joint survival and hazard functions for the {X;.,, Y[;.,} pair are shown in this part. It is known that,
by denotingfy[m] (v | Xr:n = x) = f(y | x), the joint density function for the random vector {X:.,, Y.} is expressed by
S Vi % ¥) = f | ©)fx,., (%) as shown in [24].
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Then, using these results, the probability that the two lives, currently at the ages of u and v, will live for at least t time
durations can be expressed:
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Further, the conditional hazard function, that uses (B.16) and h(x) = Ae*1*, is derived as
h(x,y)
hylx) =
h(x)
)L(e/qxil)e/qxe//,zy exp|:7(e;/,1x71)(L+ (e“i);—l) )]
A (e“zy—l) (e'2 71)
. M(E“zy’izl)Jer"A exp[ w2 ( *i )7L 1:|
- rerix
(e"1* — 1) e"2Y exp [_ (e"* — 1) (%1 + %)]
— . (B.17)

= exp I:(e”iy;l) —ent ((eﬂiyzil) + ﬁ) + i]

1 (e2Y =1) 4o M

As the result; using (B.6) and (B.17) above, the sought joint hazard function is obtained; hy,., v;.,, (%, ¥) = h(y | X)hx,, (%)

M1 M2

1

7%}
w1 (eH2Y =1)+puoi € p[ n2 M
el 1%n) h 2 (eM1¥—1) (n—r+h+1)
[0l Z( D ( ) "
x . (B.18)

X _ (X _
e ])(n "R (”_r+1,1—r,n—r+2,e i 0)

(eM1* — 1) eM2Y exp [ (e —1) ( + w)]

(1 (M2 —1)+po2)

After the necessary simplifications, a simpler form of this function is obtained: th:mY[r:n] x,y) 5

_ _ A (eM1X_ _
(n—r+l)(e“1"—1)e”23’eﬂlxZ;;é(q)h(r N ]>E 7y (eH1¥=1) (i=r+h+1)

— A (MX 1) (n—r+1 — A (e1X_q
e M1 (E )(n '+)2F1 n—r+1,1—-r,n—r+4+2,e #1 (e )
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