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Abstract It is well known that the Einstein tensor G for a Riemannian manifold defined by GP =
Rz 1 Rég, Rg = gﬁ "R.o where R, and R are respectively the Ricci tensor and the scalar curvature
of the manifold, plays an important part in Einstein’s theory of gravitation as well as in proving some
theorems in Riemannian geometry. In this work, we first obtain the generalized Einstein tensor for
a Weyl manifold. Then, after studying some properties of generalized Einstein tensor, we prove that
the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the
curvature tensor of the Weyl manifold and conversely. Moreover, we show that such Weyl manifolds
admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics.
Finally, a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be
preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding
points.
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1 Preliminaries

A differentiable manifold of dimension n having a torsion-free connection V and a conformal
class C[g] of metrics preserved by V is called a Weyl manifold which will be denoted by W,,(g,w)
where g € C[g] and w is a 1-form satisfying the compatibility condition (see [1-3])

Vg=2w®yg). (1.1)
Under the conformal re-scaling (normalization)

g=X\g, A>0 (1.2)
of the representative metric tensor g, w is transformed by the law

w=w+dnA (1.3)

A tensor field A defined on W, (g,w) is called a satellite of g of weight {p} if it admits a

transformation of the form

A=A (1.4)
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under the conformal re-scaling (1.2) of g (see [1-3]).

It can be easily seen that the pair (g, @) generates the same Weyl manifold. The process of
passing from (g,w) to (g, @) is called a gauge transformation.

The curvature tensor, covariant curvature tensor, the Ricci tensor and the scalar curvature

of W, (g,w) are respectively defined by

(Vle - Vlvk)v” = UjWJPkl, (1.5)
Wikt = gnpWjpi: (1.6)
Wij = WZP = gthhijk, (1.7)
W = gijWij. (18)

It is clear that W7, and Wjy, are gauge invariants [4].
It follows from (1.5) that
0

Wi, = I — O, + T T —Th T, O = e (1.9)
where T'}, are the coefficients of the Weyl connection V given by
k= {k } — (Spwi + 0jwk — grig"" wm), (1.10)

in which {/; } are the coefficients of the Levi-Civita connection formed with respect to g.

By straightforward calculations it is not difficult to see that

Wijki + Wijie = 0, (1.11)
Wikt + Wikt = 49i5V 1w (1.12)
Wiij) = nVwy), (1.13)

where brackets indicate the antisymmetric parts of the corresponding tensors (see [4, 5]).
The prolonged (extended) covariant derivative of the satellite A of weight {p} in the direction
of the vector field X is defined by [1, 3]

VxA=VxA—-pwX)A. (1.14)
From (1.1) and (1.14) it follows that
Vxg=0, geClg (1.15)

We note that the prolonged covariant differentiation preserves the weights of the satellites
of g.

A Riemannian manifold is called an Einstein manifold if its Ricci tensor is proportional to
its metric tensor.

A Weyl manifold is said to be an FEinstein—Weyl manifold [6], if the symmetric part of its

Ricei tensor is proportional to the representative metric tensor g € C[g], and hence we have
w
W(ij) = n gij- (1.16)

In [7], as a generalization of geodesic circles in a Riemannian manifold, we defined the so-
called generalized circles by means of prolonged covariant differentiation as follows: Let C' be

a smooth curve belonging to the Weyl manifold W,,(g,w) and let & be the tangent vector to
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C' at the point p, normalized by the condition g(£1,&1) = 1. C is called a generalized circle
in W, (g,w) if there exist a vector field &3, normalized by the condition g(£2,&) = 1, and a

positive prolonged covariant constant function ki of weight {—1} along C' such that
Ve, &1 = més, Ve ko = -k (1.17)
According to Frenet’ s formulas
Verbm = —Fm1&m1 + Emme1, m=1,2....n;5 Kg=Hry =0

given in [1], the equations (1.17) imply that C' will be a generalized circle if and only if the first
curvature k1 of C is prolonged covariant constant and the second curvature ks is zero along C'.

Namely,
Ve k1 = Ve k1 4+ kiw(&) =0, ke = 0. (1.18)

A conformal mapping of a Weyl manifold upon another Weyl manifold will be called gen-
eralized concircular if it preserves the generalized circles [7].

Concerning generalized concircular mappings we have

Theorem 1.1 ([7]) The conformal mapping T : Wy(g,w) — Wi(§,&) will be generalized

concircular if and only if
Py = égri,  Pri=ViPy — PP+ ;gklgrsprps, (1.19)
where
P=w—1b (1.20)
is the covector field of the conformal mapping of weight {0} and ¢ is a smooth scalar function
of weight {—2} defined on W, (g, w).
2 Generalized Einstein Tensor for a Weyl Manifold

The Einstein tensor Gg for the Riemannian manifold M of dimension n is defined by Gg =

Rg — 1R(5§, Rg = gﬁ'yRm, where R, and R are respectively, the Ricci tensor and the scalar
curvature of M (see [8-10]). It is well known that Einstein tensor for a Riemannian manifold
is identically zero for n = 2 and that its divergence is zero for n > 2 (see [9]).

In this section, as a generalization of Einstein tensor for a Riemannian manifold ,we define
the Einstein tensor for the Weyl manifold W, (g,w) and call it the generalized Einstein tensor
since it reduces to Gg when w becomes zero or locally a gradient.

To derive the generalized Einstein tensor for W, (g,w), we will use the second Bianchi
identity for W,, (g, w) which is obtained in [5, 11] as

ViWamiik + ViWiri + VWit = 0. (2.1)

Transvecting (2.1) by ¢™* and remembering that the prolonged covariant derivatives of g and

its reciprocal tensor are zero, we obtain
ViWij + Vg™ Wy — VWi = 0, (2.2)

in which (1.8) and (1.11) have been used.
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On the other hand, using (1.12) we find that
9" Winit; = 465V — ¢ Wi (2.3)
Transvecting (2.2) by ¢* and using (1.8), (1.11) and (2.3), we get
ViW + Vi [4g" V jwy — g™ W] — V7 Wy = 0. (2.4)

Putting
gIWy =Wy (2.5)

in (2.4), using the relation V,;W = V;(6/W) and dividing (2.4) through by 2, we find that
) o1 ,
V; (VVl] - 2W6l] — QQJkV[kwl]) =0. (2.6)
The tensor with components
4 1 ,
Gl =W — Wil - 2975V jwy) (2.7)

will be named as the generalized Einstein tensor since it reduces to Einstein tensor for the
Riemannian space M in the special case when w is zero or a gradient. It is clear that G{ is a
satellite of g of weight {—2}.

We may define the generalized divergence of G{ as VjG{ . Then from (2.6) it follows that

. o1 .
VjG{ =V; (VVZJ — 2W5lj — 2gjkv[kw”) =0. (2.8)

This is the generalization of the fact that the divergence of Einstein tensor for a Riemannian
manifold is zero, to the case of a Weyl manifold. From (2.8), we obtain

Vle] = 2le+ 2ngVj(V[kwl]). (2.9)

We note that, if w is zero or a gradient, (2.9) reduces to the well-known equation

0
oxt’
which is important in the general theory of relativity [10, 12].

; 1
ViR = AR 0 =

Transvecting (2.7) by ¢;; and using (2.5), we obtain the gauge invariant tensor
i 1
9i;G] = Gy = Wi — 2ngz = 2V Wy

Suppose now that W, (g,w) is an Einstein-Weyl manifold. Then by (1.13), (1.16) and (2.5),
we find W
le = gkjWkl = gkj (W(kl) + W[kl]) = n 5; + ngkjv[kwl]. (2.10)

Substitution of (2.10) into (2.7) gives the generalized Einstein tensor for an Einstein—Weyl
manifold in the form

2 n (W .
Gl = 2”<nag—2gﬂkv[kw”>. (2.11)

It follows from (1.11) that the generalized Einstein tensor for an Einstein-Weyl manifold van-
ishes identically for n = 2. According to (2.8) and (2.11), for n > 2, we have

1 . .
(V) — 2¢7"V ;(Vpwy) = 0. (2.12)
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It is clear from (2.12) that, unlike the Riemannian case, W need not, in general, be a
constant.

In particular, if w is locally a gradient, i.e., if the Einstein-Weyl manifold W, (g,w) is
conformal to an Einstein manifold, the second term in (2.12) vanishes and (2.12) reduces to

VIW = VW + 2Ww; = 0, (2.13)

which means that W is prolonged covariant constant.

3 Conformal Change of Generalized Einstein Tensor

In this section we will study the conformal change of the generalized Einstein tensor since it is
closely related to the invariance of the curvature tensor of W,,(g,w). In this section we will prove
Theorems 1.1, 3.2 and 3.3. In particular, when the conformal mapping under consideration is
a generalized concircular one, we have Theorem 3.4.

Let 7 : W, (g,w) — Wn(g,w) be a conformal mapping of W, (g,w) upon W, (§,w). By
suitable conformal re-scalings on W, (g,w) and Wn(g,w), at corresponding points of these

manifolds we can make [2, 3]
9= (3.1)
It is clear that the covector field P = w — @ of 7 has zero weight.

Let V and V be the connections of W, (g, w) and W, (§, @) and let the connection coefficients
be denoted by I‘;-k and f‘;k respectively. Then, by (1.10) and (3.1), we have

T =Tk + 0Py + 6j.Pj — g™ Prugj. (3.2)
Replacing F;k in (1.9) by f‘;k in (3.2), we obtain the curvature tensor of W, (g, @) as [7],
Wsz = Wi + 0 Pj — 03 Pji + gjxg"™ Pt — 916" Pk + 207V 1. Py, (3.3)
where V[ Py is the antisymmetric part of VP and
1
Py =V P, — PP, + 2gklgTSPrPs~ (3.4)
Contraction on the indices p and I in (3.3) gives
Wik = Wik + (n — 2)Pji, + 959" P + 2V s Py}, (3.5)

in which we have used the relation g, gk = oy
Transvecting (3.5) by 7 = ¢/% and using (1.8), we obtain

W =W +2(n—1)g"" Py,

from which it follows that

: W—-Ww
kP, = : 3.6
IR = 9 — 1) (3.6)
By virtue of (3.6), (3.5) becomes
. W-w
ij = ij + (n — Z)ij + 2(?1 _ 1)gjk + QP[jk], V[kpj] = P[jk]~ (37)
Transvecting (3.7) by §’' = ¢! and putting gjlek =W, gjlek = Wé, we find that
- . W — W .
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According to (2.7), the generalized Einstein tensor for W, (g, 0) is
. . 1. .
Gt =W} - 2W5; — 23"V [y (3.9)

On the other hand, by using the definition of the covariant derivative and the relation (3.2) and
remembering that P = w — @ , we obtain

@[m&k] = V[mwk] - V[mpk], P[km] = V[mpk]~ (3.10)

By using (3.8) and (3.10), we can write (3.9) in the form

GL=G 4+ (n—2) {gﬂpjk - W 54 : (3.11)

W —
2(n—1)
connecting the generalized Einstein tensors of W, (g, w) and W, (g, w).

In the special case where W, (g, w) and W, (§, @) are Einstein-Weyl manifolds, (3.11) takes
the form

(3.12)

- . W -w
G =G+ (n—-2) [gﬂp[jk] - 54 :

2n

3.1 Conformal Invariance of Generalized Einstein Tensor

We first mention that any 2-dimensional Weyl manifold is an Einstein—Weyl manifold, as can
be seen by direct calculation, and that the generalized Einstein tensor for such a manifold is
identically zero. So, in what follows we will assume that n > 2.

Concerning the conformal invariance of the generalized Einstein tensor for W, (g, w), we

prove

Theorem 3.1 The generalized Finstein tensor for the Weyl manifold W, (g, w) (n > 2) will
be preserved by the conformal mapping T : W, (g, w) — W, (g, ) if and only if the curvature

tensor of Wy, (g, w) is preserved.

Proof According to (3.11), the necessary and sufficient condition for the generalized Einstein
tensor G of W,,(g,w) to be preserved by 7 is

: W—-Ww
-2)( ¢ Py, — 5] =o0. 3.13
(=2 (o"P -y o) (3.13)
For n > 2, we have
- W -w
Py — 5= 3.14
g jk 2(TL _ 1) k ( )
or, multiplying (3.14) by ¢, and summing for [, we get
W-w
Pk — m = 0.
k 2(n — 1)9k
Separating P,,) into its symmetric and antisymmetric parts, we obtain
W-w
(P(m’“ T 2(n - 1)9’“”) i =0
from which it follows that
W-w
P[mk] = V[kpm] =0 (P == grad), P(mk) == Pmk = Jkm- (3.15)
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Transvecting the second equation in (3.15) by g™ and using (3.6), we conclude that W = W
and consequently P, = 0. In this case, (3.3) yields Wfkl =W,

Conversely, suppose that the curvature tensor is preserved by 7. Then, clearly the Ricci
tensors at corresponding points are equal. On the other hand, by (1.8) and (3.1), the scalar

curvature is also preserved. Under these conditions, (3.7) reduces to
(n = 2) Py + 2P5) = (n = 2)Pr) + Py = 0,
from which it follows that
Piry = Pjry = Pjr = 0.
We then have ééc = ch. This completes the proof of the theorem. O

3.2 Conformal Mapping of Weyl Manifolds Preserving the Ricci Tensor
Let ¢ be a conformal mapping of W, (g, w) upon V~V(§,7IJ) and suppose that ¢ preserves the

Ricci tensor of W, (g, w), i.e.,

Ricg = Rng (ij = ij). (3.16)
We first prove the following theorem which will be used later on.

Theorem 3.2 The only conformal mapping of a Weyl manifold (of dim >2) upon another
Weyl manifold which preserves the Ricci tensor of the manifold, is the one that preserves the

curvature tensor.

Proof We first suppose that the conformal mapping ¢ : W, (g, w) — Wn(g,w) preserves the
Ricei curvature tensor. Then, by (3.16), (3.7) reduces to

2(n—1)

Separating Pjj into its symmetric and antisymmetric parts and remembering that

(n— 2)ij + gjk + 2P[jk] =0. (3.17)

W = ¢"Wik = " Wi = W,
we obtain
(n — Q)P(jk) + nP[jk] =0,

from which it follows (for n > 2) that Pz = Pjjr) = Pjr = 0. Consequently, the equation (3.3)
reduces to Wfkl =Wi,.

Conversely, if the conformal mapping ¢ preserves the curvature tensor, it is clear from (3.1)
and the definition of the Ricci tensor that ¢ preserves the Ricci tensor. O

Combining Theorems 3.1 and 3.2, we deduce the following corollary:
Corollary 3.3 The only conformal mapping of W, (g, w) (n>2) upon V~V(§, W) preserving the
generalized Einstein tensor is the one which preserves the Ricci tensor.

It is clear from Theorems 3.1 and 3.2 that the vanishing of the gauge-invariant tensor Pjj
is necessary and sufficient for generalized Einstein tensor to be a conformal invariant.

We now proceed to obtain the differential equation satisfied by f € C?(W,,), where P =
gradf. Multiplying the equations

1
gjkgTSPrPs (318)

0=VyP; — PP, + 9
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by ¢’F, summing for j and k and using the relation gijgij = n, we obtain
Pvep " 2\PE =0, |P]?=g¢"P.P, (3.19)
Remembering that the weight of P is zero, we have
ViP; = VP (3.20)
so that (3.19) can be written in the form
Vi p) + "2 PP =0, (3.21)
in which we have used (1.15). If we put ¢’*P; = P* (3.21) becomes
Vﬁﬂ+”;2mﬁza (3.22)

Clearly, the weight of P¥ is {—2}. Since V preserves the weights, the weight of V,P* is also
{2}

We define V; P* to be the generalized divergence of P* since it reduces to the divergence of
P* in the Riemannian case. Putting P = gradf, the first term in (3.22) becomes the generalized
Laplacian of f which will be denoted by Af. Therefore, f is the solution of the equation

Af+”;2wﬂ2=0 (3.23)

We note that the left-hand member of this equation differs by the factor A™2 under a conformal
change of g.

We can obtain an alternative form of the equation (3.23) by using the Levi—Civita connection
D formed with respect to the representative metric g. Since the weight of P* is {-2}, by
using (1.14), we find that

VkP’f = VkPk + 2kak. (3.24)
According to (1.10), V and D are related by
V.PI = D;P7 4 ), P¥, (3.25)
where
%jk = —(53wk + 5%%‘ — gikg’ " wm).-
Then, by (3.22), (3.24) and (3.25), we obtain
ko n—2 2 ! 2 2
DeP*+ 7 " (IP] = 2w P') =0, |P]*=|Vf|
or,
n—2 9
Af+7, " (VP —29(w. V) =0, n>2, (3.26)

in which Af(= DyP") is the Laplacian of f with respect to the Levi-Civita connection gener-
ated by the representative metric g.
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3.3 A Geometrical Implication of the Condition Pj, =0

Let W, (g,w) be a Weyl manifold whose generalized Einstein tensor (or, equivalently, whose
curvature tensor) is a conformal invariant. In this case, according to Theorems 3.1 and 3.2, it
is necessary and sufficient that Pj; = 0.

Multiplying (3.18) by ¢’ and summing for j and remembering that
9'ViP; = g'Vi Py = Vi (¢! P)) = Vi P,

we obtain the condition Pj; = 0 in the form

VP! — PP + ;52|P|2 =0, P'=g'P;. (3.27)
Multiplication of (3.27) by P* and summation with respect to k yields
PFV P! = ;|P|2Pl. (3.28)
Then, by (1.14), (3.28) gives
PFVPl =yP!, = ;|P|2 — 2wy, P*, (3.29)

which shows that a curve in W, (g,w) whose tangential direction coincides with that of the
vector field P!, is a geodesic.

On the other hand, let us consider a hypersurface of W,, (g, w) defined by
f(zt,z?, ... 2™) = const.,

where gradf = P. Clearly, P is orthogonal to this hypersurface. Therefore we have

Theorem 3.4 The Weyl manifold W, (g,w) whose generalized Einstein tensor (or, equiva-
lently, whose curvature tensor) is a conformal invariant, admits a 1-parameter family of hyper-

surfaces the orthogonal trajectories of which are geodesics.

3.4 Characterization of Generalized Concircular Mappings of Weyl Manifolds by Means of

Generalized Einstein Tensor

Consider the conformal mapping 7 : W, (g,w) — W,(§, @) of W,(g,w) upon W, (§,@). 7
will be named as a generalized concircular mapping if it preserves the generalized circles of

W (g,w). In this section we will prove

Theorem 3.5 The conformal mapping ™ will be generalized concircular if and only if the
condition

GL—GL = pél (3.30)

or, equivalently, the (gauge invariant) condition

Gmk - Gmk: = P 9mk, Gmk = glmch (331)

is satisfied for n > 2.

Proof We first suppose that 7 is generalized concircular. Then, according to (1.19), Py = ¢gp
and consequently
w-w

Py =0, Puy=Pu= m(n—1)

Ikl (3.32)
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in which we have used (3.6). Substitution of Py; into (3.11) yields

~ n—2) ~
GL-Gl=pst, p=- on Yo —w). (3.33)

Conversely, assume that the equation (3.30) is valid. In this case, (3.11) gives

- , W-Ww
G~ G = poh = (n=2) (P~ 5 )0k,

from which it follows that
¢! Pji, = o, (3.34)

for some function p defined on W, (g, w).

Transvecting (3.34) by gim, we obtain Pk = pgmi (1= ,", + 2‘/'/"__‘/}/)) which states that 7

is generalized concircular. This completes the proof of the theorem. O
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