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Abstract It is well known that the Einstein tensor G for a Riemannian manifold defined by Gβ
α =

Rβ
α − 1

2
Rδβ

α, Rβ
α = gβγRγα where Rγα and R are respectively the Ricci tensor and the scalar curvature

of the manifold, plays an important part in Einstein’s theory of gravitation as well as in proving some

theorems in Riemannian geometry. In this work, we first obtain the generalized Einstein tensor for

a Weyl manifold. Then, after studying some properties of generalized Einstein tensor, we prove that

the conformal invariance of the generalized Einstein tensor implies the conformal invariance of the

curvature tensor of the Weyl manifold and conversely. Moreover, we show that such Weyl manifolds

admit a one-parameter family of hypersurfaces the orthogonal trajectories of which are geodesics.

Finally, a necessary and sufficient condition in order that the generalized circles of a Weyl manifold be

preserved by a conformal mapping is stated in terms of generalized Einstein tensors at corresponding

points.

Keywords Weyl manifold, Einstein–Weyl manifold, Einstein tensor, generalized Einstein tensor,

generalized circle
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1 Preliminaries

A differentiable manifold of dimension n having a torsion-free connection ∇ and a conformal
class C[g] of metrics preserved by ∇ is called a Weyl manifold which will be denoted by Wn(g, ω)
where g ∈ C[g] and ω is a 1-form satisfying the compatibility condition (see [1–3])

∇g = 2(ω ⊗ g). (1.1)

Under the conformal re-scaling (normalization)

ḡ = λ2g, λ > 0 (1.2)

of the representative metric tensor g, ω is transformed by the law

ω̄ = ω + d lnλ. (1.3)

A tensor field A defined on Wn(g, ω) is called a satellite of g of weight {p} if it admits a
transformation of the form

Ā = λpA (1.4)
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under the conformal re-scaling (1.2) of g (see [1–3]).
It can be easily seen that the pair (ḡ, ω̄) generates the same Weyl manifold. The process of

passing from (g, ω) to (ḡ, ω̄) is called a gauge transformation.
The curvature tensor, covariant curvature tensor, the Ricci tensor and the scalar curvature

of Wn(g, ω) are respectively defined by

(∇k∇l −∇l∇k)vp = vjW p
jkl, (1.5)

Whjkl = ghpW
p
jkl, (1.6)

Wij = W p
ijp = ghkWhijk, (1.7)

W = gijWij . (1.8)

It is clear that W p
jkl and Wjk are gauge invariants [4].

It follows from (1.5) that

W p
jkl = ∂kΓp

jl − ∂lΓ
p
jk + Γp

hkΓh
jl − Γp

hlΓ
h
jk, ∂k =

∂

∂xk
, (1.9)

where Γi
kl are the coefficients of the Weyl connection ∇ given by

Γi
kl =

{
i

kl

}
− (δi

kωl + δi
lωk − gklg

imωm), (1.10)

in which { i
kl} are the coefficients of the Levi–Civita connection formed with respect to g.

By straightforward calculations it is not difficult to see that

Wijkl +Wijlk = 0, (1.11)

Wijkl +Wjikl = 4gij∇[lωk], (1.12)

W[ij] = n∇[iwj], (1.13)

where brackets indicate the antisymmetric parts of the corresponding tensors (see [4, 5]).
The prolonged (extended) covariant derivative of the satellite A of weight {p} in the direction

of the vector field X is defined by [1, 3]

∇̇XA = ∇XA− p ω(X)A. (1.14)

From (1.1) and (1.14) it follows that

∇̇Xg = 0, g ∈ C[g]. (1.15)

We note that the prolonged covariant differentiation preserves the weights of the satellites
of g.

A Riemannian manifold is called an Einstein manifold if its Ricci tensor is proportional to
its metric tensor.

A Weyl manifold is said to be an Einstein–Weyl manifold [6], if the symmetric part of its
Ricci tensor is proportional to the representative metric tensor g ∈ C[g], and hence we have

W(ij) =
W

n
gij . (1.16)

In [7], as a generalization of geodesic circles in a Riemannian manifold, we defined the so-
called generalized circles by means of prolonged covariant differentiation as follows: Let C be
a smooth curve belonging to the Weyl manifold Wn(g, ω) and let ξ1 be the tangent vector to
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C at the point p, normalized by the condition g(ξ1, ξ1) = 1. C is called a generalized circle
in Wn(g, w) if there exist a vector field ξ2, normalized by the condition g(ξ2, ξ2) = 1, and a
positive prolonged covariant constant function κ1 of weight {−1} along C such that

∇̇ξ1ξ1 = κ1ξ2, ∇̇ξ1ξ2 = −κ1ξ1. (1.17)

According to Frenet’ s formulas

∇̇ξ1ξm = −κm−1ξm−1 + κmξm+1, m = 1, 2, . . . , n; κ0 = κn = 0

given in [1], the equations (1.17) imply that C will be a generalized circle if and only if the first
curvature κ1 of C is prolonged covariant constant and the second curvature κ2 is zero along C.
Namely,

∇̇ξ1κ1 = ∇ξ1κ1 + κ1ω(ξ1) = 0, κ2 = 0. (1.18)

A conformal mapping of a Weyl manifold upon another Weyl manifold will be called gen-
eralized concircular if it preserves the generalized circles [7].

Concerning generalized concircular mappings we have

Theorem 1.1 ([7]) The conformal mapping τ : Wn(g, ω) → W̃n(g̃, ω̃) will be generalized
concircular if and only if

Pkl = φgkl, Pkl = ∇lPk − PkPl +
1
2
gklg

rsPrPs, (1.19)

where

P = w − w̃ (1.20)

is the covector field of the conformal mapping of weight {0} and φ is a smooth scalar function
of weight {−2} defined on Wn(g, w).

2 Generalized Einstein Tensor for a Weyl Manifold

The Einstein tensor Gβ
α for the Riemannian manifold M of dimension n is defined by Gβ

α =

Rβ
α − 1

2
Rδβ

α, R
β
α = gβγRαγ , where Rαγ and R are respectively, the Ricci tensor and the scalar

curvature of M (see [8–10]). It is well known that Einstein tensor for a Riemannian manifold
is identically zero for n = 2 and that its divergence is zero for n > 2 (see [9]).

In this section, as a generalization of Einstein tensor for a Riemannian manifold ,we define
the Einstein tensor for the Weyl manifold Wn(g, ω) and call it the generalized Einstein tensor
since it reduces to Gβ

α when ω becomes zero or locally a gradient.
To derive the generalized Einstein tensor for Wn(g, ω), we will use the second Bianchi

identity for Wn(g, ω) which is obtained in [5, 11] as

∇̇lWmijk + ∇̇kWmilj + ∇̇jWmikl = 0. (2.1)

Transvecting (2.1) by gmk and remembering that the prolonged covariant derivatives of g and
its reciprocal tensor are zero, we obtain

∇̇lWij + ∇̇kg
mkWmilj − ∇̇jWil = 0, (2.2)

in which (1.8) and (1.11) have been used.
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On the other hand, using (1.12) we find that

gmkWmilj = 4δk
i ∇[jωl] − gmkWimlj . (2.3)

Transvecting (2.2) by gij and using (1.8), (1.11) and (2.3), we get

∇̇lW + ∇̇k[4gkj∇[jωl] − gmkWml] − ∇̇jg
ijWil = 0. (2.4)

Putting
gijWil = W j

l (2.5)

in (2.4), using the relation ∇̇lW = ∇̇j(δ
j
lW ) and dividing (2.4) through by 2, we find that

∇̇j

(
W j

l − 1
2
Wδj

l − 2gjk∇[kωl]

)
= 0. (2.6)

The tensor with components

Gj
l = W j

l − 1
2
Wδj

l − 2gjk∇[kωl] (2.7)

will be named as the generalized Einstein tensor since it reduces to Einstein tensor for the
Riemannian space M in the special case when w is zero or a gradient. It is clear that Gj

l is a
satellite of g of weight {−2}.

We may define the generalized divergence of Gj
l as ∇̇jG

j
l . Then from (2.6) it follows that

∇̇jG
j
l = ∇̇j

(
W j

l − 1
2
Wδj

l − 2gjk∇[kωl]

)
= 0. (2.8)

This is the generalization of the fact that the divergence of Einstein tensor for a Riemannian
manifold is zero, to the case of a Weyl manifold. From (2.8), we obtain

∇̇jW
j
l =

1
2
∇̇lW + 2gjk∇̇j(∇[kωl]). (2.9)

We note that, if ω is zero or a gradient, (2.9) reduces to the well-known equation

∇jR
j
l =

1
2
∂lR, ∂l =

∂

∂xl
,

which is important in the general theory of relativity [10, 12].
Transvecting (2.7) by gij and using (2.5), we obtain the gauge invariant tensor

gijG
j
l = Gil = Wil − 1

2
Wgil − 2∇[iωl].

Suppose now that Wn(g, ω) is an Einstein–Weyl manifold. Then by (1.13), (1.16) and (2.5),
we find

W j
l = gkjWkl = gkj

(
W(kl) +W[kl]

)
=
W

n
δj
l + ngkj∇[kωl]. (2.10)

Substitution of (2.10) into (2.7) gives the generalized Einstein tensor for an Einstein–Weyl
manifold in the form

Gj
l =

2 − n

2

(
W

n
δj
l − 2gjk∇[kωl]

)
. (2.11)

It follows from (1.11) that the generalized Einstein tensor for an Einstein–Weyl manifold van-
ishes identically for n = 2. According to (2.8) and (2.11), for n > 2, we have

1
n

(∇̇lW ) − 2gjk∇̇j(∇[kωl]) = 0. (2.12)
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It is clear from (2.12) that, unlike the Riemannian case, W need not, in general, be a
constant.

In particular, if ω is locally a gradient, i.e., if the Einstein–Weyl manifold Wn(g, ω) is
conformal to an Einstein manifold, the second term in (2.12) vanishes and (2.12) reduces to

∇̇lW = ∇lW + 2Wωl = 0, (2.13)

which means that W is prolonged covariant constant.

3 Conformal Change of Generalized Einstein Tensor

In this section we will study the conformal change of the generalized Einstein tensor since it is
closely related to the invariance of the curvature tensor ofWn(g, ω). In this section we will prove
Theorems 1.1, 3.2 and 3.3. In particular, when the conformal mapping under consideration is
a generalized concircular one, we have Theorem 3.4.

Let τ : Wn(g, w) → W̃n(g̃, w̃) be a conformal mapping of Wn(g, w) upon W̃n(g̃, w̃). By
suitable conformal re-scalings on Wn(g, w) and W̃n(g̃, w̃), at corresponding points of these
manifolds we can make [2, 3]

g = g̃. (3.1)

It is clear that the covector field P = w − w̃ of τ has zero weight.
Let ∇ and ∇̃ be the connections ofWn(g, w) and W̃n(g̃, w̃) and let the connection coefficients

be denoted by Γi
jk and Γ̃i

jk respectively. Then, by (1.10) and (3.1), we have

Γ̃i
jk = Γi

jk + δi
jPk + δi

kPj − gimPmgjk. (3.2)

Replacing Γi
jk in (1.9) by Γ̃i

jk in (3.2), we obtain the curvature tensor of W̃n(g̃, w̃) as [7],

W̃ p
jkl = W p

jkl + δp
l Pjk − δp

kPjl + gjkg
pmPml − gjlg

pmPmk + 2δp
j∇[kPl], (3.3)

where ∇[kPl] is the antisymmetric part of ∇kPl and

Pkl = ∇lPk − PkPl +
1
2
gklg

rsPrPs. (3.4)

Contraction on the indices p and l in (3.3) gives

W̃jk = Wjk + (n− 2)Pjk + gjkg
lmPml + 2∇[kPj], (3.5)

in which we have used the relation gjkg
km = δm

j .
Transvecting (3.5) by g̃jk = gjk and using (1.8), we obtain

W̃ = W + 2(n− 1)gjkPjk,

from which it follows that

gjkPjk =
W̃ −W

2(n− 1)
. (3.6)

By virtue of (3.6), (3.5) becomes

W̃jk = Wjk + (n− 2)Pjk +
W̃ −W

2(n− 1)
gjk + 2P[jk], ∇[kPj] = P[jk]. (3.7)

Transvecting (3.7) by g̃jl = gjl and putting gjlWjk = W l
k, g̃jlW̃jk = W̃ l

k, we find that

W̃ l
k = W l

k + (n− 2)gjlPjk +
W̃ −W

2(n− 1)
δl
k + 2gjlP[jk]. (3.8)
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According to (2.7), the generalized Einstein tensor for W̃n(g̃, w̃) is

G̃l
k = W̃ l

k − 1
2
W̃ δl

k − 2g̃lm∇̃[mω̃k]. (3.9)

On the other hand, by using the definition of the covariant derivative and the relation (3.2) and
remembering that P = ω − ω̃ , we obtain

∇̃[mω̃k] = ∇[mωk] −∇[mPk], P[km] = ∇[mPk]. (3.10)

By using (3.8) and (3.10), we can write (3.9) in the form

G̃l
k = Gl

k + (n− 2)
[
gjlPjk − W̃ −W

2(n− 1)
δl
k

]
, (3.11)

connecting the generalized Einstein tensors of Wn(g, w) and W̃n(g̃, w̃).
In the special case where Wn(g, w) and W̃n(g̃, w̃) are Einstein–Weyl manifolds, (3.11) takes

the form

G̃l
k = Gl

k + (n− 2)
[
gjlP[jk] − W̃ −W

2n
δl
k

]
. (3.12)

3.1 Conformal Invariance of Generalized Einstein Tensor

We first mention that any 2-dimensional Weyl manifold is an Einstein–Weyl manifold, as can
be seen by direct calculation, and that the generalized Einstein tensor for such a manifold is
identically zero. So, in what follows we will assume that n > 2.

Concerning the conformal invariance of the generalized Einstein tensor for Wn(g, w), we
prove

Theorem 3.1 The generalized Einstein tensor for the Weyl manifold Wn(g, w) (n > 2)will
be preserved by the conformal mapping τ : Wn(g, w) → W̃n(g̃, w̃) if and only if the curvature
tensor of Wn(g, w) is preserved.

Proof According to (3.11), the necessary and sufficient condition for the generalized Einstein
tensor Gl

k of Wn(g, w) to be preserved by τ is

(n− 2)
(
gjlPjk − W̃ −W

2(n− 1)
δl
k

)
= 0. (3.13)

For n > 2, we have

gjlPjk − W̃ −W

2(n− 1)
δl
k = 0 (3.14)

or, multiplying (3.14) by glm and summing for l, we get

Pmk − W̃ −W

2(n− 1)
gkm = 0.

Separating Pmk into its symmetric and antisymmetric parts, we obtain(
P(mk) − W̃ −W

2(n− 1)
gkm

)
+ P[km] = 0,

from which it follows that

P[mk] = ∇[kPm] = 0 (P = grad), P(mk) = Pmk =
W̃ −W

2(n− 1)
gkm. (3.15)
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Transvecting the second equation in (3.15) by gkm and using (3.6), we conclude that W = W̃

and consequently Pmk = 0. In this case, (3.3) yields W̃ p
jkl = W p

jkl.
Conversely, suppose that the curvature tensor is preserved by τ . Then, clearly the Ricci

tensors at corresponding points are equal. On the other hand, by (1.8) and (3.1), the scalar
curvature is also preserved. Under these conditions, (3.7) reduces to

(n− 2)Pjk + 2P[jk] = (n− 2)P(jk) + nP[jk] = 0,

from which it follows that
P(jk) = P[jk] ⇒ Pjk = 0.

We then have G̃l
k = Gl

k. This completes the proof of the theorem. �

3.2 Conformal Mapping of Weyl Manifolds Preserving the Ricci Tensor

Let ϕ be a conformal mapping of Wn(g, w) upon W̃ (g̃, w̃) and suppose that ϕ preserves the
Ricci tensor of Wn(g, w), i.e.,

Ricg = Ricg̃ (Wjk = W̃jk). (3.16)

We first prove the following theorem which will be used later on.

Theorem 3.2 The only conformal mapping of a Weyl manifold (of dim> 2) upon another
Weyl manifold which preserves the Ricci tensor of the manifold, is the one that preserves the
curvature tensor.

Proof We first suppose that the conformal mapping ϕ : Wn(g, w) → W̃n(g̃, w̃) preserves the
Ricci curvature tensor. Then, by (3.16), (3.7) reduces to

(n− 2)Pjk +
W̃ −W

2(n− 1)
gjk + 2P[jk] = 0. (3.17)

Separating Pjk into its symmetric and antisymmetric parts and remembering that

W = gjkWjk = g̃jkW̃jk = W̃ ,

we obtain
(n− 2)P(jk) + nP[jk] = 0,

from which it follows (for n > 2) that P(jk) = P[jk] = Pjk = 0. Consequently, the equation (3.3)
reduces to W̃ p

jkl = W p
jkl.

Conversely, if the conformal mapping ϕ preserves the curvature tensor, it is clear from (3.1)
and the definition of the Ricci tensor that ϕ preserves the Ricci tensor. �

Combining Theorems 3.1 and 3.2, we deduce the following corollary:

Corollary 3.3 The only conformal mapping of Wn(g, w) (n>2) upon W̃ (g̃, w̃) preserving the
generalized Einstein tensor is the one which preserves the Ricci tensor.

It is clear from Theorems 3.1 and 3.2 that the vanishing of the gauge-invariant tensor Pjk

is necessary and sufficient for generalized Einstein tensor to be a conformal invariant.
We now proceed to obtain the differential equation satisfied by f ∈ C2(Wn), where P =

gradf . Multiplying the equations

0 = ∇kPj − PjPk +
1
2
gjkg

rsPrPs (3.18)
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by gjk, summing for j and k and using the relation gijg
ij = n, we obtain

gjk∇kPj +
n− 2

2
|P |2 = 0, |P |2 = grsPrPs. (3.19)

Remembering that the weight of P is zero, we have

∇̇kPj = ∇kPj (3.20)

so that (3.19) can be written in the form

∇̇k(gjkPj) +
n− 2

2
|P |2 = 0, (3.21)

in which we have used (1.15). If we put gjkPj = P k, (3.21) becomes

∇̇kP
k +

n− 2
2

|P |2 = 0. (3.22)

Clearly, the weight of P k is {−2}. Since ∇̇ preserves the weights, the weight of ∇̇kP
k is also

{−2}.
We define ∇̇kP

k to be the generalized divergence of P k since it reduces to the divergence of
P k in the Riemannian case. Putting P = gradf , the first term in (3.22) becomes the generalized
Laplacian of f which will be denoted by Δ̇f . Therefore, f is the solution of the equation

Δ̇f +
n− 2

2
|∇f |2 = 0. (3.23)

We note that the left-hand member of this equation differs by the factor λ−2 under a conformal
change of g.

We can obtain an alternative form of the equation (3.23) by using the Levi–Civita connection
D formed with respect to the representative metric g. Since the weight of P k is {−2}, by
using (1.14), we find that

∇̇kP
k = ∇kP

k + 2ωkP
k. (3.24)

According to (1.10), ∇ and D are related by

∇iP
j = DiP

j + γj
ikP

k, (3.25)

where

γj
ik = −(δj

iωk + δj
kωi − gikg

jmωm).

Then, by (3.22), (3.24) and (3.25), we obtain

DkP
k +

n− 2
2

(|P |2 − 2ωlP
l
)

= 0, |P |2 = |∇f |2

or,

Δf +
n− 2

2
(|∇f |2 − 2g(ω,∇f)

)
= 0, n > 2, (3.26)

in which Δf(= DkP
k) is the Laplacian of f with respect to the Levi–Civita connection gener-

ated by the representative metric g.
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3.3 A Geometrical Implication of the Condition Pjk = 0

Let Wn(g, ω) be a Weyl manifold whose generalized Einstein tensor (or, equivalently, whose
curvature tensor) is a conformal invariant. In this case, according to Theorems 3.1 and 3.2, it
is necessary and sufficient that Pjk = 0.

Multiplying (3.18) by gjl and summing for j and remembering that

gjl∇kPj = gjl∇̇kPj = ∇̇k(gjlPj) = ∇̇kP
l,

we obtain the condition Pjk = 0 in the form

∇̇kP
l − PkP

l +
1
2
δl
k|P |2 = 0, P l = gjlPj . (3.27)

Multiplication of (3.27) by P k and summation with respect to k yields

P k∇̇kP
l =

1
2
|P |2P l. (3.28)

Then, by (1.14), (3.28) gives

P k∇kP
l = ψP l, ψ =

1
2
|P |2 − 2ωkP

k, (3.29)

which shows that a curve in Wn(g, ω) whose tangential direction coincides with that of the
vector field P l, is a geodesic.

On the other hand, let us consider a hypersurface of Wn(g, ω) defined by

f(x1, x2, . . . , xn) = const.,

where gradf = P . Clearly, P is orthogonal to this hypersurface. Therefore we have

Theorem 3.4 The Weyl manifold Wn(g, ω) whose generalized Einstein tensor (or, equiva-
lently, whose curvature tensor) is a conformal invariant, admits a 1-parameter family of hyper-
surfaces the orthogonal trajectories of which are geodesics.

3.4 Characterization of Generalized Concircular Mappings of Weyl Manifolds by Means of
Generalized Einstein Tensor

Consider the conformal mapping τ : Wn(g, w) → W̃n(g̃, w̃) of Wn(g, w) upon W̃n(g̃, w̃). τ

will be named as a generalized concircular mapping if it preserves the generalized circles of
Wn(g, w). In this section we will prove

Theorem 3.5 The conformal mapping τ will be generalized concircular if and only if the
condition

G̃l
k −Gl

k = ρ δl
k (3.30)

or, equivalently, the (gauge invariant) condition

G̃mk −Gmk = ρ gmk, Gmk = glmG
l
k (3.31)

is satisfied for n > 2.

Proof We first suppose that τ is generalized concircular. Then, according to (1.19), Pkl = φgkl

and consequently

P[kl] = 0, P(kl) = Pkl =
W̃ −W

2n(n− 1)
gkl, (3.32)
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in which we have used (3.6). Substitution of Pkl into (3.11) yields

G̃l
k −Gl

k = ρ δl
k, ρ = − (n− 2)

2n
(W̃ −W ). (3.33)

Conversely, assume that the equation (3.30) is valid. In this case, (3.11) gives

G̃l
k −Gl

k = ρ δl
k = (n− 2)

(
gjlPjk − W̃ −W

2(n− 1)
δl
k

)
,

from which it follows that
gjlPjk = μδl

k (3.34)

for some function μ defined on Wn(g, w).
Transvecting (3.34) by glm, we obtain Pmk = μgmk

(
μ = ρ

n−2 + W̃−W
2(n−1)

)
which states that τ

is generalized concircular. This completes the proof of the theorem. �
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