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Abstract
In this paper the inverse problem of finding the time-dependent coefficient of heat
capacity together with the solution of a heat equation with periodic boundary and
integral overdetermination conditions is considered. The conditions for the existence
and uniqueness of a classical solution of the problem under consideration are
established. A numerical example using the Crank-Nicolson finite-difference scheme
combined with the iteration method is presented.

1 Introduction
In this paper we consider an inverse problem of simultaneously finding the unknown co-
efficient p(t) and the temperature distribution u(x, t) that satisfy the equation

ut = uxx – p(t)u + F(x, t),  < x < ,  < t ≤ T , ()

with the initial condition

u(x, ) = ϕ(x),  ≤ x ≤ , ()

the periodic boundary condition

u(, t) = u(, t), ux(, t) = ux(, t),  ≤ t ≤ T , ()

and the overdetermination condition

∫ 


xu(x, t)dx = E(t),  ≤ t ≤ T . ()

Denote the domain QT by

QT =
{
(x, t) :  < x < ,  < t ≤ T

}
.

Definition  The pair {p(t),u(x, t)} from the class C[,T] × C,(DT ) ∩ C,(DT ), for
which conditions ()-() are satisfied and p(t) ≥  on the interval [,T], is called a classical
solution of the inverse problem ()-().
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The parameter identification in a parabolic differential equation from the data of integral
overdetermination condition plays an important role in engineering and physics [–].
This integral condition in parabolic problems is also called heat moments are analyzed
in [].
Boundary value problems for parabolic equations in which one or two local classical

conditions are replaced by heat moments [–]. In [], a physical-mechanical interpreta-
tion of the integral conditions was also given. Various statements of inverse problems on
determination of this coefficient in a one-dimensional heat equation were studied in [–,
, , , ]. In the papers [, , ], the coefficient is determined fromheatmoment. Bound-
ary value problems and inverse problems for parabolic equations with periodic boundary
conditions are investigated in [, ].
In the present work, one heat moment is used with a periodic boundary condition for

the determination of a source coefficient.The existence and uniqueness of the classical
solution of the problem ()-() is reduced to fixed point principles by applying the Fourier
method.
The paper organized as follows. In Section , the existence and uniqueness of the solu-

tion of the inverse problem ()-() is proved by using the Fourier method. In Section ,
the continuous dependence upon the data of the inverse problem is shown. In Section ,
the numerical procedure for the solution of the inverse problem using the Crank-Nicolson
scheme combined with the iteration method is given. Finally, in Section , numerical ex-
periments are presented and discussed.

2 Existence and uniqueness of the solution of the inverse problem
We have the following assumptions on the data of the problem ()-().

(A) E(t) ∈ C[,T], E(t) < , E′(t) ≥ , ∀t ∈ [,T];
(A) ϕ(x) ∈ C[, ];

() ϕ() = ϕ(), ϕ′() = ϕ′(), ϕ′′() = ϕ′′(),
∫ 
 xϕ(x)dx = E();

() ϕn ≥ , n = , , . . . ;
(A) F(x, t) ∈ C(DT ); F(x, t) ∈ C[, ] for arbitrary fixed t ∈ [,T];

() F(, t) = F(, t), Fx(, t) = Fx(, t), Fxx(, t) = Fxx(, t);
() Fn(t) > , n = , , . . . ;
()

∑∞
n= πn(ϕn +

∫ T
 Fn(τ )dτ )≤ E′(t), ∀t ∈ [,T];

where ϕn =
∫ 
 ϕ(x) sin(πnx)dx, Fn(t) =

∫ 
 F(x, t) sin(πnx)dx, n = , , , . . . .

Theorem  Let the assumptions (A)-(A) be satisfied. Then the following statements are
true:
() The inverse problem ()-() has a solution in QT ;
() The solution of the inverse problem ()-() is unique in QT , where the number T

( < T < T ) is determined by the data of the problem.

Proof By applying the standard procedure of the Fourier method, we obtain the following
representation for the solution of ()-() for arbitrary p(t) ∈ C[,T]:

u(x, t) =
∞∑
n=

[
ϕne–(πn)

t–
∫ t
 p(s)ds +

∫ t


Fn(τ )e–(πn)

(t–τ )–
∫ t
τ p(s)ds dτ

]
sin(πnx). ()
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Under the conditions () of (A) and () of (A), the series () and its x-partial deriva-
tive are uniformly convergent in QT since their majorizing sums are absolutely conver-
gent. Therefore, their sums u(x, t) and ux(x, t) are continuous in QT . In addition, the t-
partial derivative and the xx-second order partial derivative series are uniformly conver-
gent in QT . Thus, we have u(x, t) ∈ C,(QT )∩C,(QT ). In addition, ut(x, t) is continuous
in QT . Differentiating () under the assumption (A), we obtain

∫ 


xut(x, t)dx = E′(t), ()

and this yields

p(t) = K
[
p(t)

]
, ()

where

K
[
p(t)

]
=

(
–E′(t) +

∞∑
n=

πn
(

ϕne–(πn)
t–

∫ t
 p(s)ds +

∫ t


Fn(τ )e–(πn)

(t–τ )–
∫ t
τ p(s)ds dτ

)

–
∞∑
n=


πn

Fn(t)

)
/E(t). ()

Denote

C =
–maxt∈[,T] E′(t) – E() –maxt∈[,T](

∑∞
n=


πnFn(t))

maxt∈[,T] E(t)
,

C =
–mint∈[,T] E′(t) +

∑∞
k= πn(ϕn +

∫ T
 Fn(τ )dτ ) –mint∈[,T](

∑∞
n=


πnFn(t))

mint∈[,T] E(t)
.

Using the representation (), the following estimate is true:

 < C ≤ p(t) ≤ C.

Introduce the setM as follows:

M =
{
p(t) ∈ C[,T] : C ≤ p(t) ≤ C

}
.

It is easy to see that

K :M →M.

Compactness of K is verified by analogy to []. By virtue of the Schauder fixed point the-
orem, we have a solution p(t) ∈ C[,T] of equation ().
Now let us show that there exists QT ( < T ≤ T ) for which the solution (p,u) of the

problem ()-() is unique in QT . Suppose that (q, v) is also a solution pair of the problem
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()-(). Then, from the representations () and () of the solution, we have

u(x, t) – v(x, t)

=
∞∑
n=

ϕn
(
e–(πn)

t–
∫ t
 p(s)ds – e–(πn)

t–
∫ t
 q(s)ds

)
sinπn(x)

+
∞∑
n=

(∫ t


Fn(τ )

(
e–(πn)

(t–τ )–
∫ t
τ p(s)ds – e–(πn)

(t–τ )–
∫ t
τ q(s)ds)dτ

)
sinπn(x), ()

p(t) – q(t) = K
[
p(t)

]
–K

[
q(t)

]
, ()

where

K
[
p(t)

]
–K

[
q(t)

]
=

∑∞
n= πnϕn(e–(πn)

t–
∫ t
 p(s)ds – e–(πn)t–

∫ t
 q(s)ds)

E(t)

–
∑∞

n= πn
∫ t
 Fn(τ )(e

–(πn)(t–τ )–
∫ t
τ p(s)ds – e–(πn)(t–τ )–

∫ t
τ q(s)ds)dτ

E(t)
.

Using the estimates

∣∣e–(πn)t–∫ t
 p(s)ds – e–(πn)

t–
∫ t
 q(s)ds

∣∣ ≤ (πn)T max
≤t≤T

∣∣p(t) – q(t)
∣∣,

∣∣e–(πn)(t–τ )–
∫ t
τ p(s)ds – e–(πn)

(t–τ )–
∫ t
τ q(s)ds∣∣ ≤ (πn)T max

≤t≤T

∣∣p(t) – q(t)
∣∣,

we obtain

max
≤t≤T

∣∣K[
p(t)

]
–K

[
q(t)

]∣∣ ≤ α max
≤t≤T

∣∣p(t) – q(t)
∣∣.

Let α ∈ (, ) be an arbitrary fixed number. Fix a number T,  < T ≤ T , such that

C +C

C
T ≤ α,

where

C = min
t∈[,T]

E(t), C =
∞∑
n=

πnϕn, C = T max
t∈[,T]

( ∞∑
n=

πnFn(t)

)
.

Then, from equality (), we obtain

‖p – q‖C[,T] ≤ α‖p – q‖C[,T],

which implies that p = q. By substituting p = q in (), we have u = v. �
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3 Continuous dependence of (p,u) upon the data
Theorem  Under assumptions (A)-(A), the solution (p,u) of the problem ()-() de-
pends continuously upon the data for small T .

The proof of the theorem is verified by analogy to [].

4 Numerical method
We use the finite difference method with a predictor-corrector type approach that is sug-
gested in []. Apply this method to the problem ()-().
We subdivide the intervals [, ] and [,T] into Nx and Nt subintervals of equal lengths

h = 
Nx

and τ = T
Nt
, respectively. Then we add two lines x =  and x = (Nx + )h to gener-

ate the fictitious points needed for dealing with the boundary conditions. We choose the
Crank-Nicolson scheme, which is absolutely stable and has a second-order accuracy in
both h and τ . [] The Crank-Nicolson scheme for ()-() is as follows:


τ

(
uj+i – uji

)
=


h

[(
uji– – uji + uji+

)

+
(
uj+i– – uj+i + uj+i+

)]

+



(
pj+ + pj

)(
uj+i + uji

)
+


(
Fj+
i + Fj

i
)
, ()

ui = φi, ()

uj = ujNx+, ()

uj + ujNx


= ujNx+, ()

where  ≤ i≤ Nx and  ≤ j ≤ Nt are the indices for the spatial and time steps respectively,
uji = u(xi, tj), φi = ϕ(xi), F

j
i = F(xi, tj), xi = ih, tj = jτ . At the t =  level, adjustment should be

made according to the initial condition and the compatibility requirements.
Equations ()-() form an Nx ×Nx linear system of equations

AUj+ = b, ()

where

Uj =
(
uj,u

j
, . . . ,u

j
Nx

)tr ,  ≤ j ≤ Nt ,b = (b,b, . . . ,bNx )
tr ,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R + R + 
 –   – 


– R + R +  – 
 – R + R +  · · · 
...

– R + R +  –
– 

  – R + R + 


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R =
h

τ
, R =

h


(
pj+ + pj

)
, j = , , . . . ,Nt ,
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b = –
(
–R + R +




)
uj + uj +



ujNx + h

(
Fj+
 + Fj


)
, j = , , . . . ,Nt ,

bNx = ujNx– –
(
–R + R +




)
ujNx +



uj + h

(
Fj+
Nx + Fj

Nx

)
, j = , , . . . ,Nt ,

bi = uji– – (–R + R + )uji + uji+ + h
(
Fj+
i + Fj

i
)
, i = , , . . . ,Nx – , j = , , . . . ,Nt .

Now, let us construct the predicting-correcting mechanism. First, integrating equation
() with respect to x from  to  and using () and (), we obtain

p(t) =
–E′(t) +

∫ 
 xF(x, t)dx + ux(, t)

E(t)
. ()

The finite difference approximation of () is

pj =
–((Ej+ – Ej)/τ ) + (Fin)j + (ujNx+ – ujNx )/h

Ej ,

where Ej = E(tj), (Fin)j =
∫ 
 xF(x, tj)dx, j = , , . . . ,Nt .

For j = ,

p =
–((E – E)/τ ) + (Fin) + (φNx+ – φNx )/h

Ej ,

and the values of φi allow us to start our computation. We denote the values of pj, uji at
the sth iteration step pj(s), uj(s)i , respectively. In numerical computation, since the time step
is very small, we can take pj+() = pj, uj+()i = uji, j = , , , . . . ,Nt , i = , , . . . ,Nx. At each
(s + )th iteration step, we first determine pj+(s+) from the formula

pj+(s+) =
–((Ej+ – Ej + )/τ ) + (Fin)j+ + (uj+(s)Nx+ – uj+(s)Nx )/h

Ej .

Then from ()-() we obtain


τ

(
uj+(s+)i – uj+(s)i

)
=


h

[(
uj+(s+)i– – uj+(s+)i + uj+(s+)i+

)

+
(
uj+(s)i– – uj+(s)i + uj+(s)i+

)]

+



(
pj+(s+) + pj+(s)

)(
uj+(s+)i + uj+(s)i

)
+


(
Fj+
i + Fj

i
)
, ()

uj+(s) = uj+(s)Nx+ , ()

uj+(s) + uj+(s)Nx


= uj+(s)Nx+ . ()

The system of equations ()-() can be solved by the Gauss elimination method, and
uj+(s+)i is determined. If the difference of values between two iterations reaches the pre-
scribed tolerance, the iteration is stopped, andwe accept the corresponding values pj+(s+),
uj+(s+)i (i = , , . . . ,Nx) as pj+, u

j+
i (i = , , . . . ,Nx), on the (j + )th time step, respectively.

By virtue of this iteration, we can move from level j to level j + .
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Figure 1 The analytical and numerical solutions of p(t) when T = 1/2. The numerical solution is shown
by a dashed line.

5 Numerical example and discussions
In this section, we present examples to illustrate the efficiency of the numerical method
described in the previous section.

Example Consider the inverse problem ()-() with

F(x, t) =
((
 + sin(πx)

)(
 + exp(t)

)
+ (π ) sin(πx)

)
exp(t),

ϕ(x) =  + sin(πx), E(t) =
(


–


π

)
exp(t), x ∈ [, ], t ∈ [,T].

It is easy to check that the analytical solution of this problem is

{
p(t),u(x, t)

}
=

{
 + exp(t),

(
 + sin(πx)

)
exp(t)

}
. ()

Let us apply the scheme which was explained in the previous section for the step sizes
h = ., τ = h

 .
In the case when T = /, the comparisons between the analytical solution () and the

numerical finite difference solution are shown in Figures  and .

6 Conclusions
The inverse problem regarding the simultaneous identification of the time-dependent co-
efficient of heat capacity together with the temperature distribution in a one-dimensional
heat equationwith periodic boundary and integral overdetermination conditions has been
considered. This inverse problem has been investigated from both theoretical and nu-
merical points of view. In the theoretical part of the article, the conditions for the exis-
tence, uniqueness and continuous dependence upon the data of the problem have been

http://www.journalofinequalitiesandapplications.com/content/2013/1/108
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Figure 2 The analytical and numerical solutions of u(x, t) at the T = 1/2. The numerical solution is
shown by a dashed line.

established. In the numerical part, a numerical example using the Crank-Nicolson finite-
difference scheme combined with the iteration method is presented.
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