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Abstract: Spatial modulation (SM), which employs the indices of multiple transmit antennas to transmit information in addition
to the conventional M-ary signal constellations, is a novel transmission technique that has been proposed for multiple-input
multiple-output systems. In this study, a new class of space-time trellis codes, called ‘super-orthogonal trellis-coded SM’
(SOTC-SM), is proposed. These codes combine set partitioning and a super set of space-time block coded SM (STBC-SM)
codewords to achieve maximal diversity and coding gains by exploiting both SM and space-time block codes. Unlike super-
orthogonal space-time trellis codes (SOSTTCs), which parametrise the orthogonal STBCs, these new codes expand the
antenna constellation using the principle of SM. Systematic construction methods are presented for the SOTC-SM scheme
and design examples are given for 2, 4 and 8 trellis states, at 2, 3 and 4 bits/s/Hz spectral efficiencies. The approximate bit-
error probability performance of SOTC-SM is derived and shown to match computer simulation results. A simplified
maximum likelihood detection method for the proposed scheme is given. It is shown through computer simulations that the

proposed SOTC-SM schemes achieve significantly better error performance than SOSTTCs with comparable complexity.

Nomenclature

used for column vectors and
matrices, respectively

Bold, lowercase and
capital letters

(), ()" and () complex conjugation,
transposition and Hermitian
transposition, respectively

-1l Euclidean (or Frobenius) norm

Pr(-) probability of an event

det(4) and rank(4)  determinant and rank of A4,
respectively

R{x} real part of x for a complex
variable x

[0]0) tail probability of the standard

Gaussian distribution

1 Introduction

Spatial multiplexing systems such as the vertical Bell Labs
layered space-time (V-BLAST) system [1] boost the data
rate by the simultaneous transmission of a group of
information symbols, where each antenna transmits its
own data. On the other hand, space-time block codes
(STBCs) have been designed to increase the reliability of
transmission by means of transmit diversity [2, 3].
STBCs have been comprehensively studied in the
literature because of their ability to exploit the promising
potential of multiple-input multiple-output (MIMO)
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systems effectively. However, to obtain additional coding
gains without expanding the bandwidth, space-time trellis
codes (STTCs), which combine modulation and trellis
coding for MIMO systems, have been proposed [4].
Therefore STTCs can be considered as trellis-coded
modulation (TCM) schemes [5] for MIMO channels. On
the other hand, it has been shown in [6, 7] that a
systematically designed class of STTCs, called super-
orthogonal STTCs (SOSTTCs), can achieve higher
coding gains than classical STTCs with lower decoding
complexity by combining the STBCs with trellis codes,
applying the set partitioning principle to the STBC
matrices and super-orthogonal sets.

The fundamental feature of SM, which makes it different
from the conventional MIMO techniques, is the use of the
antenna indices as a source of information in addition to
the conventional M-ary signal constellations such as M-ary
phase-shift keying (M-PSK) or M-ary quadrature
amplitude modulation (M-QAM) [8]. SM features some
interesting properties such as the elimination of inter-
channel interference and no requirement of antenna
synchronisation as well as reduction of the required
number of radio frequency (RF) chains to one at the
transmitter. By eliminating amplitude/phase modulations
for SM, a space-shift keying (SSK) scheme [9] has been
proposed and extensively studied [10]. Recently, improved
SM and SSK schemes have been proposed [11-13]. In
order to improve the error performance of SM, a novel
scheme called space-time block-coded spatial modulation
(STBC-SM) has been proposed in [14] by combining SM
with STBC to benefit from the diversity gain advantage of
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STBC. In this scheme, the information is conveyed by not
only STBC matrices, but also by the indices of the
transmit antennas over which the matrices are transmitted.
A suboptimal trellis-coded SM scheme, which benefits
from the trellis coding gain for SM under correlated
channel conditions, has been proposed in [15], where the
key idea of TCM is partially applied to SM. More
recently, a new spatial modulation for trellis coding (SM-
TC) scheme has been proposed in [16], in which a trellis
encoder and an SM mapper are jointly designed, similarly
to the conventional TCM. This scheme does not permit
parallel transitions in order to maintain the same time
diversity advantage of the trellis coding as the classical
STTCs. It has been shown in [16] that the SM-TC
achieves significantly better bit-error rate (BER) and frame
error rate (FER) performance than the STTCs with reduced
decoding complexity, since only one transmit antenna is
active during each trellis transition. However, for SM-TC
schemes, the required number of transmit antennas must
be an integer power of 2, and spectral efficiencies such as
3 and 4 bits/s/Hz can be achieved with eight transmit
antennas, which significantly increase their implementation
complexity. Furthermore, no method for designing reliable
SM-TC codes systematically has yet been discovered.

In this paper, a new class of STTCs, called ‘super-
orthogonal trellis-coded spatial modulation (SOTC-SM)’,
is proposed. In this scheme, using the principle of set
partitioning for STBC-SM matrices, STBC-SM is
combined with trellis coding, and systematic techniques
are presented for designing new trellis codes with 2, 4
and 8 trellis states at 2, 3 and 4 bits/s/Hz spectral
efficiencies. Compared to SM-TC, the proposed codes
do not restrict the number of transmit antennas and they
can also be designed systematically. The proposed codes
not only allow simplified decoding as SOSTTCs do, but
also do not expand the signal constellation. Unlike the
classical SOSTTCs, which parametrise the orthogonal
STBCs to obtain the required number of orthogonal
matrices to be assigned to the branches of the trellis,
we expand the antenna constellation using the principle
of SM. Although the proposed codes have the same
minimum coding gain distances (CGDs), determined by
the ‘parallel transitions’, as those of SOSTTCs, the
expansion to the antenna domain improves the ‘distance
spectrum’ of SOSM-TC schemes significantly. This
results in an improved error performance since the
diversity order of our scheme exceeds that of the core
STBC for the ‘error events with higher lengths’ [7].
The pairwise error probability (PEP) of the proposed
SOTC-SM  scheme and an approximate bit-error
probability (BEP) expression is derived. A simplified
maximum-likelihood (ML) detection technique for
SOTC-SM is presented and its computational complexity
is evaluated. It is shown through computer simulations
that the proposed codes achieve significantly better BER
and FER performance than the SOSTTCs and the SM-
TC schemes, with comparable complexity.

The organisation of the paper is as follows. In Section 2,
we introduce the SOTC-SM scheme, given the
corresponding construction techniques and provide several
design examples. In Section 3, the error performance
analysis for SOTC-SM is presented. In Section 4, a
simplified ML decoding technique for SOTC-SM is
investigated. In Section 5, simulation results and
performance comparisons are given. Finally, in Section 6,
the main conclusions of the paper are presented.
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2 Super-orthogonal trellis coded spatial
modulation

In this section, we first briefly review the STBC-SM
technique and present the set partitioning principle for
STBC-SM matrices. We then introduce the proposed
SOTC-SM scheme with specific design examples for
different trellis states and spectral efficiencies.

2.1 STBC-SM and super set of STBC-SM
codewords

The STBC-SM technique presented in [14] combines STBCs
with SM to improve the overall transmission efficiency by
means of spatial diversity and coding gain. As an example,
using Alamouti’s STBC, the STBC-SM provides the
following codeword set for three transmit antennas

a_| X1 x O by |0 x; x
AR R ]

where x| and x, are two complex information symbols drawn
from an M-PSK or M-QAM signal constellation and the
columns and rows correspond to the transmit antennas and
the symbol intervals, respectively. In this work, we call the
codeword set in (1) a ‘super set’ [7] of STBC-SM
codewords for three transmit antennas. The codeword set in
(1) is obtained by the extension of Alamouti’s STBC to
three transmit antennas and doubles the number of
orthogonal matrices provided by a single codeword in (1).
This property of STBC-SM is the main motivation of our
work. As will be seen shortly, the super sets of STBC-SM
codewords will be used at the trellis transitions of the
proposed SOTC-SM scheme.

2.2 Construction of the SOTC-SM scheme

We now systematically explain how to design the new STTCs
using SM, which we call the SOTC-SM, for a given spectral
efficiency (k bits/s/Hz) and an arbitrary number of states ().
The SOTC-SM technique is based on the set partitioning of
the STBC-SM codewords for a given signal constellation
format. The key point in set partitioning of an orthogonal
STBC-SM codeword X is to find subsets such as X;, Xj; or
Xk, 6., k€ {1, 2} of its realisation matrices, with
progressively larger minimum CGDs [7]. The minimum
CGD is an important design parameter for quasi-static
Rayleigh fading channels, for which the channel fading
coefficients remain constant during the transmission of a
frame. By considering all possible realisations C' and €’ of
an STBC-SM codeword X, the minimum CGD for this
codeword is defined as

Smin = min det(C’ — C)'(C' = O) ®)
c,c

For SOTC-SM, we apply the set partitioning for each STBC-
SM codeword in a considered codeword set as in (1). Let us
assume quadrature PSK (QPSK), 8-PSK and 16-QAM
constellations with the codeword X“ in (1). The orthogonal
matrices provided by this codeword can be partitioned into
eight subsets as shown in Fig. 1, where because of space
limitations, the corresponding pairs of symbol indices are
provided for QPSK and 8-PSK constellations only, for
which the index of the constellation symbol /@™~ jg
denoted by a € {1, 2, ..., M}. However, using a similar
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min. CGD
(QPSK/8-PSK/16-QAM)
4/034/0.16 X
16/1.37/0.64 X /\){
B g
R \
16/4/0.64 X2 < K Xe ,
64/16/2.56 xTll x;‘l! XTN xr?z x;ll x;l! x;}l x;}]
QPSK 111,33} 113,31} {22,44} {2442} {12,34} 114,32} {21,43} 123,41}
111,33, 113,31, 122,44, 124,42, 112,34, 114,32, 121,43, 123,41,
8-PSK 55,77, 57,71, 66,88, 68,86, 56,78, 58,76, 65,87, 67,85,
h 15,37, 17,35, 26,48, 28,46, 16,38, 18,36, 2547, 2745,
51,73} 53,75} 62,84} 64,82} 52,74} 54,72} 61,83} 63,81}

Fig. 1 Set partitioning of the STBC-SM codewords for QPSK, 8-PSK and 16-QAM constellations and the corresponding pairs of symbol

indices for QPSK and 8-PSK, only

technique, set partitioning can be performed for other
constellations. As shown on the left-hand side of Fig. 1, the
minimum CGD increases as we move down to the lower
levels of the tree. Note that the set partitioning given for X
in Fig. 1 is valid for other STBC-SM codewords employing
different antenna combinations.

During the SOTC-SM construction, we assign different
STBC-SM codewords to the transitions originating from
different states, which not only guarantees the transmit
diversity of the corresponding STBC, but also avoids a
catastrophic encoder. Furthermore, when compared with the
classical SOSTTCs, the use of the antenna domain
improves the distance spectrum of the trellis code
significantly, resulting in a substantial improvement in error
performance while maintaining the same spectral efficiency
and trellis structure. In other words, SOSTTCs use a super
set of STBCs whereas our scheme uses a super set of
STBC-SM codewords, where both schemes apply set
partitioning to their corresponding sets to achieve full-
diversity with maximum coding gain. SOSTTCs expand the
number of orthogonal matrices without expanding the
signal constellation, which is a desired feature for simplified
transmitter structure. Contrary to the STBC-SM technique,
the SOTC-SM also has this feature, which expands the
antenna constellation rather than parametrising the code like
the SOSTTCs do.

For k bits/s/Hz, we have 2“7 branches diverging from each
state when a 7 x ny STBC is employed, where 7 and ny
denote the number of channel uses and the number of
transmit antennas, respectively. In particular for the case of
Alamouti’s STBC, we have 2%“ branches diverging from a
state. For SOTC-SM, we employ two different trellis code
construction techniques, as follows.

1. We assign a different STBC-SM codeword to each state of
the trellis, and therefore S different STBC-SM codewords are
required. This approach resembles that used for the
SOSTTCs, in which a different rotation parameter is
assigned to each state. Contrary to the SOSTTCs, we
extend the orthogonal matrices in the spatial domain rather
than the parameter domain. For the branches diverging from
each state, we apply the set partitioning rules explained
above to obtain the corresponding subsets.
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2. 8/2 STBC-SM codewords are employed and their subsets
are arranged systematically when assigning to the branches
diverging from different states to avoid a catastrophic
encoder. A similar design technique has also been reported
for SOSTTCs.

For both of the construction techniques described above,
where a total of 2%“S orthogonal matrices are assigned to
the branches of the trellis for the Alamouti code, a rate-1
code is obtained, that is, k = logy(M). As we will show in
the sequel, although similar techniques as those of
SOSTTCs are applied, extending the core STBC to the
spatial domain rather than the parameter domain provides
significant advantages in terms of the error performance and
provides design flexibility with interesting trade-offs
between complexity and performance. Furthermore, it
overcomes the limitation of classical SOSTTCs for which
the total number of required orthogonal matrices is limited
by the number of different rotation parameters, which do
not expand the signal constellation.

2.3 New trellis code design examples

In this subsection, we provide several code design examples
for 2, 3 and 4 bits/s/Hz spectral efficiencies and different
numbers of trellis states using the aforementioned trellis
code construction techniques employing the Alamouti code
in STBC-SM codewords. The number of considered
transmit antennas varies from three to six depending on the
chosen trellis structure and the construction technique.
Owing to space limitations, trellis diagrams of the new
codes are defined by the subsets assigned to the state
transitions, represented by S x § state transition matrices as
shown in Table 1, where the submatrix at the ith row and
jth column, 7, j =1, ..., S represents the subset assigned to
the parallel transitions diverging from the ith state and
merging to the jth state. A zero matrix 0 means that there is
no transition between the corresponding two states, and X,
X% ..., X" represent the STBC-SM codewords with
different antenna combinations, which will be given in the
sequel. As an example, the trellis diagram of the 4-state
SOTC-SM scheme is given in Fig. 2, where its
corresponding subsets can be verified from Table 1. We
now present the new code constructions, as follows.
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Table 1 Trellis state transition matrices for SOTC-SM schemes
with subsets assigned to parallel transitions

State Matrix
2 [X‘%’ Xé’]

xX? x%
4

8l [ X% X%, X3 X3 0 0 0 0
0C 0c 00 OC X0 X% X5 X3
X7 X7, Xz X3 0 0 0 0
0 0 0 0 X{, X, X5, X3,
X3 X3 X4 X5, 0 0 0 0
0 0 0 0 X3 X3 X3 Xu
X3 X3 X5 X3, 0 0 0 0
L 0 0 0 0 X§ X3 X§y X |
8-l [ X511 X512 X1 Xin X34 X5, X5 X5y ]
b b b b
g1l Xgn Xl12 Xi21 X722 X§11 X212 X321 ngz
m Xtz Xi Xin Xz X212 X221 X3
X;n Xyz Xi21 X Xgn X212 X321 ngz
m Xtz X9 Xin Xz Xz Xz X3y
X0 Xl Xip Xl Xéﬂ Xiio X Xby
m XT X X9 X3 X3 Xo Xop
L X5 Xio Xy Xy X5 X3, Xbyr X5y |

a a a a
x]l XlZ XZ] XZZ

X X, X3, X,

X X5 X5 X

d d d el
Xll xI2 x2I x22

Fig. 2 New four-state SOST-SM scheme using QPSK for 2 bits/s/
Hz or 8-PSK for 3 bits/s/Hz or 16-QAM for 4 bits/s/Hz

2.3.1 Example 2.1, (2-state): For a 2-state code, the two
codewords of (1) are assigned to the states of the trellis
according to the first construction technique as seen from
Table 1. In order to obtain spectral efficiencies of 2, 3 and
4 Dbits/s/Hz, we use QPSK, 8-PSK and 16-QAM
modulations for which the corresponding minimum CGDs
are equal to 16, 1.37 and 0.64, respectively. Note that the
minimum CGD of our 2-state SOTC-SM scheme is the
same as that of the 2-state SOSTTC. Although the worst
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case PEP events for our code and the 2-state SOSTTC are
the same and are determined by the parallel transitions,
extending the code in the spatial domain improves the
distance spectrum of the trellis code significantly, by means
of the error events with higher lengths. We will examine
the PEP behaviour of this code in the next section.

2.3.2 Example 2.2 (4-state): Fig. 2 demonstrates the
proposed 4-state trellis code constructed by the first
technique using the corresponding set partitioning as well
as the following STBC-SM codewords for four transmit
antennas

S R EH N
—X; X —X; X

2 X 2 X 3)

XC:[O 0 x x2i| Xd:[xl 0 0 x2i|

0 0 —x5 x| x5 0 0 xj

Although having the same minimum CGD as that of our
previous 2-state code for QPSK and 16-QAM
constellations, this code has a better distance spectrum
because of its reduced number of parallel transitions. Note
that the minimum CGD of this code for 8-PSK is equal to
4, which is higher than that of the code in Example 2.1.
Four STBC-SM codewords with four transmit antennas

were used here to obtain the required number of orthogonal
matrices in Fig. 2.

2.3.3 Example 2.3 (8-state-1): The four codewords of (3)
are assigned to the branches of the trellis according to the
second construction technique as seen from Table 1. For
QPSK, 8-PSK and 16-QAM modulations, the minimum
CGD of this code is the same as that of the 4-state code
given in Example 2.2. However, when compared with the
codes in Examples 2.1 and 2.2, this code exhibits better
error performance because of its increased trellis
complexity, which improves the distance spectrum. Note
that a similar 8-state SOSTTC is also reported in [7] with
the same minimum CGD for 8-PSK.

2.3.4 Example 2.4 (8-state-ll): As seen from Table 1, the
second 8-state trellis code is constructed by the first technique
using the following eight STBC-SM codewords for five
transmit antennas

O — X x, 0 0 07 Xb—_o 0 x x, 07
L= X 0 0 0] S Lo0 —x3 xf 0]
X — [0 x;, x 0 07 X — [x, 0 0 0 x,7
10 —x5 x7 0 0] l—x; 0 0 0 x|

X — [x, 0 x, 0 07 X — [0 x; 0 x, 07
S L—x 0 xf 0 0] Lo = 0 xf 0]
XE — [x, 0 0 x, 0] X — [O 0 x 0 x2:|
L= 0 0 xf 0] S Lo0 = 0 X

“4)

The minimum CGD values of this code are equal to 64, 16
and 2.56 for QPSK, 8-PSK and 16-QAM, respectively,
which are higher than those of the code in the previous
example, because of the reduced number of parallel
transitions. In order to obtain 8/> matrices for k = log(M)
bits/s/Hz, a total of eight transmit antenna combinations are
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required, that can be supported by at least five transmit
antennas according to the STBC-SM design technique [14].

2.3.5 Example 2.5 (8-state-Ill): This code has the same
structure and minimum CGD values as those of our 8-state-
I code; however, it uses the following STBC-SM
codewords for six transmit antennas

X"z_xl x, 00 0 07 X —
| —x5 x7 0.0 0 0]

. [0000 x x d
X = . o x'=
L0000 —x5 x|

[0 0 0 07
X¢— x1* xi X —
L0 0 0 —x; x; 0]

[0 0 x; x, 0 07
L0 0 —x5 x7 0 0]
[0 x;, x, 0 0 07
L0 —x5 x} 0 0 0]
[ x;, 00 0 0 x,]
| —x5 0 0 0 0 xj |

X — [x; 0 x, 0 0 07 Xh=|:0 X 0 x, 0 07
| —x5 0 x7 0 0 0] 0 —x; 0 x7 0 0
®)

which improves the distance spectrum further to obtain better
error performance.

3 Performance evaluation of SOTC-SM

In this section, we first derive the PEP expressions for the
most dominant error events. We then obtain a closed-form
approximation to the average BEP by considering the PEP
of the error events with lengths up to a given finite value.
We are restricted to this approximation of the average BEP
since the evaluation of a true union bound using the
transfer function is not feasible for the considered MIMO
quasi-static fading channel model.

Suppose that the Alamouti code is considered. For the
STBCs and STTCs, let us assume that a 2N X ngy-
dimensional code matrix X is transmitted and erroneously
detected as X, where N is the error event path length. Note
that for the STBCs, N = 1. The conditional PEP is given by
the following well-known formula [7]

Pr(X — X|H) = Q<\/§II(X —X)HII) (6)

where v is the average SNR at each receive antenna, assuming
the average power of the received signal at each receive
antenna is 1 W, H is the ny x ny fading channel coefficient
matrix with zero mean, unit variance circularly symmetric
complex Gaussian distributed entries, where ni denotes the
number of receive antennas. Averaging (6) over H and
using moment-generating function (MGF) techniques, the
unconditional PEP is given as [17]

. 1 (72 sin 0 R
Pr(X — X)=— ]‘[ ——————) do ()
m)o o \sin” 0+ (y/)\
where A; (i = 1, 2, ..., r) and r are the ith eigenvalue and the

rank of the distance matrix A(X, X) = (X — X)"(X — X),
respectively. A closed-form expression for (7) is given in
([17], eq. (5A.74)). After the evaluation of the PEP, the
approximate BEP performance of the SOTC-SM scheme is
calculated by considering error events with lengths up to a
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predetermined finite value as [17]

1 1 . .
Py > = Z e(X, X)Pr(X — X) ®)
)"(i(x

where «’ is the number of input bits per trellis transition (i.e.
K = 2k for the case where the Alamouti code is used on the
branches of the trellis), n is the total number of different
transmission matrices and e(X, X) is the number of bit
errors associated with the corresponding error event. In the
following, we give a generic example to show the accuracy
of (8) for our scheme, considering all possible values of X
and X matrices for error events with lengths N = 1 (parallel
transitions) and 2. As we show in the sequel, our
assumptions are quite efficient, since the theoretical curves
match closely with Monte Carlo simulation results, and
therefore there is no need to consider error events with
higher lengths, which can be quite complicated for some
trellis codes.

3.1 Example 3.1 (2 bits/s/Hz, 2-state)

For the parallel transitions of the new 2-state code, the PEP
expression in (7) reduces to the PEP of the Alamouti’s
STBC, which is given by

.2 2ng
sin” 6
) )

. 1 /2
PrX = X) = _j <sin2 0+ (v/4)A

)0

where A; = A, = A because of the orthogonality of the
Alamouti code. The approximate BEP performance of our
scheme can be calculated easily from (8) as

1 a va a wya
Py~ 5 DO Pr(X| - X{e(X|, X7) (10)

X‘I‘ X;’

where because of the symmetrical code design, we have
considered error events only within the parallel transitions
originating from the first state and merging to the first state
(for the sake of notational simplicity, we use X for both a
subset and its elements). Numerical analysis of the
approximation given by (10) is exactly the same as that for
a 2-state SOSTTC [7] and shows that a transmit diversity
order of two is achieved for both schemes. On the other
hand, extending the core STBC to the antenna domain
allows higher transmit diversity orders than that of the core
STBC itself for the case N > 2. We obtain 2 < r < ny with
increasing N and, consequently, the superiority of the
proposed scheme becomes more evident.

As an example, for N =2, considering the error
event path pairs originating from the first state, we have

for which X =[x/’ ‘@)’
X=[xi)" «ep']” ad X =[xi)

X1, X =[xea)t (xb@)"]',  respectively,
where X['(t), m € {a, b} and i=1,2 denotes the
transmission of X} in the #th step (=1, ..., N) of the

two cases
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error event. For these cases, we have

X1 X2 0
%
| %20 % 0
X = 0
X2 X2
3k
=X, X 0
X1,1 X1 0
ok Ak 0
o _ X1 A
X = 0 N N
Y12 X2
Ak Ak
0 —X2 X (11)

where x;, and %, , are the ith data symbols in the /th transmitted
and erroneously detected STBC-SM matrices along the error
event, respectively. The use of a third transmit antenna with
the SM principle allows a transmit diversity order of three
for X and X matrices in (11), which can be proved by
showing that 6 = CGD = detA(X, X) is non-zero for all
values of X and X. After some algebra, it follows from (11)
that

~ 12 A 12 ~ 2
0= (1% 21" + X2 )(Ixyy — Xy 41
X 2 L2

+ gy — X 1)x; — %] (12)

- 2 s 2 s 2
gy = X7 g 30,7 4 X, — xp,[)

Since X{ and X4 are two distinct subsets of X¢, it is not
possible to have x; =% and x,; =X, concurrently.
Therefore & # 0 for all values of X and X, and the
corresponding PEP values can be calculated from (7), with
r = 3. Once the PEP is calculated, the BEP of our scheme
can be evaluated easily from (8).

In the case of the error events with higher lengths (N > 3),
we can show that the diversity order of the 2-state code is
again equal to 3, since the diverging and merging branch
pairs for such error events correspond to a suberror event
with N =2, which we examined above. Assume that we
have X =[X(1)"... X(V)"1" and X = [X()"---X(V)'T"
matrices with dimensions 2N x 3, where X(¢) and X()
represent the transmitted and erroneously detected STBC-
SM matrices, respectively, at the tth step of the error event.
We have the expression given in (13), where
A, =AX(1), X(1))+ AXN), X(N)) is the difference
matrix for N=2 and A, = A(X(2),
X2)+---+AXN —-1),X(N —1)). We know from
Weyl’s Theorem [18] that for the eigenvalues of the sum of
two Hermitian matrices such as 4; and A,

A(A)) + A (A4y) < A(A] + A4y) (14)

where A(A) denotes the smallest eigenvalue of 4. In our
previous analysis, we have proved that rank(4,) = 3, which
implies that A;(4;) # 0. Consequently, rank(4, + A,) = 3,
since Aj(A4; + A,) # 0 regardless of Ay(4,). Therefore the
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diversity order of our scheme remains unchanged for higher
values of N.

Similar analyses can be carried out easily for other code
constructions. By generalising the concepts developed, here,
we give the following remark:

Remark 1: The minimum CGD of the SOTC-SM scheme is
always determined by parallel transitions and the error
events with higher path lengths contribute higher diversity
orders, which improve the distance spectrum of the
proposed codes significantly. However, for the SOSTTCs
with two transmit antennas, one has to consider error events
with higher path lengths and their effect on the minimum
CGD and more importantly, on the distance spectrum of the
code. Therefore when compared with SOSTTCs, our
scheme provides a much better distance spectrum, mainly
because of the fact that the STBC-SM codewords are
employed at the branches of the trellis and a systematic
code design ensures higher diversity orders for N > 1
although the effects of parallel transitions are identical for
both schemes.

4 Simplified ML decoding of SOTC-SM

In this section, we describe a simplified ML decoding
technique for the SOTC-SM scheme and then compare its
decoding complexity with that of SOSTTCs and SM-TC
schemes. For the sake of simplicity, one receive antenna is
assumed. However, a generalisation to multiple receive
antennas is straightforward.

The encoding and decoding operations performed for the
SOTC-SM scheme are as follows. For « bits/s/Hz
transmission, during each two consecutive symbol intervals,
2k bits enter the SOTC-SM transmitter and determine the
corresponding transition out of 22* transitions on the trellis
diverging from a given state. Each transition corresponds to
the transmission of two symbols x; and x, in two
consecutive symbol intervals from pairwise combinations of
the available transmit antennas. The received signal samples
during two time intervals can be expressed as y = Xh +w,
where y = [y; 1»]" and w=[w; w>]" with w,, i=1, 2
being the additive Gaussian noise samples. X is the 2 X ny
transmitted matrix, and h = [hl hy - hnr] is the
ny x 1 channel vector, which is assumed to be perfectly
known at the receiver, h; representing the channel fading
coefficient from the ith transmit antenna to the receiver.
Similar to SOSTTCs, STTCs and SM-TC schemes, the
Viterbi decoder, which decides on the most likely
transmitted path, is used for ML decoding of the new
scheme. The most likely transition with the minimum
branch metric should be found among all parallel transitions
at each state step of the Viterbi decoder for each state
transition. For SOSTTCs, an approach is presented in [7] to
reduce the total number of metric calculations, which
benefits from the orthogonality of the core STBC by
considering the subsets of orthogonal matrices for which a

8 = det[ (X(1) — X(1)"

X(1) — X(1))

(X(N) — XN ]

(X(N) =X (V) (13)

= det[4(X(1), X(1)) + AX(2), X(2)) + - - - + AX(N), X(N))]

= det[A, + A4,]
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separate decoding of x; and x, is applicable. Since we use the
same set partitioning rules as those of SOSTTCs, a similar
ML decoding technique can be used. From the received
signals, the decoder can extract the embedded information
symbol vector as

eq — me+weq (15)

T T

where x = [x; x,]". Ve =[y1 ¥ andwg =[w W]

are the equivalent received signal and noise vectors,
m m hu h

[ #) hz]z[ht h* U, v E

{1,2, ..., ny} is the equivalent channel matrix [19] for the

SOTC-SM scheme, where h'l” =[h, & ]T,

hy =1[h,—h ] and the index m € {a, b, c, ...} determines
the correspondmg antenna combination. As an example, for
X“ and X? given in (1), u=1, v=2 and u =2, v=13,
respectively. Owing to the orthogonality
(K" Ky = 0, for all m), the decision metric M"(x;) for x;,
i =1, 2 can be separated as [20]

respectively. H" =

M]"(5) = |yeq — B, (16)

which reduces to the following for M-PSK by removing the
constant terms after expansion

My () = —B{DTh, + 32 1}

17
M) = Ry B — yi o) {17

For simplified decoding, similar to SOSTTCs, we have to
consider the subsets in which the metrics in (16) can be
minimised independently. Furthermore, by calculating
M{"(x,) and M;"(x,) for all values of x; and x,, as well as
saving the corresponding metrics, and using them for
different subsets of the same partitioning level, the
complexity of the decoder can be reduced significantly. The
following example illustrates the simplified ML decoding of
the SOTC-SM scheme:

1 2 3 4
] +3 @ ]
5 6 7 8
® L] @ [ ]
3 1 +1 +3 »
2 10 11 12
® ] 1 @ ]
13 14 15 16
® [ ] 3 e [ ]

Fig. 3 16-QAM constellation with corresponding symbol indices
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4.1 Example 4.1, (4 bits/s/Hz, 4-states)

For the new code given in Fig. 2, with a 16-QAM
constellation, 256 different orthogonal matrices are assigned
to each state of the trellis and the number of parallel
transitions is 64. Without any simplification, the required
number of metric calculations performed by the Viterbi
decoder will be 256 per state, which is unacceptably high.
However, considering that four distinct subsets (X7;, Xio,
X51, X5,) are assigned to the four parallel transitions from
each state of the trellis, respectively, ML decoding can be
simplified as follows. Let us define 16-QAM symbol sets
S, =1{1,3,6,8,9,11,14,16} and S,=1{2,4,5,7,
10, 12, 13, 15} using the 16-QAM symbol indices given in
Fig. 3. Then we have (x;, x,) € S, (x|, x,) € S5, x; € S,
and x, € S,, and x; € S, and x, € S, for X7}, X7, X5},
and X?%,, respectively, where m € {a, b, ¢, d}. As an
example, to determine the parallel branch with the
minimum metric in  X{,, the decoder minimises
independently M{(x;) and Mj(x,) over x € S, and
x, €S, respectlvely, and obtains the minimum branch
metric as M{(%}) + M3 (%3), where & = argmin_ es, M;'(x;)
for i,j =1, 2. Similarly, to determme the parailel branch
with the minimum metric in X{,, the decoder minimises
independently Mj'(x;) and M5(x,) over x; €S, and
x, €S,, respectively, and obtams the correspondlng
minimum branch metric as M{(}) + M$(33). These four
minimisations require only 32 metric calculations in total.
On the other hand, to determine the parallel branch having
the minimum metric in X%, and X%,, the decoder does not
require new metric calculations. It Just combmes the
previous minimum metrics as MY (xl) +M2( and
MR —i—M2 (&) for X5, and X7,, respectively. The same
procedure is applied for all antenna combinations.

In the above example, the subsets assigned to parallel
transitions provide independent pairs for the calculation of
(16). On the other hand, for some trellis codes, the subsets
assigned to parallel transitions should be divided into
smaller subsets to apply (16) for independent x; and x,
pairs. As an example, for the 2-state SOTC-SM scheme, the
same metrics as those of the 4-state SOTC-SM scheme
should be calculated. However, the minimum branch
metrics are calculated as min {M]"(%}) + My'(}3), M%) +
M)} and min (M}'(}]) + MPGR), MP'()+M'(R1)} for
X1 and X7, respectively, since X| = X7, UX7, and
X7 = X%, UX%,. Similarly, for the 8-state-Il SOTC-SM
scheme, (16) cannot be applied directly, and consequently
smaller subsets must be considered.

We observe that the total number of metric calculations
performed at each step of the Viterbi decoder is the same
for the SOTC-SM schemes and SOSTTCs given that both
use the same trellis structure. However, the total number of
operations performed can vary for the two systems
depending on the considered signal constellation, as well as
the trellis structure, if we save the common terms in (17) to
reduce complexity. Using an approach similar to that in [7,
Example 7.4.1], the following formula is derived to
determine the total number of operations to be performed at
each branch metric calculation step of the SOTC-SM
Viterbi decoder, for our trellis codes constructed by the first
technique using M-PSK

&= O(8ny + 8SM — 245)
+ O(4ny + 4SM — 128 + Iz) (18)
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2 bits/s/Hz (QPSK)

3 bits/s/Hz (8-PSK)

2-state 4-state 8-state 2-state 4-state 8-state

SM-TC - 44 RM 44 RM - - 216 RM
28 RA 28 RA 152 RA

SOSTTC 32RM 32RM - 96RM 184RM 376RM
24RA 24RA 56RA 104RA 216RA

SOTC-SM 40RM 64RM 104RM 104RM 192RM 360RM
28RA 48RA 180RA? 60RA 112RA 308RA?

#These values correspond to the complexity of the 8-state-Il code, whereas the complexity of the 8-state-l code is the same as that of the
4-state code. On the other hand, the complexity of the 8-state-lll code is only 8 RM + 4 RA higher than that of the 8-state-Il code

where O(-) notation is used to express the worst-case order of
growth of the complexity, and the first and second terms in
(18) correspond to the complexity of the real multiplications
(RMs) and the real additions (RAs), respectively, S is the
total number of different antenna combinations (or number
of trellis states), z is the total number of different subsets
assigned to the parallel transitions of the corresponding
trellis, and Z = 2 for the 2- and 8-state SOTC-SM schemes,
whereas Z =1 for the 4-state SOTC-SM scheme. In
Table 2, we present the total number of required operations
for simplified decoding of SM-TC [16], SOSTTC [7] and
the proposed SOTC-SM schemes with different trellis states
using QPSK and 8-PSK constellations, in which the
common terms are computed and saved for the reference
schemes to reduce complexity. In general, we observe that
the computational complexity of SOSTTCs is slightly
lower than that of SOTC-SM when both schemes have the
same trellis structure as seen from the first, fourth and
fifth columns of Table 2. We also observe that, for the
same trellis structure, the complexity of SM-TC for 3 bits/s/
Hz is considerably lower than that of our SOTC-SM
scheme; however, it requires a larger number of transmit
antennas.

5 Simulation results and comparisons

In this section, computer simulation results are presented for
the SOTC-SM scheme with different configurations and the
error performance of the new scheme is compared with that
of SOSTTCs and SM-TC schemes. BER and FER
performance of these schemes was evaluated through
Monte Carlo simulations for various spectral efficiencies
and numbers of trellis states as a function of the average
SNR per receive antenna. In all cases, the frame length is
assumed to be 40k bits for a spectral efficiency of k bits/s/
Hz. As it is not possible to use the same number of transmit
antennas for all schemes, we make our comparisons based
on the same spectral efficiency.

In Figs. 4 and 5, we compare the theoretical BEP
approximations calculated in Section 3 with the computer
simulation results, for the 2- and 4-state SOTC-SM schemes
at 2 bits/s/Hz, respectively. As seen from these figures, for
the error events with length N =2, thanks to the SM, a
transmit diversity order of three is obtained, as proven in
Section 3. We also observe that the combined (N =1 and
2) BEP converges to the BEP of the error events with
N =1, because of the improved distance spectrum of the

BEP/BER

1
15 20 25 30

SNR(dB)

Fig. 4 Comparison of theoretical BEP curves with simulation results for the 2-state SOTC-SM scheme at 2 bits/s/Hz, ny = 3
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BEP/BER
3

g == N=1
| == =n=2 ]
| ——N=1&N=2||
| —O— Simulation |

1
15 20 25 30
SNR(dB)

Fig.5 Comparison of theoretical BEP curves with simulation results for the 4-state SOTC-SM scheme at 2 bits/s/Hz, ny = 3

—— SM—'I'IC,4—stam.nr=4
—&A— SM-TGC 8-state,n =4
—_—— SOTC-SM.4—slaIa,nT=4 1
—0— SOTC-SM 8-state-1,n =4

15
SNR(dB)

Fig. 6 BER performance for 4- and 8-state SOTC-SM and SM-TC schemes at 2 bits/s/Hz

proposed scheme. We also conclude that the given BEP
approximations provide reasonably accurate results with
increasing SNR and can be used to predict the error
performance of the SOTC-SM scheme.

The BER performance of the SOTC-SM schemes with 2, 4
and 8 states is presented for 2 bits/s/Hz in Fig. 6. For
comparison, we also depicted the BER performance of 4-
and 8-state SM-TC schemes in Fig. 6. As seen from Fig. 6,
a considerable improvement is achieved by the new
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schemes compared to the SM-TC schemes using same
number of transmit antennas. We observe that the 4-state
SOTC-SM scheme provides SNR gains of 2.6 and 1.3 dB
over the 4-state SM-TC scheme for nrg=1 and 2,
respectively, whereas the 8-state SOTC-SM scheme
provides SNR gains of 1.5 and 0.4 dB over the 8-state SM-
TC scheme for ng = 1 and 2, respectively.

The FER performance of the SOTC-SM schemes with 2, 4
and 8§ states is presented for 2 bits/s/Hz in Fig. 7. As seen from
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T T I I 1
—o— SOTC—SM.z—slala.nr::i

—— SOTC—SM.4—s|a|e.nr_—4 1
—0O— S0TC-5M8-state-I,n_=4 |4

—{— SO0TC-5M8-state-Il,n_=51
—r— SOTC-SM 8-state-Ill,n =6

14 1
SNR(dB)

6 18 20 22 24 26

Fig. 7 FER performance for 2-, 4- and 8-state SOTC-SM schemes at 2 bits/s/Hz

SIOSTTCA—state.nT:?

—w— SOSTTC 8-state,n =2

—— SOTC—SM.Q—stata.nr—Q
—a— SOTC-SM4-state,n =4
—0— SOTC—SM,&—state—I,nT:xi 1
—{— SOTC-SM.8-state-ll.n,=5
—fr— SOTC-SM8-state-lll,n =4 |

SMR(dB)

Fig. 8 FER performance for 2-, 4- and 8-state SOTC-SM, SOSTTC and schemes at 3 bits/s/Hz

Fig. 7, the SOTC-SM technique exhibits improved FER
performance by increasing number of transmit antennas. As
an example, for nzp = 1, because of its improved distance
spectrum, the 8-state-Ill SOTC-SM scheme provides SNR
gains of 0.7, 1.9, 2.2, and 3.0 dB over the 8-state-II, 8-state-
I, 4-state and 2-state SOTC-SM schemes, respectively.

In Fig. 8, the FER performance of the SOTC-SM schemes
is given for 3 bits/s/Hz. For comparison, the FER
performance of the 4- and 8-state SOSTTCs are also given
in the same figure. Although exploiting larger number of

IET Commun., 2012, Vol. 6, Iss. 17, pp. 2922-2932
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transmit antennas than the SOSTTCs, our proposed codes
achieve significantly better FER performance than the
SOSTTCs by using the same number of RF chains at the
transmitter since only two transmit antennas remain active
in our scheme during transmission. As an example, the 4-
state SOTC-SM provides SNR gains of 2.2 and 1.6 dB over
the 4-state SOSTTC for nzp = 1 and 2, respectively, whereas
the 8-state-I SOTC-SM provides SNR gains of 2.1 and
1.7dB over the 8-state SOSTTC for nzp=1 and 2,
respectively. On the other hand, 8-state-IIl and 8-state-II
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codes exhibit improved FER performance compared with the
8-state-I code because of their better distance spectra.

6 Conclusions

In this paper, we have introduced a novel coded-MIMO scheme
called SOTC-SM as an alternative to SOSTTCs and SM-TC
schemes given in the literature. Systematic techniques have
been presented to construct the new scheme for a given
spectral efficiency and number of trellis states. The BEP
performance of the proposed scheme has been investigated by
performing a detailed PEP analysis. A simplified ML
detection technique has been provided to reduce the decoding
complexity of the SOTC-SM scheme. It has been shown
through computer simulations that the proposed SOTC-SM
schemes achieve significantly better error performance than
SOSTTCs and SM-TC with a comparable decoding
complexity.
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