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Nondata-Aided Joint Channel Estimation and
Equalization for OFDM Systems in Very Rapidly

Varying Mobile Channels
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Abstract—This paper is concerned with the challenging and
timely problem of joint channel estimation and equalization for
orthogonal frequency division multiplexing (OFDM) systems in
the presence of frequency selective and very rapidly time varying
channels. The resulting algorithm is based on the space alternating
generalized expectation maximization—maximum a posteriori
probability (SAGE-MAP) technique which is particularly well
suited to multicarrier signal formats. The algorithm is imple-
mented in the time-domain which enables one to use the Gaussian
approximation of the transmitted OFDM samples. Consequently,
the averaging process of the nonpilot data symbols becomes
analytically possible resulting in a feasible and computation-
ally efficient channel estimation algorithm leading to a receiver
structure that yields also an equalized output from which the
data symbols are detected with excellent symbol error rate (SER)
performance. Based on this Gaussian approximation the exact
Bayesian Cramér Rao lower bound (CRLB) as well as the con-
vergence rate of the algorithm are derived analytically. To reduce
the computational complexity of the algorithm, discrete Legendre
orthogonal basis functions are employed to represent the rapidly
time-varying fading channel. It is shown that, depending on the
normalized Doppler frequency, only a small number of expansion
coefficients is sufficient to approximate the channel very well and
there is no need to know the correlation function of the input
signal. The computational complexity of the algorithm is shown
to be per detected data symbol and per SAGE-MAP
algorithm cycle where is the number of OFDM subcarriers and
is the number of multipath components.

Index Terms—Basis expansion model (BEM), joint channel
estimation and equalization, orthogonal frequency-division multi-
plexing (OFDM), rapidly varying wireless channels, SAGE-MAP
algorithm.

I. INTRODUCTION

I NCREASING demand on data rates to support broadband
high speed communication systems operating over fre-

quency selective fading channels and with very high mobilities
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has resulted in research on designing fast, computationally
efficient algorithms for channel estimation, equalization and
data detection. Orthogonal frequency-division multiplexing
(OFDM) is becoming a backbone structure of such sys-
tems, which are being standardized as the IEEE’s 802.16
family—better known as Mobile Worldwide Interoperability
Microwave Systems for Next-Generation Wireless Commu-
nication Systems (WiMAX)—and by the Third-Generation
Partnership Project (3GPP) in the form of its Long-Term
Evolution (LTE) project. Both systems employ orthogonal
frequency division multiplexing/multiple access (OFDMA) as
well as a new single-carrier frequency-division multiple access
(SC-FDMA) format. To promote the IEEE 802.16 and LTE
standards, recently, a high mobility feature has been introduced
[IEEE 802.16 m, LTE Advanced (LTE-A)] to enable mobile
broadband services at vehicular speeds beyond 120 km/h.
In fading channels with very high mobilities, the time vari-

ation of the channel over an OFDM symbol period results in
a loss of subchannel orthogonality which leads to interchannel
interference (ICI) due to power leakage among OFDM subcar-
riers. Consequently, estimation of the channel and channel pa-
rameters, as well as channel equalization become critical issues
in the design of wireless systems operating under such condi-
tions. Since mobility support is widely considered to be one of
the key features in next generation wireless communication sys-
tems, OFDM transmission over very rapidly time varying multi-
path fading channels has been considered in a number of recent
papers. They can be summarized as follows.
For a rapidly time-varying channel, the time-domain channel

estimation method proposed in [1] is a potential candidate
for the channel estimator, in order to mitigate the ICI. This
technique estimates the fading channel by exploiting the
time-varying nature of the channel as a provider of time di-
versity and reduces the computational complexity using the
singular value decomposition (SVD) method. However, the
linear minimum mean-square error (LMMSE) equalizer and a
successive interference cancelation (SIC) scheme with optimal
ordering proposed in [1] along with channel estimation demand
very high computation, since the number of subcarriers is usu-
ally very large; thus it may not be feasible in practical systems.
In [2], to handle rapid variation within an OFDM symbol, a
pilot-based estimation scheme using channel interpolation was
proposed. However, since the proposed estimation scheme has
two estimation steps and requires large size matrix inversion,
its computational complexity is very high. The authors of [2]
also proposed a simplified scheme to reduce the complexity at
the expense of substantial performance loss. A time-domain
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channel estimator was proposed in [3] which assumes that
the channel impulse response (CIR) varies in a linear fashion
within the symbol duration. However, this assumption no
longer holds when the normalized Doppler frequency takes
substantially higher values. In [4], two methods to mitigate ICI
in an OFDM system with coherent channel estimation were
proposed. Both methods employed a piece-wise linear approx-
imation to estimate channel time-variations in each OFDM
symbol. In [5], least-squares (LS) channel estimation has been
proposed to minimize the squared differences between the re-
ceived signal and estimated signal. However, the LS algorithm
is not very suitable for the rapidly varying channel models.
Also the inversion of the large dimensional square matrix turns
out to be ill conditioned and limits the direct application of the
LS estimator. In [6], a low-complexity equalizer is designed
first, assuming the channel is banded. Then, employing this
equalizer, a pilot-aided MMSE channel estimation scheme
for a time-varying wide-sense stationary uncorrelated scatters
channel model is proposed.
Recently, several channel estimation and equalization tech-

niques have been proposed based on the basis expansionmethod
(BEM) which can approximate the time-varying channel effi-
ciently. Consequently, we only need to estimate a much smaller
number of unknown channel coefficients than the total number
of coefficients. The optimal BEM in terms of the mean square
error is the so-called discrete Karhunen-Loeve BEM (DKL-
BEM). However it is quite sensitive to variations in the channel
statistics [7]. Therefore, as a compromise, several BEMs that
are independent of the channel statistics have been derived. The
most popular of them are the so-called discrete-prolate sphe-
roidal BEM [8], and the complex-exponential BEM [9], [10].
Focusing on the estimation of channels for OFDM systems,
the works [11] and [12] are concerned with channel estimation
and equalization based on different BEM assumptions. In [13],
the channel is modeled by combining linear and exponential
basis functions and a two dimensional interpolation approach
is used to track the flat fading channel in the frequency do-
main. A channel estimation technique based on a frequency-
domain, pilot-aided modulation has been investigated in [14]
where BEM is applied to approximate the channel. The LMMSE
channel estimation algorithm has been proposed as well. In [15]
the channel state information (CSI) is estimated iteratively ex-
ploiting previously estimated CSI in an iterative LMMSE al-
gorithm. However, all of these channel estimation techniques
suffer from an error floor because of ICI in the high Doppler
spread scenario. Therefore in pilot-aided channel estimation ap-
proaches in OFDM systems, it is not clear how to place the
pilots optimally since the pilot symbols are corrupted by the
unknown data symbols. Taking this fact into account, many
existing works view the frequency-domain channel matrix ei-
ther as being diagonal, thus ignoring the ICI completely, or
strictly banded as in [8], [16], and [17]. These approaches suffer
from large estimation errors for channels having large Doppler
spreads. On the other hand, the works in [1] and [3] view the
frequency domain channel matrix as a full matrix, which re-
flects the true situation but generally requires the pilots to oc-
cupy the entire OFDM symbol. Along this line, an algorithm
has been proposed in [18] for estimating the Rayleigh com-

plex channel gains and detecting the data jointly for OFDM
systems in fast fading channels, assuming the channel delays
are known a priori. However the complexity of the algorithms
was shown to be where is the number of OFDM
subcarriers, which is quite high for WiMAX and LTE applica-
tions where can be as large as 1024. Recently in [19], a joint
data detection, channel estimation and equalization algorithm
has been presented for OFDM systems operating over high mo-
bility channels based on the SAGE technique. To compare our
current work with that of [19], we can highlight the following
differences: The main objective of the work [19] was the de-
tection of data symbols rather than estimating the channel co-
efficients directly. Thus, the parameters of interest to be esti-
mated in [19] are discrete-valued whereas in the present work, a
continuous-valued parameter estimation problem is considered
as the unknown data symbols, treated as nuisance parameters,
are averaged out by the SAGE algorithm. Consequently, deriva-
tions and structures as well as the properties of the two algo-
rithms are completely different. For example, the convergence
of the SAGE algorithm for estimation of discrete parameters is
not guaranteed. Therefore the initialization of the SAGE algo-
rithm becomes very critical for the algorithm to converge. On
the other hand, in the current work, while deriving the SAGE
based continuous-valued channel estimate in the time-domain,
the continuity of the multipath channels makes it possible to
derive the convergence rate of the SAGE algorithm and the
Cramér Rao lower bound (CRLB) analytically. Also, unlike
that of [19], in this work we propose a discrete Legendre poly-
nomial (DLP) basis expansion model (DLP-BEM) to express
the rapidly time-varying wireless channels. It is proved that the
performance of the DLP-BEM based channel estimation algo-
rithm approaches very rapidly to the performance of the one
employing the optimal BEM as the resolution increases. While
the block-type pilot structure was used in our earlier work, in
this paper we consider LTE andWiMAX types of more realistic
pilot structures and scenarios.
In this paper, a new nondata-aided space alternating general-

ized expectation maximization—maximum a posteriori prob-
ability (SAGE-MAP) algorithm is proposed for joint channel
estimation and equalization in OFDMA systems operating over
frequency selective and highly mobile wireless channels. The
main contributions of the work and advantages gained by using
this proposed method are as follows:
• As opposed to many existing algorithms in the literature
that are implemented in the frequency-domain, the algo-
rithm proposed is implemented in the time-domain which
enables one to use the Gaussian approximation of the trans-
mitted OFDM samples resulting in a feasible and computa-
tionally efficient channel estimation and equalization algo-
rithm with excellent symbol error rate (SER) performance.

• An important feature of the proposed technique is the ca-
pability to exploit the time-varying channel as a provider
of time diversity. The resulting detection step makes
good use of it. Consequently, the time-domain approach
achieves performance superior to other techniques without
increasing bandwidth or incorporating redundancy.

• The orthonormal DLP-BEM is employed to represent
the rapidly time-varying fading channel. We show in
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the paper that the mean-square error performance of
DLP-BEM is closest to the optimal BEM, the so-called
discrete Karhunen-Loeve BEM, and it is independent of
the channel statistics.

• The exact Bayesian Cramér-Rao lower bound (CRLB) is
derived for the estimator of the complex valued DLP-BEM
channel coefficient vector regarding the Gaussian approx-
imated transmit signal vector as a nuisance parameter.
We propose a Gibbs sampling technique to compute the
Bayesian Fisher information matrix (FIM) in a computa-
tionally feasible way.

• The convergence rate of the SAGE-MAP based channel es-
timator is derived analytically regarding again the transmit
signal vector as a nuisance parameter.

II. SYSTEM MODEL

A. Signal and Channel Models

We consider an OFDM system with subcarriers. At the
transmitter, out of subcarriers are actively employed to
transmit data symbols and nothing is transmitted from the re-
maining carriers. The time-domain transmitted signal is
denoted as

(1)

where and are the discrete-time and the discrete-frequency
indices during the th OFDM symbol, respectively.
stands for the frequency domain data symbol transmitted at dis-
crete time over the th OFDM subchannel. By the central
limit theorem, the transmitted signal can be modeled as
a zero-mean complex Gaussian sequence provided is suffi-
ciently large. A cyclic prefix (CP) of length is then added.We
assume a time-varying multipath mobile radio channel with dis-
crete-time impulse response where
is the maximum channel length and that . At the re-

ceiver, after matched filtering, symbol-rate sampling and dis-
carding the symbols falling in the cyclic prefix, the received
signal at the input of the discrete Fourier transform (DFT) can
be expressed as

(2)
for and , where
represents one OFDM frame length consisting of consecu-
tive OFDM symbols. and is zero-mean
complex additive Gaussian noise with variance . Note that
when the normalized Doppler frequency is sufficiently small,
the time varying-channel impulse response can be assumed to
be constant over the duration of one OFDM symbol; that is

for . Then it can
be easily shown from (2) that the received signal at the output
of DFT takes the known form

where , , and are the received signal,
noise and channel coefficients, respectively, all represented in
the frequency-domain, corresponding to the th OFDM symbol
and th subchannel.
By collecting received signal samples in a vector, the above

model can be expressed in vector form as follows:

(3)

where

and
, represents —path wide-sense sta-

tionary uncorrelated scattering (WSSUS) Rayleigh fading coef-
ficients at the th discrete-times. Assuming the Jakes
model, the autocorrelation function of the channel is

(4)

where , , represents the normalized power
of the th path of the channel satisfying . is the
zeroth-order Bessel function of the first kind, is the Doppler
shift due to the vehicle motion and is the Kronecker delta.

, being the OFDM symbol duration.
is a complex white Gaussian noise vector with zero-mean and

. Finally, in (3) is defined as

(5)

Note that due to the cyclic prefix employed at the transmitter,
for . Conse-

quently, , where rep-
resents the -step circular shift operator for a column vector

. Defining

(6)

and

the received signal model in (3) can be expressed as

(7)
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B. Selection of Channel Basis Expansion Model (BEM)

The performance of the receiver depends critically on
the estimate of the time-varying channel impulse response

from
the dimensional received vector

. It seems the estimation
of the channel vector is impossible by means
of since there are more unknowns to be determined than
known equations. However, the banded property of the channel
matrix [20], [21] enables us to reduce the number of param-
eters needed for channel estimation and consequently reduce
the computational complexity of the channel estimation step
substantially.
We first apply a suitable BEM which describes the time vari-

ations of the discrete-time channel impulse response
over a data block consisting of OFDM symbols. We do

not make any assumption regarding the amount of time-varia-
tion (equivalently, Doppler frequency) in the channel. For nota-
tional simplicity, let . Then

For each channel path , the channel coef-
ficients, , can be represented as weighted sums of
orthogonal basis functions in the interval

(8)

where are the expansion coefficients. As is
essentially a lowpass process whose bandwidth is determined
by the Doppler frequency, it can be well approximated by the
weighted sum of a substantially fewer number of
suitable orthonormal basis functions:

(9)

Similarly, using the orthogonality property of the basis func-
tions, the expansion coefficients can be evaluated by the inverse
transformation as

(10)

Thus, for each channel path , the
channel and the expansion coefficients can be expressed in ma-
trix form

(11)

(12)

where

and the matrix contains the orthogonal basis vectors as

(13)

with

The dimension of the basis expansion satisfies
. The lower bound is given by

, where is the maximum (one-
sided) Doppler bandwidth defined by with

, , and is the maximum supported speed, the carrier fre-
quency, and the speed of light, respectively, and the OFDM
symbol duration. By choosing , we control the channel mod-
eling mean square error (MSE)

(14)

where . From (11)

and (12) using the relationship , and taking into
account that the path powers are normalized to unity, it can be
easily shown that

(15)

where represents the correlation matrix of the channel nor-
malized to the path powers and for the WSSUS fading channel
model its th entry can be expressed from (4) as

.
Employing complex exponentials as basis functions that

have a period equal to the length of the considered interval has
been widely considered in the literature due to its algebraically
simple implementation and the orthogonality among columns
of the basis-expansion matrix. However, this induces a larger
modeling error [12]. Similarly, the discrete cosine transforma-
tion (DCT) was considered as a BEM in [19]. However, since
the orthogonal discrete cosine basis functions are perfectly
bandlimited and lowpass, they are not well suited to represent
rapidly time varying channels. Recently, polynomial BEMs
[10], [22] have been also employed for channel estimation
in which each channel coefficient is modeled as a linear
combination of a set of polynomials. However, the modeling
performance of this technique is rather sensitive to the Doppler
spread. Note that the BEM examples mentioned so far do not
require statistical channel knowledge. On the other hand, the
so-called DKL-BEM is optimal in terms of the mean square
channel modeling error and the the expansion coefficients
are uncorrelated [23]. However, the implementation of the
DKL-BEM based algorithm is computationally expensive and
requires knowledge of the channel statistics. Also, it has been
observed that if the assumed channel statistics deviate from the
true ones, the DKL-BEM performs suboptimally. In our work,
we make use of a BEM, based on the orthonormal DLP-BEM,
to represent the time variations of the channel in an observation
interval. As can be seen from Fig. 1, the DLP-BEM is well
suited to represent the low-pass equivalent of the channel by
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Fig. 1. Average truncation MSE versus number of coefficients .

means of a small number of basis functions. Also, the DLP
basis functions have the advantages of being independent of
the channel statistics and having expansion coefficients that
become uncorrelated as the number of observations gets
larger, as proven in Appendix A. The Legendre polynomials are
generated by carrying out Gram-Schmidt orthogonalization on
the polynomials with respect to the time-varying
channel coefficients in a neighborhood of the middle point of
the considered interval. They can be defined as

(16)

where denotes the normalization coefficient. The discrete or-
thogonal Legendre polynomials and their corresponding
normalization coefficients can be computed recursively as

(17)

with the following initial polynomials and coefficients:

(18)

After removing the cyclic prefix, it can be shown from
(8) and (2) that the dimension of the channel vectors ,

, in (11) reduces from to . Then
it can be easily seen that the channel vector in (3) is
related to in (11) as

where we have used the notation to denote entry to
entry of a vector . Finally from (11) it follows that:

(19)

where

(20)

and

Note that denotes the Kronecker product. Finally, substi-
tuting (19) into (7), the received signal is expressed in terms of
the reduced dimensional channel vector as follows:

(21)

where and is defined in (6).

C. Pilot Symbol Selection

For channel estimation and especially for initialization of the
SAGE-MAP algorithm as explained in Section III, insertion of
pilot symbols is necessary. Although several pilot patterns are
possible, in our simulations, we employ more practical pilot
distributions as defined in 4th generation (4G) wireless mobile
communication systems. We consider both downlink LTE and
WiMAX pilot patterns as shown in Fig. 2(a). Note that the
number of pilots in LTE is much smaller than in other existing
systems, including WiMAX. In the LTE context, the resource
blocks (RBs) (in both time and frequency dimensions) are
associated to users based on subframes of two RBs as depicted
in Fig. 2(a). A simple RB may consist of 6 or 7 OFDM sym-
bols (depending on the CP length) and 12 subcarriers. As for
reference signals, a sparse pilot distribution in both frequency
and time dimensions has been specified. In particular, the first
and the fifth OFDM symbols of each RB are defined to contain
pilots, and in the frequency dimension, the subcarriers with
indices that are multiples of 6 are used for carrying pilots.
This pilot distribution is shown in Fig. 2(a) for an RB having
7 OFDM symbols. On the other hand in WiMAX systems,
multiple subchannels (slots) can be allocated to each user. As
seen in Fig. 2(b), each slot consists of 2 OFDM blocks such that
each one is defined to contain pilots with a pilot spacing of 6.
As notation, we assume that in each time-slot

, there are frequency domain
pilot symbols located at OFDM subcarriers indexed by

where .
They can be arranged in a way so that pilot spacings can be
adjusted with respect to the time variations of the channel.
When the channel is slowly varying, the time-domain
correlation decays at a slower rate and consequently pilot
spacing can be chosen wider.
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Fig. 2. Pilot Schemes of LTE and WiMAX OFDM Systems. (a) LTE. (b)
Wimax.

III. CHANNEL ESTIMATION USING THE SAGE-MAP TECHNIQUE

The problem of interest is to derive an iterative algorithm
based on the SAGE-MAP technique for channel estimation in a
nondata-aided fashion (excepting the pilot symbols), employing
the signal model given by (21). Since the SAGE method has
been studied and applied to a number of problems in commu-
nications over the years, the details of the algorithm will not be
presented in this paper. The reader is referred to [24] for a gen-
eral exposition of the SAGE algorithm and to [25] for its appli-
cation to an estimation problem related to the work herein. A
suitable approach for applying the SAGE-MAP algorithm for
estimation of the reduced dimensional channel vector , is to
decompose the received signal in (21) into the sum [26]

(22)

where

(23)

(24)

We now derive the SAGE-MAP algorithm for estimating
the channel vectors in the set , where

, is the reduced dimen-
sional channel vector of the th path of the channel, based on
the received vector .
To obtain a receiver architecture that iterates between soft-data
and channel estimation, one might choose the parameter vector
to be . At iteration , only the th path channel vector

is updated, while the channel vectors of other channel
paths are kept fixed, where the notation “ ” denotes
the set exclusion operator. In the SAGE-MAP algorithm, we
view the observed data as the incomplete data and since

is unknown, except the pi-
lots, we incorporate into the admissible hidden data set as

, where ,

to which the incomplete data are related through a possibly
nondeterministic mapping [24]. In a first step of the SAGE
algorithm called the expectation step, the algorithm computes
an estimate of the log-likelihood function of the hidden data
based on and a current estimate of . Then, in a second
step called the maximization step, is updated as the value
that maximizes this estimate of the log-likelihood function.
The two steps are repeated in the subsequent iterations until
convergence is achieved.

A. Expectation-Step (E-Step)

To perform expectation step (E-Step) of the SAGE-MAP al-
gorithm, the conditional expectation is taken over given the
observation and given that equals its estimate calculated at
th iteration:

(25)
The prior probability density function (pdf) of in (20)
is chosen as . Note that the covariance matrix
of can be determined from (12) and
(4) as

where

(26)

, the covariance matrix of , can be obtained from (4) as

...
...

. . .
...

(27)

with . However, since , it
can be shown (see Appendix A) that for each channel path

, the reduced dimensional channel coefficients
, , become uncorrelated and conse-

quently the covariance matrix of , turns out to be diag-
onal as

(28)

where , , and
is the channel’s scattering function defined by the Fourier trans-
form of . For Jakes’ Doppler profile the scattering function

is given by for ,

[27], where is the discrete normalized an-
gular Doppler frequency, and . By neglecting
the terms independent of , can be calcu-
lated from (23) as

(29)
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where denotes the real part of its argument. Inserting (29)
into (25), we have for

(30)

where

(31)

and

(32)

Equation (31) can be calculated by applying the conditional
expectation rule as

(33)
The conditional distribution of given , and

is Gaussian with mean

(34)

where is the estimated value of the channel at the th iter-
ation step. Inserting (34) in (33), and subsequently substituting
(33) and (32) in (30), we can rewrite (30) as

(35)

where

(36)

(37)

After some algebra, we obtain the following:

(38)

where is the posterior
mean of , the transmitted signal in the time-domain, given

and . represents the soft-statistics generated by
the SAGE-MAP algorithm at the th iteration step. It can be
easily shown that after taking the discrete Fourier transform
of , an MMSE equalizer output is generated in the fre-
quency-domain from which the transmitted data can be demod-
ulated effectively.
In order to obtain , we consider the following alter-

native form of the observation equation in (7):

(39)

It is straightforward to see that stands for the convolu-
tion matrix and can be expressed as

(40)

where represents a row-wise -step and
column-wise -step circular shift of matrix . Consequently,
the posterior mean of given at the th step can be
obtained by using the formula [28, 10.24] along with the matrix
identity as follows:

(41)

together with the following posterior covariance matrix of
:

(42)

where

and is given by (40). Note that, in (41),
, denotes the DFT matrix and

is the frequency
domain pilot symbol vector with the following entries:

otherwise
(43)

where is the pilot symbol at the pilot location
, and is the number of pilots of the

OFDM symbol transmitted at the th time-slot. Subsequently,
in (36), we obtain

(44)

where the operator denotes the main diagonal vector of a
matrix, and represents the posterior autocorre-
lation matrix of given . The latter quantity is given by

(45)
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B. Maximization-Step (M-Step)

In the M-step of the SAGE-MAP algorithm, the estimates of
the channel coefficients are updated at the th iteration
according to

(46)

where is given by (35). Substituting (35) into the
above equation yields the following for :

(47)

C. Initialization of Channel Coefficients

The initial channel estimate can be determined with the
aid of the pilot symbols which is computed as follows. From
(21), the received vector corresponding to one of the OFDM
frame of length M can be expressed as

(48)

where

(49)

and

(50)

Note that, using the inverse Fourier transform, the following
equality is obtained for the diagonal matrix :

(51)

where denotes the th column of the DFT matrix. Using
(51), it is straightforward to show that

(52)

with

(53)
where represents the first terms of the th column
of the DFT matrix , denotes the element by element
product and stands for the all-one column vector with
length . In (52), we consider ,
where and

are the matrices obtained from pilot
and data symbols, respectively. So, the initial value of the
reduced dimensional channel vector can be determined from
the received signal model (48) by an LMMSE estimation
technique as follows:

(54)

where ,
,

. To simplify
thematrix inversion above we apply thematrix inversion lemma
above to obtain

(55)

Note that by this transformation, we need to take a matrix
inversion of only size rather than since

and is precomputed.
A complete block diagram of the SAGE-MAP algorithm

including the initialization step is given in Fig. 3. Note that,
as shown in Fig. 3, (47), (36)–(38) can be interpreted as
joint channel estimation and equalization implemented in the
time-domain, immediately following the analog-to-digital
conversion and cyclic prefix deletion processes at the OFDM
receiver. Consequently, we can think of (41) as the output of
an LMMSE equalizer, generated at the th iteration step of the
SAGE-MAP algorithm. After the algorithm converges at some
iteration step, say the th step, the original data is detected by
conventional coherent detection in the frequency-domain by
taking the DFT of the time-domain equalized signal vector;
that is, DFT .

IV. PERFORMANCE LIMITS OF THE SAGE-MAP CHANNEL
ESTIMATION ALGORITHM

A. Bayesian MSE Lower Bound

Since the SAGE-MAP channel estimation algorithm cannot
remove all the ICI in data and pilot symbols, the residual ICI re-
sults in an estimation bias in estimating the channel coefficients.
To serve as a benchmark, we now derive an overall Bayesian
MSE bound for the channel estimator proposed in this paper.
The results are very general and can be applied for any param-
eter estimation problem having any additive and multiplicative
bias terms. The overall Bayesian MSE for the channel impulse
response vector is defined as follows:

(56)

Theorem 1: The overall Bayesian MSE in (56), is bounded
by

(57)
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Fig. 3. Block diagram of the SAGE-MAP channel estimation algorithm.

where , and are defined in (13), (15), and (26), respec-
tively.

Proof: Proof of the Theorem 1 is given in Appendix B.

B. Convergence Rate of the SAGE-MAP Algorithm

In this section, we derive the convergence rate of our
SAGE-MAP algorithm. Assuming that the algorithm is ini-
tialized in a region suitably close to a local maximum in
the interior of the parameter space, the sequence of estimates
converges monotonically in norm to it. Using the Taylor expan-
sion in the neighborhood of , the relationship between the
estimates and can be expressed as

(58)

where denotes the rate matrix of the SAGE-MAP algorithm,
and is given by [26]

(59)

and in (59) represent the block diagonal and strictly
lower triangular parts of the average Hessian matrix , respec-
tively. The th block of corresponds to . On the other
hand, is also a block diagonal matrix with in the th block.
is the average value of the expected augmented information

matrix, defined as follows [24]:

(60)

where

(61)

Recalling that the admissible hidden data set
and bearing in mind (35), it follows from (61) that:

(62)

Substituting (62) into (60), we obtain

(63)

where , , and
is th subblock matrix on the main diagonal of the Bayesian

FIM (see Appendix B). In calculating , we use (37),
(44), (45), (42), and (41), respectively, and note that

(64)

and

(65)

where (see
Appendix B). To compute the expectation ,
we simply use the Gibbs sampling technique and generate
samples from the pdf .
Then

(66)

In (59), the average Hessian matrix is defined as

(67)

where is the Hessian matrix and given as follows:

(68)

Substituting (68) into (67), we obtain the average Hessian ma-
trix as

(69)

The convergence rate is obtained by the spectral radius, that
is the maximum magnitude eigenvalue, of the rate matrix
in (59). The convergence rate of the SAGE-MAP algorithm
can be improved if one chooses a less informative hidden-data
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TABLE I
COMPUTATIONAL COMPLEXITY DETAILS

space. Less informative hidden-data spaces lead to shorter con-
vergence time and hence a faster converging SAGE-MAP algo-
rithm.

C. Complexity Analysis

The computational complexity of the algorithm is presented
in Table I under the assumption that . Note that,
in the initialization step of the algorithm in (54), the term

is a
precomputed matrix. Therefore, the initialization step requires
only a multiplication of this precomputed matrix with the
vector resulting in complex multiplica-
tions (CMs) and complex additions (CAs). On
the other hand, the covariance matrix , necessary for
computation of (41), is a block matrix whose submatrices are
diagonal with constant entries. Also, the convolution matrix

in (41) and (42) is a sparse matrix whose columns have
only L nonzero entries. Consequently, in the computation of

and in (41) and (42), the terms ,

,

and are Hermitian Toeplitz matrices and can
be approximated by block matrices whose submatrices are
diagonal with constant entries resulting in a reduction in the
complexity of the algorithm. By means of the above results
and from Table I, it follows that the total computational com-
plexity per detected symbol and per cycle, needed to estimate
the channel coefficient vector in (47) is approximately

CMs and
.

We now compare the computational complexity of our al-
gorithm with some channel estimation/equalization algorithms
which have been proposed in the literature recently. For fast
time-varying channels, many existing works, including ours,
resort to estimating the complex time-varying channel coeffi-
cients either in the time-domain or in the frequency domain,
which are modeled by the BEM. In practice, these coefficients
are estimated by inserting pilot tones and conventional methods
generally consist of estimating the channel at pilot tones and

then interpolating the channel frequency response. The estima-
tion of the channel at pilots tones can be based on LMMSE,
LS, best linear unbiased estimation (BLUE) or Kalman type of
estimation techniques. To reduce the computational complexity
of the algorithm, the banded structure of the channel matrix
is taken into account resulting in fewer BEM coefficients to
be estimated depending on the Doppler spread. The paper
[29] proposes an iterative algorithm with Kalman filtering for
estimating the time-varying, multipath Rayleigh channel gains
and detecting data jointly for OFDM systems, assuming the
knowledge of the delay-related information. It was reported in
[29] that the total computational complexity of the proposed
algorithm is per detected symbols where is the
number of OFDM subcarriers. Note that this complexity is
substantially greater than that of our algorithm (i.e.,
versus with ). In [30], an iterative LS algorithm
is presented for estimating the multipath complex channel
gains, assuming again the knowledge of the delay-related
information. The overall complexity of that algorithm was
found to be where denotes the reduced number of
BEM coefficients determined by the Doppler spread. Although
the complexity of this algorithms is almost the same as our
algorithm, the LS estimator performs substantially worse when
ICI is prominent, especially for high mobilities, and suffers
from a large performance gap as compared to the CRLB. In
[31], BEM-based channel estimation schemes are developed
for high mobility OFDM uplink systems. Specifically, the
authors expand the time varying channel into a small number
of complex exponential basis functions spanning the given
Doppler range and then formulate the LS and LMMSE al-
gorithms to estimate those basis coefficients for some pilot
patterns. The computational complexity of the LS algorithm
and the LMMSE algorithms implemented in the time domain
were found to be and CM per detected data symbol,
respectively, where is the number of BEM
coefficients to be estimated. In comparison with our algorithm,
note that the algorithm in [31] is only concerned with the
channel estimation and the complexity due to equalization is
not taken into account. Consequently, the complexity of our
algorithm which achieves channel estimation and equalization
jointly, is much lower than that of those presented in [31]. In
addition to this, note that the LMMSE-based channel estimator
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TABLE II
SIMULATION PARAMETERS

is suboptimal [12] due to the fact that it has the extra task to
process the interference term which contains the information
of the channel coefficients being estimated. Consequently,
the SER performance of our SAGE-MAP based algorithm is
always better than that of the LMMSE-based algorithms when
operating over rapidly time varying channels.

V. SIMULATION RESULTS

In this section, we present computer simulation results to as-
sess the performance of OFDM systems operating with the pro-
posed channel estimation algorithm. Simulation parameters are
chosen as in Table II. The initial estimate of the channel is per-
formed by the reduced-complexity LMMSE estimation tech-
nique based on the pilot symbols.
In our simulations, we employ more practical pilot distribu-

tions as defined in 4th generation wireless mobile communi-
cation systems. We consider both downlink LTE and WiMAX
pilot patterns as shown in Fig. 2.
The main motivation for choosing the practical pilot schemes

in our computer simulations is to test the maximum SER and
MSE performance capabilities of our channel estimation algo-
rithm with respect to the channel mobility as well as the sig-
naling format. The performance results presented shortly will
give us some indications on how far we can increase the normal-
ized Doppler frequency with suitably chosen modulation type
and the pilot schemes in Fig. 2 to reach an outage limit of the
system.
Figs. 4 and 5 show SER and MSE performance curves of the

SAGE-MAP algorithm corresponding to the LTE and WiMAX
pilot patterns with mobilities and

and with binary phase shift keying
(BPSK), quadrature phase shift keying (QPSK), 16 quadrature
amplitude modulation (16-QAM) and 64-QAM signaling for-
mats. The performance curves corresponding to perfect CSI are
also included in Figs. 4 and 5 for comparison purposes. The
multipath wireless channel having an exponentially decaying
power delay profile with the normalized powers, ,

, and , is chosen. The number of Le-
gendre polynomial coefficients, corresponding to the channel
modeling , are chosen according to the Table III
for LTE and WiMAX standards. We conclude from the curves
in Figs. 4 and 5 that even when the number of Legendre co-
efficients is chosen to be fairly small as compared to the total
number of coefficients, the performance loss in SER is not sig-
nificant when CSI is not available. Our extensive computer sim-
ulations have shown that the SER and MSE performance of the
algorithm employing the LTE pilot pattern is quite sensitive to

the Doppler spread and degrades rapidly for mobilities beyond
120 km/h and for signaling formats beyond BPSK as compared
to the WiMAX pilot pattern; this is mainly due to the fact that
the number of pilots in LTE is much smaller and sparser than
that for WiMAX. Note that as the speed increases, the rapidly
varying channel not only destroys the orthogonality but also
provides the receiver with time diversity. Especially when the
channel is perfectly known (CSI is available) the system is able
to make good use of the time diversity. Consequently, especially
in Figs. 4(b) and 5(b), the SER performance for the case with

is better than that of the case with .
However, when the CSI is not available, the gain from diver-
sity may be overwhelmed by the channel estimation errors as
well as by the complexity of the modulation format. This ef-
fect is clearly seen from the performance curves in Fig. 4(b) in
which the SER performance of the SAGE-MAP algorithm for

is slightly better than the case of when
the CSI is obtained through channel estimation and a BPSK sig-
naling format is employed. However, the time diversity vanishes
as we move to higher dimensional modulations. A similar effect
is also observed in the SER performance curves in Fig. 5(b), al-
though it is less pronounced. In Figs. 4(a) and 5(a), the effects of
channel estimation on the average overall MSE performance are
investigated for different values of the Doppler spread and for
the pilot structures shown in Fig. 2. The Bayesian MSE lower
bounds computed from (57) are also given. We observe that
the MSE performance is very close to the lower bound espe-
cially for small Doppler shifts and for WiMAX, which employs
denser pilot patterns. However, the MSE performance gap be-
tween the MSE and the lower bound increases as the channel
changes faster. As can be noticed from Fig. 5(a) this gap be-
comes more significant mainly because a sparser pilot pattern is
employed in LTE systems.
In Fig. 6, we show that a maximum of three iterations are

sufficient for the SAGE-MAP algorithm to converge.
We also study the average overall MSE versus the normalized

Doppler spread for different SNR values for WiMAX
pilot structure. From Fig. 7, it is observed that the MSE perfor-
mance of the algorithm is quite robust against Doppler spread
especially for lower SNR values. For SNR greater that 20 dB,
we observe a gradual increase in MSE values as the normalized
Doppler spread approaches 0.1, which is an extreme case in real
applications.
In Figs. 8 and 9, the MSE and SER performance of our algo-

rithm is compared to that of the DKL-BEM LMMSE algorithm
for two different mobilities: ,

, and for the system employing the QPSK sig-
naling format and theWiMAX pilot structure as shown in Fig. 2.
The performance curves shown in Figs. 8 and 9 indicate that the
SAGE-MAP algorithm clearly outperforms the LMMSE tech-
nique.
In Fig. 10, we investigate the MSE performance of our al-

gorithm for the WiMAX-OFDM system in the presence of mis-
match due to an overestimated Doppler frequency. We allow for
mismatch by assuming , 0.02 and 0.04 at the oper-
ational Doppler frequency chosen in the simula-
tions. We note from Fig. 10 that the SAGE-MAP channel esti-
mator, which is suboptimal due to Doppler frequency mismatch,
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Fig. 4. SER andMSE performances of the SAGE-MAP algorithm forWiMAX
Systems. (a) Average overall MSE versus SNR for WiMAX Systems. (b) SER
versus SNR for WiMAX Systems.

performs much better under the channels with ,
0.04 than . Our computer simulations also indicate
that underestimating the Doppler frequency is more harmful
than overestimating it.
Fig. 11 shows the convergence rate of the SAGE-MAP algo-

rithm versus the SNR, corresponding to the normalized Doppler
shifts and for WiMAX and LTE
pilot patterns. It can be seen that convergence rate increases
monotonically and approaches a constant value, for SNR values
greater than approximately 15 dB. A lower convergence rate
is achieved at low SNR values and consequently the algorithm
converges more often to a global maximum with fewer number
of iterations. We also notice that the mobility does not affect the
convergence rate significantly. However, depending on the pilot
schemes employed during estimation, the convergence rate may
change significantly as seen from Fig. 11.
Finally, note that, in a mobile network, although the perfor-

mance depends on the location of the mobile terminal and dis-
tance from the base station, a general rule of thumb is that the
SER values should be lower than if a hybrid automatic
repeat request (HARQ) is employed and without HARQ,
within the range of the acceptable operational SNR values. From
the SER performance presented in Figs. 4(a) and 5(b), we can
determine how much coding gain is needed and consequently

Fig. 5. SER and MSE performances of the SAGE-MAP algorithm for LTE
Systems. (a) Average overall MSE versus SNR for LTE systems. (b) SER versus
SNR for LTE Systems.

TABLE III
NUMBER OF DLP COEFFICIENTS FOR TRUNCATION

Fig. 6. SER versus Number of Iterations.

what kind of coding technique should be chosen to reach an ac-
ceptable level of performance for different mobilities and mod-
ulation formats.
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Fig. 7. Overall MSE versus normalized Doppler performance.

Fig. 8. Overall MSE performance comparisons of the DKL-BEMLMMSE and
DKL-BEM SAGE-MAP channel estimation techniques.

Fig. 9. SER performance comparisons of the DKL-BEM LMMSE and
DKL-BEM SAGE-MAP channel estimation techniques.

VI. CONCLUSION

In this paper, a new channel estimation algorithm has
been proposed for OFDM systems operating over frequency
selective and very rapidly time-varying channels, based on
the SAGE-MAP technique which incorporates also channel
equalization. This algorithm is implemented in the time-do-
main which enables one to use a Gaussian approximation for
the transmitted OFDM samples. Consequently, the averaging

Fig. 10. Effects of Doppler mismatch on the overall MSE performance.

Fig. 11. Convergence rate versus SNR.

process of the nonpilot data symbols in the expectation step
of the algorithm becomes analytically possible resulting in a
feasible and computationally efficient algorithm. To reduce the
computational complexity of the algorithm, discrete Legendre
orthogonal basis functions have been employed to represent the
rapidly time-varying fading channel. It has been shown that,
depending on the normalized Doppler frequency, only a small
number of expansion coefficients is sufficient to approximate
the channel perfectly and there is no need to know the correla-
tion function of the input signal. Initial channel coefficients are
effectively obtained by the pilot aided LMMSE estimator and
unknown data symbols are averaged out in the algorithm.
The exact Bayesian CRLB, as well as the convergence rate

of the SAGE-MAP based channel estimator have been derived
while regarding the transmit signal vector as a nuisance param-
eter. This is analytically intractable in general. However, thanks
to the Gaussian approximation assumed in the time-domain on
the OFDM transmitted samples, it has been possible to derive
those averaging processes analytically.
It has been shown via computer simulation that the proposed

algorithm has excellent symbol error rate and channel estima-
tion performance even with a very small number of channel ex-
pansion coefficients, resulting in reduction of the computational
complexity to as low as per detected data symbol and
per SAGE-MAP algorithm cycle. Finally, computer simulations
performed with OFDM based systems using the pilot structures
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described in WiMAX and LTE standards also enabled us to de-
termine the tradeoff between the SER performance of the overall
system and the mobility of the channel.

APPENDIX A
PROOF OF ASYMPTOTIC CONVERGENCE OF THE CHANNEL

COVARIANCE MATRIX

The correlation between and can be computed
from (10) as

(70)

where .
We now show that for and

(71)

Consequently, since the ’s are orthonormal, it follows from
(70) that:

(72)

Let

(73)

With , , and denoting the DFTs of
, , and , respectively, we have from (73)

(74)

where Now consider the channel’s scattering func-
tion which is the DFT of :

(75)

Expanding around the frequency , at which
is peaked, and substituting the expansion in (75) we have

(76)

where

It can be easily shown from (76) that

(77)

TABLE IV
THE VALUES OF AS A FUNCTION OF

Consequently, it follows from (74) that

(78)
Finally, taking the inverse DFT (IDFT) of (78) we arrive at

(79)

Note that for WSSUS fading channels and for the Jakes’
Doppler profile, the channel’s scattering function for the th
path is given by

(80)

where denotes the discrete normalized angular Doppler
frequency. For , the frequency
spectra of the Legendre polynomials are concentrated in a
narrow band around and is suffi-
ciently smooth within this interval. Therefore, except for ,
all other coefficients can be neglected. Let
us explain this for the case . By taking the
th derivative of (80) and replacing in the resulting
equation, we have

(81)

where . As can be seen from
Table IV, for a typical normalized Doppler angular frequency

, the ratio vanishes very rapidly as
gets larger.
Consequently, the claim in (28) is supported.

APPENDIX B
PROOF OF THEOREM 1

In this appendix, a lower bound on the overall MSE, ,
is derived. From (56), can be expressed as

(82)

where

(83)
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, , and , denote the truncation MSE,
the estimation MSE and the cross correlation between trun-
cation and estimation errors, respectively. Bearing in mind

that , , i.e , , and
, it can be shown from

(83) that . Now, noting that and
, i.e , and after some algebra we have

the following for :

(84)

where represents the correlation matrix of the channel nor-
malized to the path powers and is given in (15). Finally, recalling

that , , and , we have

(85)

Note that the error covariance matrix
is bounded as,

, being
the Bayesian FIM. This bound is based on the Crámer
Rao inequality. However, the conventional CRLB is not
directly applicable, because the bias is not known for any
estimator in general. To find a feasible solution under these
circumstances, we assume that the bias is a linear function of
, i.e., , and that the bias terms and
are determined by minimizing . In the
most general setting, let the observation equation be defined
as and the Bayesian estimation of ,
where is a function of . Note that in our
problem, as seen in (21). The exact derivations for the CRLB

of are given as follows:

(86)

where and

. We now derive the CRLB for in (86). We first
define . Recalling
and after some algebra, it can be then shown that

(87)

Consequently, using arbitrary complex valued and vectors
and applying the Cauchy-Schwarz inequality

(88)

where is the Bayesian FIM defined as

(89)

Since is arbitrary, let

(90)

Substituting in (88), and then canceling positive semidefinite

terms on both sides, we have

(91)

From (91), it follows that

(92)

Finally, inserting (92) into (86), the lower bound in (86) is ob-
tained as

(93)

Now, assuming , we want to find a
matrix and vector that minimize the
lower bound in (93). So the lower bound in (93) turns into

(94)

Note that is a positive definite matrix and we can minimize
instead of just minimizing itself using an arbitrary

complex valued nonzero vector :

(95)
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From the solution of this equation set, we obtain the bias func-
tion coefficients that minimize the lower bound in (94) as

(96)

If we substitute (96) into (94) and apply the matrix inversion
lemma, we obtain

(97)

So, inserting (97) into (93), the minimum value of the CRLB
for a linearly biased Bayesian estimator of the expansion coef-
ficients is

(98)

Evaluation of Bayesian Fisher Information Matrix :
in (89) can be expressed as the sum of and that
are the FIMs evaluated from data and prior information, respec-
tively

(99)

where

(100)

and

(101)

Since from (101), it follows that:

(102)

We now compute the th component of the matrix
as follows. Consider the receive signal model given

by (21). For simplicity of notation we use .
Noting that and

, the in
(100) can be expressed as

(103)

Using the identities

(104)

we first take partial derivatives with respect to and ,
the th and th components of and , respectively. Then the
conditional expectation is taken with respect to of (103)
resulting in

(105)

where

(106)

and

(107)

where the notation denotes the th column vector
of the matrix . To compute the expectation in (105), we
simply use the Gibbs sampling technique and generate samples

from the pdf . Then

(108)
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