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Abstract—Considering the sparse structure of ultra-wideband
(UWB) channels, compressive sensing (CS) is suitable for UWB
channel estimation. Among various implementations of CS,
the inclusion of Bayesian framework has shown potential to
improve signal recovery as statistical information related to signal
parameters is considered. In this paper, we study the channel
estimation performance of Bayesian CS (BCS) for various UWB
channel models and noise conditions. Specifically, we investigate
the effects of (i) sparse structure of standardized IEEE 802.15.4a
channel models, (ii) signal-to-noise ratio (SNR) regions, and
(iii) number of measurements on the BCS channel estimation
performance, and compare them to the results of l1-norm
minimization based estimation, which is widely used for sparse
channel estimation. The study shows that BCS exhibits superior
performance at higher SNR regions only for adequate number
of measurements and sparser channel models (e.g., CM1 and
CM2). Based on the results of this study, BCS method or the
l1-norm minimization method can be preferred over the other
for different system implementation conditions.

Keywords—Bayesian compressive sensing (BCS), IEEE
802.15.4a channel models, l1-norm minimization, ultra-wideband
(UWB) channel estimation.

I. INTRODUCTION

ULTRA-WIDEBAND (UWB) impulse radio (IR) [1] is
an emerging technology for wireless communications.

Owing to distinguishing properties such as having low transmit
power, low-cost simple structure, immunity to flat fading and
capability of resolving multipath components individually with
good time resolution, UWB-IR systems have received great
interest from both academia and industry [2]. Considering
these properties, UWB-IRs have been selected as the physical
layer structure of Wireless Personal Area Network (WPAN)
standard IEEE 802.15.4a for location and ranging, and low
data rate applications [3]. In the implementation of UWB-
IRs, one of the main challenges is the channel estimation. Due
to ultra-wide bandwidth of UWB-IRs, the main disadvantage
of implementing the conventional maximum likelihood (ML)
channel estimator is that very high sampling rates, i.e., very
high speed A/D converters are required for precise channel
estimation.

In order to overcome the high-rate sampling problem, com-
pressive sensing (CS) proposed in [4], [5] can be considered
for UWB channel estimation. CS is a promising paradigm in
signal processing, where a signal that is sparse in a known
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transform domain can be recovered with high probability
from a set of random linear projections with much fewer
measurements than usually required by the dimensions of this
domain. As the received consecutive UWB pulses arrive with
a considerable time delay and can be resolved individually at
the receiver, sparse structure assumption is widely accepted for
UWB multipath channels. Accordingly, CS has been exploited
for UWB channel estimation [6], [7], where the conventional
l1-norm minimization method has been used to estimate UWB
channel coefficients.

Among various implementations of CS, one approach has
been to include the Bayesian model. Considering the sparse
Bayesian model in [8], a Bayesian framework has been defined
for CS in [9]. In [10], a hierarchical form of Laplace priors on
signal coefficients is taken into consideration for Bayesian CS
(BCS). Both of the frameworks have shown potential to im-
prove signal recovery as the posterior density function over the
associated sparse channel coefficients is considered. In [11], a
Turbo BCS algorithm for sparse signal reconstruction through
exploitting and integrating spatial and temporal redundancies
in multiple sparse signal reconstruction is proposed. In [12], a
Laplace prior based BCS algorithm in [10] has been modified
for joint reconstruction of received sparse signals and channel
parameters for multiuser UWB communications. In [13], the
proposed approach in [9] is considered for UWB channel
estimation, where BCS estimation results are compared to the
l1-norm minimization results. However, the authors have not
considered the effects of UWB channel models (i.e., sparsity
condition) or additive noise level (i.e., Bayesian approach de-
pends on the statistical information about channel parameters
and additive noise) on the channel estimation performance.

In this paper, motivated by investigating the factors that
affect the performance of BCS in realistic UWB channels,
we study the effects of standardized IEEE 802.15.4a channel
models, signal-to-noise ratio (SNR) regions, and number of
measurements on the channel estimation performance. These
factors are important to analyze as sparsity, noise level and
measurements directly affect the BCS model. Accordingly,
BCS channel estimation performance for various scenarios
is compared to the l1-norm minimization based estimation,
which is a method widely used for sparse channel estimation.
In addition computation time of both methods is discussed.
The comparison results provided are important in order to
define the conditions where BCS may be preferred over the
conventional l1-norm minimization method.

The rest of the paper is organized as follows. In Section II,
IEEE 802.15.4a channel models that are widely used in
UWB research are explained. In Section III, the overview of
CS theory, l1-norm minimization, Bayesian model and their
applications to UWB channel estimation are presented. In
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Section IV, simulation results for performance comparison are
provided. Concluding remarks are given in Section V.

II. UWB CHANNEL MODEL

In this section, the discrete-time equivalent UWB channel
model and the standardized IEEE 802.15.4a channel models
are presented, respectively.

In order to obtain the discrete-time channel model, the
general channel impulse response (CIR) should be presented
first. Accordingly, the continuous-time channel h(t) can be
modeled as

h(t) =

Lr∑
k=1

hkδ(t− τk), (1)

where hk represents the kth multipath gain coefficient, τk is
the delay of the kth multipath component, δ(·) is the Dirac
delta function and Lr is the number of resolvable multipaths.

The continuous-time CIR given in (1) assumes that multi-
paths may arrive any time. This is referred to as the τ -spaced
channel model [14]. If a pulse is Ts-seconds duration, then
an approximate equivalent channel model can be obtained
for practical purposes [7]. Hence, the equivalent Ts-spaced
channel model can be expressed as

h(t) =

N∑
n=1

cnδ(t− nTs), (2)

where Tc = NTs is the channel length and {cn} are the
resulting new channel coefficients. Using (2), the discrete-time
equivalent channel can be written as

h = [c1, c2, . . . , cN ]T , (3)

where the channel resolution is Ts. Assuming that h has K
nonzero coefficients, the sparsity assumption of (3) is valid if
K << N .

Based on the discrete-time equivalent channel model above,
the UWB channels are widely accepted as having a sparse
structure. This assumption for UWB channels plays an impor-
tant role in CS based UWB channel estimation. However, the
channel environment should be inspected to prove this assump-
tion. In [15], a comprehensive model for UWB propagation
channels, which was accepted as the standardized channel
model for IEEE 802.15.4a, has been developed consider-
ing various channel environments and conducting different
measurement campaigns. These environments include indoor
residential, indoor office, outdoor, industrial environments,
agricultural areas and body area networks with having either
a line-of-sight (LOS) or a non-LOS (NLOS) transmitter-
receiver connection. In [7], the sparsity assumption of UWB
channels has been discussed over the channel models CM1
(LOS residential indoor), CM2 (NLOS residential indoor),
CM5 (LOS outdoor) and CM8 (NLOS industrial). In order to
investigate the effects of channel sparsity on the BCS channel
estimation performance, we will consider the same channel
models in the current study. More details on the channel
models CM1, CM2, CM5 and CM8 can be found in [7] and
[15].

III. CS FOR UWB CHANNEL ESTIMATION

Assuming that the UWB channels are sparse, CS can be
employed for UWB channel estimation in order to overcome
the high-rate sampling problem. In the following, we will
present the overview of CS theory and its application to UWB
channel estimation, and the Bayesian CS model, respectively.

A. Overview of Compressive Sensing
Consider the problem of reconstructing a discrete-time

signal x ∈ �N which can be represented in an arbitrary basis
Ψ ∈ �N×N with the weighting coefficients θ ∈ �N as

x =
N∑

n=1

ψnθn = Ψθ. (4)

Suppose that θ = [θ1, θ2, . . . , θN ]T has only K nonzero
coefficients, where K << N and Ψ = [ψ1, ψ2, . . . , ψN ]. As
x is a linear combination of only K basis vectors, it can be
called a K-sparse signal and can be expresses as

x =
K∑
i=1

ψni
θni

, (5)

where {ni} are the indices that correspond to nonzero coef-
ficients. By projecting x onto a random measurement matrix
Φ ∈ �M×N , a set of measurements y ∈ �M can be obtained
as

y = ΦΨθ, (6)

where M << N . Here, the measurement matrix should
be incoherent with the basis in addition to the sparsity
condition for accurate weighting coefficients estimation. The
incoherency is usually achieved by random matrices with inde-
pendent identically distributed (i.i.d) elements from Gaussian
or Bernoulli distributions [16]. Instead of using the N -sample
x to estimate the weighting coefficients θ, the M -sample
measurement vector y can be used. Accordingly, θ can be
estimated as

θ̂ = min ‖θ‖1 subject to y = ΦΨθ , (7)

where lp-norm is denoted as ‖θ‖p =
(∑N

n=1 |θn|p
) 1

p

. The

reconstruction problem hence becomes an l1-norm optimiza-
tion problem, and estimating θ from the vector y instead of
x corresponds to a lower sampling rate at the receiver.

The CS theory explained in (4)-(7) can be employed to
UWB channel estimation. Suppose that g ∈ �N is the
discrete-time representation of the received signal given as

g = Ph+ n, (8)

where P ∈ �N×N is a scalar matrix representing the time-
shifted pulses, h = [c1, c2, . . . , cN ]T are the channel gain
coefficients, and n are the additive white Gaussian noise
(AWGN) terms. Since the UWB channel structure is sparse, h
has only K nonzero coefficients. Similar to (6), the received
signal g can be projected onto a random measurement matrix
Φ ∈ �M×N so as to obtain y ∈ �M as

y = ΦPh+Φn

= Ah+ z. (9)
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Due to the presence of the noise term z, the channel h can be
estimated as

ĥ = min ‖h‖1 subject to ‖Ah− y‖2 ≤ ε , (10)

where ε is related to the noise term as ε ≥ ‖z‖2. The l1-norm
minimization problem in (10) can be recast as a second-order
cone program (SOCP) and solved∗ with a generic log-barrier
algorithm.

B. Bayesian Compressive Sensing

In this section, the CS problem will be presented from
a Bayesian perspective for UWB channel estimation. In the
BCS framework proposed in [8], [9], the statistical information
about the compressible signal and the additive noise is con-
sidered, where l1-norm minimization does not consider these
factors. Considering sparsity prior of h and the noise model
assumption together with the signal model in (9), BCS† can be
used for UWB channel estimation. Taking into consideration
(9), the full posterior distribution over all unknowns of interest
for the problem at hand becomes

p(h,β, σ2 | y) = p(y | h,β, σ2) p(h,β, σ2)

p(y)
(11)

where β represents hyperparameters that control the inverse
variance of each channel coefficient, and σ2 is variance of
each noise term in z. Unfortunately, this full posterior term is
not tractable since the integral

p(y) =

∫ ∫ ∫
p(y | h,β, σ2) p(h,β, σ2) dh dβ dσ2 (12)

cannot be computed analytically. Hence, we decompose the
full posterior distribution as

p(h,β, σ2 | y) ≡ p(h | y,β, σ2) p(β, σ2 | y). (13)

In (9), the noise term z can be modelled probabilistically as
independent zero-mean Gaussian random variables:

p(z) =

M∏
m=1

N (zm | 0, σ2). (14)

This noise model infers Gaussian likelihood for observation
y:

p(y | h, σ2) = (2πσ2)−M/2 exp

(−‖y −Φh‖2
2σ2

)
. (15)

Suppose that a zero-mean Gaussian prior distribution is de-
fined on channel coefficients with βn:

p(h | β) =

N∏
n=1

N (hn | 0, β−1
n )

= (2π)−N/2
N∏

n=1

β1/2
n exp

(
−βnh

2
n

2

)
. (16)

∗For the implementation of (10), the codes provided by Romberg and
Candes publicly available at http://users.ece.gatech.edu/justin/l1magic/ are
used.

†For the implementation of BCS, the codes provided by Shihao Ji publicly
available at http://people.ee.duke.edu/lcarin/BCS.html are used.

{βn}’s are independent hyperparameters that consist of β =
[β1, ..., βN ]T , and control the strength of the prior over asso-
ciated channel coefficients individually.

The first term of (13), p(h | y,β, σ2), the posterior distribu-
tion over the channel coefficients, can be expressed via Bayes’
rule as

p(h | y,β, σ2) =
p(y | h, σ2) p(h | β)

p(y | β, σ2)
. (17)

Considering Gaussian likelihood together with Gaussian
prior, this posterior distribution is also N (μ,Σ) where

Σ = (Λ+ σ−2ΦTΦ)−1,

μ = σ−2ΣΦTy, (18)

with Λ = diag(β1, β2, . . . , βN ) and is analytically tractable.
To compute the full posterior distribution approximately, the
second term, hyperparameter posterior, p(β, σ2 | y) in (13)
needs to be approximated. This approximation is provided
by type-II maximum likelihood procedure. According to the
Bayes’ theorem, hyperparameter posterior p(β, σ2, | y) can be
expressed as:

p(β, σ2 | y) ∝ p(y | βσ2) p(β, σ2). (19)

Using appropriately selected uniform hyperpriors for β and σ2

(i.e., p(β, σ2 | y) ∝ p(y | β, σ2)), the estimates of β and σ2

can be found by maximizing marginal likelihood function (LF)
p(y | β, σ2) as a consequence of type-II maximum likelihood
procedure. The marginal LF can be obtained by integrating
over the channel coefficients h as:

p(y | β, σ2) =

∫ ∞

−∞
p(y | h, σ2) p(h | β)dh. (20)

Maximization of the marginal LF with respect to β or equiv-
alently, its logarithm can be expressed as:

L(β, σ2) = log p(y | β, σ2)

= log

∫ ∞

−∞
p(y | h, σ2) p(h | β)dh

= −1

2
[M log(2π) + log |C|+ yTC−1y](21)

where C = σ2I + ΦΛ−1ΦT and I ∈ �M×M is an identity
matrix. Differantiating L(β, σ2) with respect to β and σ2, and
equating it to zero yields the following expressions which can
be employed iteratively:

βnew
n =

γn
μ2
n

, σ2new

=
‖y −Φμ‖22

M −∑N
n=1 γn

, (22)

where γn ∈ [0, 1] is defined as γn = 1− βn

∑
nn with

∑
nn

being the nth diagonal element of the posterior coefficient
covariance from (18) and μn is the nth posterior coefficient
mean from (18).

By employing re-estimates of hyperparameters, an iterative
systematic approach is used to determine which basis vectors
should be included in the model and which should be removed
to promote sparsity [9]. Further details and steps of the BCS
algorithm can be found in [8].
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IV. SIMULATION RESULTS

In this section, we investigate the effects of number of
measurements, SNR regions, and the IEEE 802.15.4a channel
models on the BCS channel estimation performance, and
compare the results to the performance of the l1-norm mini-
mization results. As the performance measure, we evaluate the
mean-square error (MSE) of the estimated channel vector. To
remove the path loss effect and to treat each channel model

fairly, we normalize the channel coefficients as
∑N

n=1 c
2
n = 1.

For the simulations, the channel length and resolution are fixed
to Tc = 250ns and Ts = 0.25ns, respectively, resulting in the
discrete-time channel length N = Tc/Ts = 1000. The perfor-
mances are evaluated for M = {250, 500, 750} measurements
in the [0, 30]dB SNR region. Here, M/N can be regarded
as the compression ratio. The elements of the measurement
matrix Φ are obtained from the N (0, 1) distribution, and the
basis where the channel vector is sparse is defined as Ψ = I
in our simulations.

In Figs. 1, 2, 3 and 4, the channel estimation performances
of BCS and l1-norm minimization are compared for various
number of measurements and SNR values for the channel
models CM1, CM2, CM5, and CM8, respectively. The best
channel estimation performance for both methods is obtained
for CM1, as it exhibits the most sparse structure among these
channel models [7]. BCS outperforms l1-norm minimization
in the sparser channel models CM1 and CM2 for SNR values
greater than 12-13dB for all measurements considered. This
can be explained as for the higher SNR regions posterior
density function over the channel coefficients and noise is
beneficial to the channel coefficient estimation, whereas for
lower SNR regions the uncertainty in the estimation is higher.
As for CM5, which is a less sparse channel, the number of
measurements should be greater than M = 500 in order for
BCS to have a superior performance at higher SNR regions.
As for CM8, which is not a sparse channel model, as the
multipaths arrive almost in every time bin, the BCS performs
inferior compared to the l1-norm minimization for almost all
conditions. In summary, BCS can be an effective channel
estimation method for sparser channel models at high SNR
regions. This is mainly due to BCS considering the channel
and noise statistics and providing a posterior density function
over noise and the channel coefficients, whereas the l1-norm
minimization method not utilizing such statistics.

Finally, a short discussion on the computation time of
both methods is provided. Although a fair comparison of the
computation complexities is more desired (currently under
investigation), we compare the average computation time of
a channel estimator realization for both methods based on the
publicly available codes, where their main structures are not
modified but adapted to IEEE 802.15.4a channel estimation. In
Tables I, II, III and IV, the computation times of both methods
are provided for different number of measurements at CM1,
CM2, CM5, and CM8, respectively. The simulations were run
on a computer that has a 3.4 GHz Intel Core i7 CPU and a
3.88 GB RAM. It can be observed that the computation time
of BCS is significantly shorter than the l1-norm minimization
for every channel model and number of observations. While
the computation time of the l1-norm minimization does not
change much with sparsity or the number of measurements,
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Fig. 1. MSE performance comparison of Bayesian CS and l1-norm
minimization for CM1.
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Fig. 2. MSE performance comparison of Bayesian CS and l1-norm
minimization for CM2.

TABLE I
COMPUTATION TIME OF BOTH METHODS FOR CM1

Number of l1-norm
Bayesian CS

measurements minimization
M=250 3.5911 secs 0.13607 secs
M=500 3.6684 secs 0.2892 secs
M=750 3.5778 secs 0.76564 secs

TABLE II
COMPUTATION TIME OF BOTH METHODS FOR CM2

Number of l1-norm
Bayesian CS

measurements minimization
M=250 3.6073 secs 0.15767 secs
M=500 3.627 secs 0.31896 secs
M=750 3.4591 secs 0.82328 secs

it increases for BCS when the channel is less sparse and the
number of measurements is increased.
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Fig. 3. MSE performance comparison of Bayesian CS and l1-norm
minimization for CM5.
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Fig. 4. MSE performance comparison of Bayesian CS and l1-norm
minimization for CM8.

TABLE III
COMPUTATION TIME OF BOTH METHODS FOR CM5

Number of l1-norm
Bayesian CS

measurements minimization
M=250 3.748 secs 0.22791 secs
M=500 3.5745 secs 0.47146 secs
M=750 3.2783 secs 1.1099 secs

TABLE IV
COMPUTATION TIME OF BOTH METHODS FOR CM8

Number of l1-norm
Bayesian CS

measurements minimization
M=250 3.8257 secs 0.27791 secs
M=500 4.0806 secs 0.84026 secs
M=750 3.6359 secs 1.9952 secs

V. CONCLUSION

In this paper, we considered the application of Bayesian
CS to UWB channel estimation, and studied its channel
estimation performance for various UWB channel models and
noise conditions. Specifically, we investigated the effects of
the sparse structure of standardized IEEE 802.15.4a channel
models, SNR regions, and number of measurements on the
BCS channel estimation performance, and compared them to
the results of the conventional l1-norm minimization based
estimation. The simulation results show that BCS exhibits su-
perior performance at sparser channel models and higher SNR
regions as it utilizes the statistics of channel coefficients and
noise. Moreover, the computation time of BCS has been found
to be shorter for the cases considered, and the evaluation of
computation complexity is under further investigation. Based
on the results of this study, the implementation conditions of
BCS can be determined for practical cases.
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Technical University for helpful discussions on the UWB
channel models.

REFERENCES

[1] M. Z. Win and R. A. Scholtz, “Ultra-widebandwidth time-hopping
spread-spectrum impulse radio for wireless multiple-access communi-
cations,” IEEE Trans. Commun., vol. 48, pp. 679–691, Apr. 2000.

[2] D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential
and challenges ahead,” IEEE Commun. Mag., vol. 41, no. 7, pp. 66–74,
Jul. 2003.

[3] IEEE Std 802.15.4a-2007, “Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (WPANs),” 2007.

[4] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, Feb. 2006.

[5] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
pp. 1289–1306, Apr. 2006.

[6] J. Parades, G. R. Arce, and Z. Wang, “Ultra-wideband compressed
sensing: channel estimation,” IEEE J. Sel. Topics Signal Process., vol. 1,
pp. 383–395, Oct. 2007.
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