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a b s t r a c t

Large claims in an actuarial risk process are of special importance for the actuarial decision making
about several issues like pricing of risks, determination of retention treaties and capital requirements
for solvency. This paper presents a model about claim occurrences in an insurance portfolio that exceed
the largest claim of another portfolio providing the same sort of insurance coverages. Two cases are taken
into consideration: independent and identically distributed claims and exchangeable dependent claims
in each of the portfolios. Copulas are used to model the dependence situations. Several theorems and
examples are presented for the distributional properties and expected values of the critical quantities
under concern.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

A devastating adversity for insurance companies is the occur-
rence of exceedances of losses over a high threshold due to large
claims. Unexpectedly large claim severities are the main cause of
these subversive situationswhich can becomeworse if the number
of exceedance events is also large. As a powerful riskmodeling tool
in this regard, models of exceedance events over fixed or random
thresholds have been developed. Some examples of such models
in the actuarial sciences can be found in the works of Embrechts
et al. (2001), Boutsikas and Koutras (2002), Hashorva (2003) and
Chavez-Demoulin and Embrechts (2004).

In the last two decades, analytical works for the exceedance
modeling have proliferated in many scientific areas. Among these,
we refer to the works of Davison and Smith (1990), Leadbetter
(1995), Smith et al. (1997), Wesolowski and Ahsanullah (1998),
Dupuis (1999), Bairamov and Kotz (2001), Bairamov and Tanil
(2007) and Bairamov and Eryilmaz (2009) from the viewpoint of
this paper.

Actuarial risk theory involves the threshold exceedance prob-
lems in the subject areas of risk measures, ordering of risks,
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premium principals, credibility, solvency and reinsurance (Kaas
et al., 2008;Melnikov, 2004). Number and size of claims are the key
components of all these subjects. This paper presents somenew re-
sults about the process of the number of claims in a portfolio with
respect to the largest claim size of another related but independent
portfolio. The portfolios concerned here are to be comparable with
respect to insurance branch, time scope and benefit coverages but
they are assumed to be subdivided into sectors according to some
factors like geographical regions, underwriting policies, insurance
legislation and state regulations.

Let X1, X2, . . . be successive claim amounts arising from
Portfolio I and N1(t), independent of Xi’s, denote the number of
claims in this portfolio thatmay occur during a specific time period
(0, t]. Let Y1, Y2, . . . be claim amounts arising from Portfolio II,
which is related to but assumed to be independent of Portfolio I,
and N2(t), independent of Yi’s, is the number of claims that may
occur during the same time period (0, t]. Let X1:N1(t) ≤ X2:N1(t) ≤

· · · ≤ XN1(t):N1(t) be the ordered values corresponding to the claim
amounts X1, X2, . . . that occur in the time period (0, t]. Define

M(t) =

N2(t)−
i=1

I(Yi > XN1(t):N1(t)), (1)

where I(A) = 1 if event A occurs, and I(A) = 0 otherwise, and
Xn:n denotes the largest order statistic among X1, . . . , Xn. The
process defined byM(t) shows the number of claims in Portfolio II
which exceed the largest claim amount in Portfolio I during (0, t].

http://dx.doi.org/10.1016/j.insmatheco.2011.08.009
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http://www.elsevier.com/locate/ime
mailto:seryilmaz@atilim.edu.tr
http://dx.doi.org/10.1016/j.insmatheco.2011.08.009


S. Eryilmaz et al. / Insurance: Mathematics and Economics 49 (2011) 496–500 497
T1 T2 T3 T4
T5 T6

T7 T8 T9

T1T2 T3 T4
T5 T6 T7 T8 T9 Time

Time

U1(t): Potfolio I

U2(t): Potfolio II

Fig. 1. Exceedance events for Portfolio II with respect to Portfolio I.

The largest claim in Portfolio I is actually a random threshold for
exceedance events that are observable in Portfolio II. Note that, in
this way, each exceedance is associated with a specific event.

Insurance companies can analyze the risk behavior of their
subdivided portfolios by the M(t) values. The most notable
implementation of the process M(t) can be realized in comparing
risks and risk ordering of portfolios as mentioned in the last
section of the paper. The process M(t) can also be used for
comparing the distributions of the claim sizes of two portfolios in
the context of a nonparametric two sample problem. Obviously,
the latter problem needs to derive the distribution of M(t)
for making the decision about the corresponding hypothesis
testing procedure. The acceptance of the null hypothesis of equal
population distributions implies that two portfolios are similar in
terms of the claim sizes.

Fig. 1 depicts the exceedance events represented by M(t) in
terms of the surplus processes of two related portfolios. It is seen in
the figure that there are realizations of an M(t) process, in a (0, t]
time interval, at the time points T7 and T9.

Here, Ti’s are random times and the surplus values are
realizations of the so called surplus renewal processes U1(t) for
Portfolio I and U2(t) for Portfolio II, under the collective risk
modeling, such that

U1(t) = U0,1 + c1(t) − S1(t)
U2(t) = U0,2 + c2(t) − S2(t)

where U0,1 and U0,2 are the initial reserves, c1(t) and c2(t) are the
premium income rates and S1(t) =

∑N1(t)
i=1 Xi and S2(t) =

∑N2(t)
i=1 Yi

are the aggregate claim amounts.
In this setup; the distribution and expected values of M(t) and

some extensions of these will be determined for two cases:

i. The claim sizes in each portfolio are independent and identi-
cally distributed (i.i.d.), and

ii. the claim sizes in each portfolio are dependent and the
dependence is modeled by copulas.

2. Modeling under independent claims

LetXi, i = 1, 2, . . . andYi, i = 1, 2, . . .be independent random
claim amounts with common continuous cumulative distribution
functions (c.d.f.) F1 and F2, respectively.

Theorem 2.1. For k = 0, 1, . . .

P {M(t) = k} =

−
n1

−
n2

n2

k


E

F̄ k
2 (Xn1:n1)F

n2−k
2 (Xn1:n1)


× P {N1(t) = n1} P {N2(t) = n2} .
Proof. Conditioning on N1(t) and N2(t) we have

P {M(t) = k} =

−
n1

−
n2

P


n2−
i=1

I(Yi > Xn1:n1) = k


× P {N1(t) = n1} P {N2(t) = n2} . (2)

It is clear that the random indicators I(Yi > Xn1:n1), i = 1, . . . , n2
are exchangeable. Thus conditioning on Xn1:n1 one obtains

P


n2−
i=1

I(Yi > Xn1:n1) = k



=

n2

k

 ∫ ∞

0
F̄ k
2 (x)F

n2−k
2 (x)dFn1:n1(x)

=

n2

k


E

F̄ k
2 (Xn1:n1)F

n2−k
2 (Xn1:n1)


, (3)

where Fn1:n1(x) is the c.d.f. of Xn1:n1 . The proof follows using (3)
in (2). �

Corollary 2.1. If F1 = F2, then

P {M(t) = k} =

−
n1

−
n2


n1+n2−k−1

n2−k




n1+n2
n1

 P {N1(t) = n1}

× P {N2(t) = n2} .

Proof. Because Fn1:n1(x) = F n1
1 (x), for F1 = F2

P


n2−
i=1

I(Yi > Xn1:n1) = k


=

n2

k


n1

∫ 1

0
un1+n2−k−1(1 − u)kdu

=


n1+n2−k−1

n2−k




n1+n2
n1

 .

Thus the proof is completed. �

Proposition 2.1.

E(M(t)) = E(N2(t))
−
n1

E

F̄2(Xn1:n1)


P {N1(t) = n1} .

Proof. Conditioning on N1(t) and N2(t) we have

E(M(t)) =

−
n1

−
n2

E


n2−
i=1

I(Yi > Xn1:n1)


P {N1(t) = n1}

× P {N2(t) = n2}

=

−
n1

−
n2

n2P

Y1 > Xn1:n1


P {N1(t) = n1}

× P {N2(t) = n2} .

The proof follows noting that P

Y1 > Xn1:n1


= E


F̄2(Xn1:n1)


. �

The following result can be immediately obtained from
Proposition 2.1.

Corollary 2.2. If F1 = F2, then

E(M(t)) = E


N2(t)
N1(t) + 1


.

Example 2.1. Let N1(t) and N2(t) be two independent homoge-
neous Poisson processes having intensities λ1 and λ2, respectively.
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If F1 = F2, then it is easy to compute

E(M(t)) =
λ2

λ1
(1 − e−λ1t),

for t ≥ 0.

Example 2.2. Let the claim sizes in each portfolio follow a Pareto
distribution with F1(x) = 1 − x−θ1 , and F2(x) = 1 − x−θ2 , x ≥ 1.
Then

E

F̄2(Xn1:n1)


= P


Y1 > Xn1:n1


= n1

∫
∞

1
F̄2(x)F

n1−1
1 (x)dF1(x)

= n1B(n1, α + 1),

where α = θ2/θ1 and B(a, b) is a Beta function. Thus we have

E(M(t)) = E(N2(t))
−
n1

n1B(n1, α + 1)P {N1(t) = n1} .

In actuarial risk theory, the processes N1(t) and N2(t) are taken
usually as renewal counting processes (Rolski et al., 1999). That is,

N(t) = sup


j :

j−
i=1

Ti ≤ t


for t ≥ 0, where Ti, i ≥ 1 are i.i.d. positive random variables with
E(Ti) = µ < ∞. The random variables T1, T2, . . . representing the
arrival times in a renewal process should be seen as the occurrence
times of claims in a portfolio. It is well known that if Tis are
exponentially distributed, then N(t) is a homogeneous Poisson
process.

Proposition 2.2. Let N1(t) and N2(t) be two independent renewal
processes with arrival times {Ti, i ≥ 1} and {Zi, i ≥ 1} with E(Ti) =

µ1 < ∞ and E(Zi) = µ2 < ∞. If F1 = F2, then

E(M(t)) →
µ1

µ2
as t → ∞.

Proof. Using Corollary 2.2

E(M(t)) = E

N2(t)

t


E


t
N1(t) + 1


. (4)

From the elementary renewal theorem (see, e.g. Rolski et al., 1999)
we have

E

N2(t)

t


→

1
µ2

as t → ∞. (5)

It is also known that with probability 1,

N1(t)
t

→
1
µ1

as t → ∞. (6)

Thus the proof follows using (5) and (6) in (4). �

If N1(t) and N2(t) are homogeneous Poisson processes with
intensities λ1 and λ2, then

E(M(t)) →
λ2

λ1
as t → ∞,

which can also be verified from Example 2.1.

3. Modeling under dependent claims

The claim amounts within each of the subdivided portfolios
may be dependent. Consider, for instance, a home insurance case
with several portfolios subdivided by the geographical regions;
storms over all the regions would cause similar damage to the
properties and generate comparable claim sizeswithin each region
while the frequency and severity particulars of the damages in
each might be different from the others due to some regional
conditions. In such a case it is appropriate to model claim sizes
for each subdivided portfolio as a sequence of exchangeable
dependent random variables. Mena and Nieto-Barajas (2010)’s
work is a recent research example for exchangeable claim sizes in
a compound Poisson-type process.

Copulas are useful tools for modeling dependence among
random variables. They have been successfully used in finance and
actuarial science for the problems involvingmultivariate outcomes
and dependence (Frees and Valdez, 1998; Pfeifer and Neslehova,
2003; Denuit et al., 2005).

The distribution and expectation ofM(t) are attained below by
assuming that the claims in each of the portfolios are exchangeable
dependent. Thedependence is constructedby the copulamodeling.

For anym, define

P

Xi1 ≤ x1, . . . , Xim ≤ xm


= F1(x1, . . . , xm)

= C1(F1(x1), . . . , F1(xm)),

and

P

Yi1 ≤ x1, . . . , Yim ≤ xm


= F2(x1, . . . , xm)

= C2(F2(x1), . . . , F2(xm)),

where i1, i2, . . . , im is a permutation of 1, 2, . . . ,m and C1 and C2
are copula functions corresponding to Portfolio I and Portfolio II,
respectively.

Theorem 3.1. For k = 0, 1, . . .

P {M(t) ≤ k} =

−
n1

−
n2

n2−
j=n2−k

(−1)j−n2+k


j − 1
n2 − k − 1


n2

j


× E(C2(F2(Xn1:n1), . . . , F2(Xn1:n1)  

j

))

× P {N1(t) = n1} P {N2(t) = n2} .

Proof.

P {M(t) ≤ k} =

−
n1

−
n2

P

Yn2−k:n2 ≤ Xn1:n1


P {N1(t) = n1}

× P {N2(t) = n2} ,

where Yi:n2 is the ith smallest among Y1, . . . , Yn2 .

P

Yn2−k:n2 ≤ Xn1:n1


=

∫
∞

0
P

Yn2−k:n2 ≤ x


gn1:n1(x)dx, (7)

where gn1:n1(x) is the p.d.f. of Xn1:n1 and is given by

gn1:n1(x) =
d
dx

C1(F1(x), . . . , F1(x)).

On the other hand, for a sequence of exchangeable random claim
size variables

P

Yn2−k:n2 ≤ x


=

n2−
j=n2−k

(−1)j−n2+k


j − 1
n2 − k − 1


n2

j


P

Yj:j ≤ x


, (8)

(see, e.g. David and Nagaraja, 2003, p. 46). Using (8) in (7) one
obtains

P

Yn2−k:n2 ≤ Xn1:n1


=

n2−
j=n2−k

(−1)j−n2+k


j − 1
n2 − k − 1


n2

j


×

∫
∞

0
C2(F2(x), . . . , F2(x)  

j

)gn1:n1(x)dx
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=

n2−
j=n2−k

(−1)j−n2+k


j − 1
n2 − k − 1


n2

j


× E(C2(F2(Xn1:n1), . . . , F2(Xn1:n1)  

j

)).

Thus the proof is completed. �

Proposition 2.1 holds true under the assumptions that the
claims are exchangeable dependent and the expected value
E

F̄2(Xn1:n1)


can be computed as

E

F̄2(Xn1:n1)


= P


Y1 > Xn1:n1


= P


X1 < Y1, . . . , Xn1 < Y1


=

∫
∞

0
C1(F1(x), . . . , F1(x))dF2(x)

= E(C1(F1(Y1), . . . , F1(Y1)  
n1

)).

Thus the expected value of the process M(t) can be computed
from

E(M(t))

= E(N2(t))
−
n1

E(C1(F1(Y1), . . . , F1(Y1)  
n1

))P {N1(t) = n1} . (9)

As it can be seen from (9), E(M(t)) depends on the distribution
of the claim sizes of Portfolio II only through the marginal
distributions of the claim size variables of Portfolio II and
independent of the corresponding copula C2. Below we illustrate
the computation of the quantity E(C1(F1(Y1), . . . , F1(Y1)  

n1

)) for a

particular copula function.

Example 3.1. Let

C1(u1, . . . , un1) =

n1∏
i=1

ui


1 + αn1

−
1≤j<k≤n1

(1 − uj)(1 − uk)


,

where −
1
n1
2

 ≤ αn1 ≤
1
n1
2

 and [x] denotes the integer part of x.

This model is known to be a simple Farlie–Gumbel–Morgenstern
copula (see, e.g. Mari and Kotz, 2001, p. 144). For this model we
obtain

C1(F1(x), . . . , F1(x)) = F n1
1 (x)


1 + αn1

n1

2


(1 − F1(x))2


.

Therefore

E(C1(F1(Y1), . . . , F1(Y1)  
n1

))

=

∫
∞

0


F n1
1 (x)


1 + αn1

n1

2


(1 − F1(x))2


dF2(x).

Let the marginal distribution functions be F1(x) = 1 − x−θ1 , and
F2(x) = 1 − x−θ2 , x ≥ 1. Then simple manipulations yield

E(C1(F1(Y1), . . . , F1(Y1)  
n1

))

=
θ2

θ1
B

n1 + 1,

θ2

θ1


+ αn1

n1

2

 θ2

θ1
B

n1 + 1,

θ2

θ1
+ 2


. �

The type or choice of marginal distributions F1 (xi) and F2 (xi)
of the claim amounts in each of the subdivided portfolios are not
constrained by the copula construction. So, any suitable set of
copula functions C1 and C2 can be adopted from appropriate copula
families for the modeling purposes here.
4. Implications of the models and conclusion

The preceding two sections produce the probability distribu-
tions and expected value expressions for the M(t) process under
the cases of independence and dependence of the claim size vari-
ables. Insurance risk managers can utilize these for the purposes
of comparison and risk ordering of some independent but related
insurance portfolios in connection with a portfolio that they have
claim number and claim size experience as a benchmark. Compar-
ing and ordering of risks is a long-established subject area of the
actuarial science that is fundamental to manymethods of actuarial
modeling and analysis (Goovaerts et al., 1990). In this context, this
section apprises stop-loss risk ordering of portfolios with respect
to the M(t) process.

Stochastic dominance and stop-loss ordering of risks embedded
in some related portfolios can be performed by the use of M(t)
process and excessive claimamounts. The excessive claimamounts
that may be subject for reinsurance considerations can be defined
as

M∗

Y (t) =

N2(t)−
i=1

I(Yi > XN1(t):N1(t))Yi.

The process M∗

Y (t) represents the total claim size in Portfolio
II that are in excess of the largest claim size in the Portfolio
I. Similarly, excessive claim amounts can be defined for some
other portfolios that are related to Portfolio I with respect to
the largest claim size of it. Let Z1, Z2, . . . be the successive claim
amounts of another subdivided portfolio, say Portfolio III, with
N3(t) being the number of claims arising from it during the (0, t]
time interval. N3(t) is also assumed to be independent of Zis.
Denote theM(t) values for Portfolio II and Portfolio III byMY (t) and
MZ (t), respectively, and express the amount for the reinsurance
considerations in Portfolio III by M∗

Z (t), which is defined similar
to M∗

Y (t).
Following Denuit et al. (2005), it is said that risk Y stochastically

dominates risk Z , written Z ≤st Y when E(g(Z)) ≤ E(g(Y )) for all
real valued and non-decreasing functions g . Stochastic dominance
and the order between the distribution functions FY and FZ of Z
and Y imply each other, written Z ≤st Y iff FZ (z) ≥ FY (z) for
all z.

The stochastic dominance ordering of the risks Z and Y
compares only the size of these risks. Another stochastic ordering
modality that combines the size of the risks and their variability
is the stop-loss ordering (Denuit et al., 2005). Z is said to precede
Y in stop-loss order if ΠZ (R) <sl ΠY (R) for all real R values where
ΠZ (R) = E [(Z − R)+] , ΠY (R) = E [(Y − R)+] are the well known
stop-loss transform functions with R standing for the reinsurance
retention limit. Note that the right hand derivatives Π ′

Z (R) =

FZ (R) − 1 and Π ′

Y (R) = FY (R) − 1 lead to the characterization of
the probability distributions FY and FZ from the risk ordering point
of view.

Stop-loss ordering can be set in terms of the M(t) values
for fixed t , too. It is said that MZ (t) is more risky than MY (t)
in stop-loss ordering, MZ (t) <sl MY (t), if any of the following
conditions are satisfied (Denuit et al., 2005): E [(MZ (t) − k)+] ≤

E [(MY (t) − k)+] for all k ∈ N, E(g(MZ (t))) ≤ E(g(MY (t))) for all
real valued g functions such that 1g(k) ≥ 0 and 12g(k) ≥ 0 for
all k, given that the expectations exist.

Furthermore, actuarial policies about portfolio size, premium
ratings, risk reserves, retention levels and the similar other
strategic matters for the subdivided portfolios can be dealt with
in the light of the M(t) process and its risk ordering properties.
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