
Engineering Applications of Artificial Intelligence 24 (2011) 555–566
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

� Corr

E-m

s.bened
journal homepage: www.elsevier.com/locate/engappai
Leveraging saving-based algorithms by master–slave genetic algorithms
Maria Battarra a, Stefano Benedettini b,�, Andrea Roli b

a Industrial Engineering Department, Kadir Has University, _Istanbul, Turkey
b DEIS–Cesena, Alma Mater Studiorum, Universit �a di Bologna, Italy
a r t i c l e i n f o

Article history:

Received 8 April 2010

Received in revised form

19 January 2011

Accepted 19 January 2011
Available online 4 March 2011

Keywords:

Saving-based algorithms

Genetic algorithms

Clarke and Wright algorithm

Esau-Williams algorithm

Heuristic algorithms
76/$ - see front matter & 2011 Elsevier Ltd. A

016/j.engappai.2011.01.007

esponding author.

ail addresses: maria.battarra@khas.edu.tr (M.

ettini@unibo.it (S. Benedettini), andrea.roli@u
a b s t r a c t

Saving-based algorithms are commonly used as inner mechanisms of efficient heuristic construction

procedures. We present a general mechanism for enhancing the effectiveness of such heuristics based

on a two-level genetic algorithm. The higher-level algorithm searches in the space of possible merge

lists which are then used by the lower-level saving-based algorithm to build the solution. We describe

the general framework and we illustrate its application to three hard combinatorial problems.

Experimental results on three hard combinatorial optimization problems show that the approach is

very effective and it enables considerable enhancement of the performance of saving-based algorithms.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Saving-based algorithms are well-known constructive heuris-
tics. In the literature, saving algorithms have been proposed to
solve a wide variety of combinatorial problems. The distinctive
feature of these algorithms is the idea of starting with a ‘‘dis-
aggregated’’ initial solution, i.e., a set of partial solutions which
are iteratively merged until a complete solution is built. More
precisely, a saving criterion is established and all merges are
ranked with respect to their saving value. The most promising
feasible merge operation is implemented and the procedure is
iterated as long as all merges in the ranked list have been
evaluated. This simple approach can be adopted for many combi-
natorial optimization problems and leads to easy to implement
heuristics. Another appealing characteristic of these heuristics is
their flexibility: complex constraints can be imposed by consider-
ing a suitable merge feasibility control, thus simplifying the
definition of the problem model. Moreover, even sophisticated
objective functions can be evaluated by adapting the saving
expression. Given these characteristics, saving algorithms are
frequently used for solving complex real world problems.

Examples of problems from the literature solved through saving
algorithms include the capacitated vehicle routing problem (CVRP)
(Clarke and Wright, 1964), the CVRP with time windows (Van
Landeghem, 1988), the multiple trip CVRP (Fleischmann, 1990), the
fleet size and mix vehicle routing problem (FSMF) (Golden et al.,
1984) and the capacitated minimum spanning tree problem (CMSTP)
ll rights reserved.

Battarra),

nibo.it (A. Roli).
(Esau and Williams, 1966). Examples of algorithms to solve real
world problems in which a saving algorithm is involved are Golden
et al. (1977), Begur et al. (1997), Erkut et al. (2000), Gronalt et al.
(2003), Chan and Baker (2005), Lee and Atiquzzaman (2005), Faulin
et al. (2005), Kant et al. (2008) and Cetinkaya et al. (2009).

Despite these advantages, saving-based heuristics are not as
effective as the state-of-the-art metaheuristics. In fact, there is
generally a considerably large gap between the solution quality
achieved by saving heuristics and the best known solutions. For this
reason, in the last decades, saving algorithms are not frequently
considered as stand-alone methods: improved versions are used for
solving large-sized problems or they provide initial solutions for
metaheuristic algorithms. Indeed, metaheuristics fed with good
quality initial solutions are usually much more effective.

At first sight, saving algorithms might be considered as out-of-
date methods because of their early origin, however, they are still an
active research topic. The following are some examples of papers
which appeared recently about saving algorithms for routing
problems: Corominas et al. (2010), Juan et al. (2010), Doyuran and
Catay (2011), and Gajpal and Abad (2010). Many more are the
recent articles in which saving algorithms are used to find good
quality initial solutions. The success of these algorithms is probably
due to their effectiveness with respect to other classical constructive
heuristics. For a comparative analysis of the performance of a saving
heuristic for the CVRP, we refer to Toth and Vigo (2001). The saving
heuristic for the CVRP beats well-known constructive heuristics
from the literature in a thorough experimental comparison. To the
best of our knowledge, this kind of analysis has not been performed
for any other saving heuristic, but we expect similar results.

The attempts done to improve the performance of these heuristic
methods are mainly focused on adding diversification to greedy

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.01.007
mailto:maria.battarra@khas.edu.tr
mailto:s.benedettini@unibo.it
mailto:andrea.roli@unibo.it
dx.doi.org/10.1016/j.engappai.2011.01.007

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566556
search. For example parametric saving expressions have been con-
sidered (i.e., Öncan and Altınel, 2005). Diversified saving expressions
lead to a different sequence of merge operations and corresponding
different solutions. The diversifying idea is the same even considering
other algorithms to perturb the merge sequence. Examples of such
algorithms include GRASP techniques (i.e., de Souza et al., 2004),
randomized algorithms (i.e., Daskin, 2002) or Monte Carlo based
techniques (i.e., Faulin et al., 2008). However, these enhancements
require more computational effort, the tuning of some parameters or
‘‘problem-dependent’’ adaptations (i.e., the definition of a suitable
neighborhood or a suitable saving expression). Consequently, they
cannot be applied to other saving heuristics without code modifica-
tions and some time spent in tuning the parameters.

In what follows, we present a ‘‘Master–Slave Genetic’’ (MSG)
algorithm able to improve the performance of saving algorithms in a
more general setting. The MSG can be seen as a ‘‘two-level genetic
algorithm’’ (TLG), where TLGs represent a broad category of meta-
heuristics sharing a common design principle. In a MSG algorithm,
the problem resolution is decomposed into two interacting stages, in
which the first stage consists of a genetic algorithm.

TLG algorithms are widely adopted and their paradigm is
interpreted in different ways. For example, Chau (2004) proposes a
TLG to solve a site allocation problem, in which a genetic algorithm
defines first the location decisions, then an LP solver provides the
corresponding flow assignment. A similar idea is employed for an
allocation problem by El-Araby et al. (2003), and in a flow intercep-
tion problem by Yang et al. (2009). TLGs are used in a different spirit
by Georgopoulou and Giannakoglou (2009) for the unit commit-
ment problem. A GA generates a solution (chromosome) for a
relaxed problem, which is then repaired by a second algorithm.
Khajavirad et al. (2009) present also a TLG for the joint product
family platform selection and design problem.

However, Shestak et al. (2008), solving a task allocation problem
on distributed computing systems, Santiago-Mozos et al. (2005),
solving a course timetabling problem, and Lacomme et al. (2005),
solving the capacitated arc routing problem, interpret the TLG
paradigm in the same way as in our contribution. The solution
construction is decomposed into two stages: a high-level GA pro-
duces first a permutation of elements in a set (chromosome), then,
given the chromosome information, a lower-level solver computes
and evaluates the solution value. This value is then returned to the
GA, so as to perform selection.

Even if our method is similar to the ones presented in the
previous cited works, there is one major innovation: instead of
devising an ad-hoc lower-level heuristic, we use and enhance an
existing constructive procedure. Our TLG design is based on the
structural characteristics of saving algorithms: the merge opera-
tions are ranked with respect to their saving value, producing an
ordered list. The list’s permutations describe all feasible solutions
for the original problem and provide a solution representation
form of a chromosome. Such a chromosome contains all the
information required by a saving heuristic (i.e., the lower-level

algorithm) to build a feasible solution.
In our framework, the genetic algorithm is a master algorithm

that, exploiting the experience collected during the previous
iterations, permutes saving lists and produces promising off-
spring, such as new lists/chromosomes. The fitness evaluation of
each new chromosome is then performed by the slave algorithm.
During iterations, the genetic algorithm learns which are the most
suitable permutations of the merge list and it is able to converge
to good quality solutions in a reasonable computing time. We
would like to point out that the epithet ‘‘master–slave’’ has been
adopted because of the similarity to the parallel algorithm
architecture that bears the same name: the master (upper-level)
algorithm sends tasks to the slave (lower-level) algorithm. In this
context, a task is the evaluation of the chromosomes’ fitness and,
at the same time, the construction of a new solution. The slave
algorithm is deterministically executed: it constructs a solution
on the basis of the input provided by the master and returns
the fitness value to it. The master learns from the information
provided by the slave. We emphasize that this master–slave
framework is general, because it can be implemented once and
then used for any problem by replacing the slave algorithm.

This generality is, in our opinion, the most innovative contribu-
tion of the MSG algorithm. All saving heuristic enhancements
proposed so far are dedicated to a specific algorithm when applied
to a particular problem. The tests and the results reported are
dependent on sets of parameters of both the problem and the
algorithm and cannot be applied to another saving heuristic without
modifying the algorithm and performing an extensive tuning.

MSG is a framework able to produce high quality solutions for any
saving algorithm. Designing and implementing a saving heuristic for a
combinatorial problem is a relatively easy task. A software able to
plug the slave algorithm into a general framework, and improve its
performance is, in our opinion, a remarkable contribution. In fact, this
general framework could be employed to improve the performance of
state-of-the-art software codes and provide fast and high quality
answers to a large class of industrial problems.

For completeness, we also mention the fact that MSG algorithms
share some similarities with cooperative coevolutionary algorithms
(CCEAs), in which a number of populations are evolved in parallel
with Husband and Mill (1991) and Potter and De Jong (2000). In
CCEAs, the solution to the problem is decomposed into sub-
components and the populations are defined in such a way that
the solution can be built by picking one individual per population
and combining them. In this way, the individuals are evaluated as a
function of the quality of the complete solution, i.e., their fitness also
depends on the individuals of the other populations.

As a final remark, we observed that a parallel implementation of
the algorithm is possible. The slave algorithm could be executed on
different processors, one for each offspring to be evaluated. This
would save up most of the computing time, because the evaluation
of the fitness is the time-consuming task in MSG. However, in this
contribution, we evaluated the fitness of each offspring in a non-
distributed fashion, in order to make a fair comparison with previous
algorithms that have not been implemented in a parallel fashion.

The paper is structured as follows. In Section 2, the MSG
algorithm is presented in detail, and in Sections 3–5 the perfor-
mance of our approach is reported for three different problem
variants and compared against the best known results. The first
problem is the CVRP. Then, the MSG is tested on a more challenging
CVRP variant, the FSMF. Finally, our method is tested in solving a
different combinatorial problem, the CMSTP. For each problem, we
briefly review the related literature and we report the results of our
experiments. In Section 6, conclusions are drawn.

2. The master–slave genetic algorithm

Algorithm 1. Master–slave high-level framework
1:
 P’ buildInitialPopulation(n) {set of n individuals}

2:
 evaluate(P)

3:
 while terminating conditions not me do

4:
 Pu’ applyGeneticOperators(P) {operators depend on

individual representation}

5:
 evaluate(Pu) {use slave algorithm}

6:
 P’ bestOf(n, P, Pu) {take best n individuals as per

steady-state}

7:
 end while

8:
 return min(P)
The core idea of our MSG is based on the possibility of splitting
the solution construction into two nested phases. In the first

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566 557
phase, the parameters of a solution construction procedure are set
by a master solver and in the second phase the solution is actually
built by a slave solver. For example, in the first phase, merge
operations are ordered and, in the second phase, this sequence
is used for constructing a solution. In a sense, the problem is
decomposed into two, interdependent, sub-problems. The solu-
tion to the first problem is an input for the second, which actually
constructs a solution. In our TLG framework, the first algorithm is
a genetic algorithm, while the second is a saving-based heuristic
algorithm. The quality of the merge list provided by the master is
then evaluated on the basis of the objective function value of the
solution built by the slave. In fact, the master explores a search
space of ‘parameters’: the objective value of the points in this
space is the value of the solution returned by the slave.

To fully define a genetic algorithm, and in particular our
master algorithm, one has to specify:
�

sym
a solution coding for defining the individual structure;

�
 a selection procedure;

�
 a population update procedure;

�
 genetic operators and how they are applied to the population;

�
 an evaluation criterion for assigning fitness to the individuals;

�
 an initialization step to generate an initial population.

In the following, we detail each of these algorithmic components.
Solution coding: An individual is a permutation that represents a

list of merge operations. The merge ordering is crucial for the slave
procedure to compute a good solution. An individual maps merge
operations from a reference merge list to a new merge list fed into
the slave procedure. In order to obtain such a reference list we
adopted a deterministic procedure that depends solely on the
instance and a saving formula: first we construct every possible
merge of two client nodes and we compute the corresponding
saving value, then we sort the merges in a non-increasing way
according to their saving value. The saving formula used in this
preliminary phase is problem dependent and well-known from the
literature (see Sections 3–5 for an overview on saving formulas).

Selection and update: The selection procedure is a simple roulette-
wheel, in which individuals are taken for mating with a probability
proportional to their respective fitness values. As for population
update, we chose to implement a steady-state genetic algorithm.

Recombination operators: We adopted the usual definition of
crossover and mutation for permutations of length n. The muta-
tion of an individual encoded as a permutation simply involves a
random swap of two elements. The average number of swaps that
can be performed on each chromosome is an algorithm para-
meter, called mutation rate or mr for short. The recombination
operator is a two-parent one-point crossover adapted for permu-
tations: first a random point-cut is chosen and the permutations
p and q are split into two sub-sequences (p1, p2) and (q1, q2),
respectively. The new permutations pu and qu are constructed in
this way1: at first pu¼ p1, then all the elements of q2 which are not
in p1 are orderly appended to pu; if the length of pu is still less than
n, the procedure keeps appending elements to pu taken from sub-
sequence q1 if those elements are not already present in p1. The
crossover operator is always applied.

Fitness evaluation: The evaluation criterion in our master–slave
architecture is actually provided by the slave algorithm that builds a
solution and computes its value according to the objective function.
The implementation of the master–slave solver is such that the only
problem-dependent part is the one concerning the saving-based
heuristic.
1 We take into account only the construction of pu, since the other one is

metrical.
2.1. Genetic master–slave implementations

This section presents first a basic implementation of the
master algorithm, named SIMPLE, then introduces the three master
algorithm variants that have been developed. For each variant, we
highlight the differences with SIMPLE and the advantages over it.

The SIMPLE initial population consists of 10% identical chromo-
somes made of the original saving list and 90% random permuta-
tions. The original saving list is the permutation suggested by a
well-known and effective saving algorithm (i.e., the Clarke and
Wright algorithm for the CVRP), which is therefore a promising
permutation. The random permutations are obtained by ran-
domly ordering the list of savings. These permutations increase
diversification in the initial population. The fraction of identical
permutations has been determined by trial and error, on a subset
of the test set instances. In SIMPLE, crossover and mutation, as
described in the section above, are performed over the whole
chromosome.

Based on our preliminary experiments with SIMPLE, we decided
to explore possible improvements of the master algorithms by
modifying, in turn, the composition of the initial population, the
chromosome structure and the genetic operators.

The PARAMS master algorithm considers an initial population
composed of higher quality chromosomes, generated by means of
well-known parametric saving algorithms from the literature.
These algorithms consider a parametric saving expression and
they are able to produce better quality results than their non-
parametric counterparts. Their saving lists are, therefore, likely to
be higher quality chromosomes.

The parameter values in the saving expressions have been
generated by drawing uniform random samples in the interval [0,
p], where p is an algorithm parameter. The performance of PARAMS

has been tested by considering p¼3 and 4. The p values have been
chosen to exploit the experience built in Öncan and Altınel
(2005), Golden et al. (1984), and Öncan and Altınel (2009), where
the authors considered similar ranges for the parameters.

The last two master algorithms incorporate improved variants
of the crossover and mutation operators. The SIMPLE crossover and
mutation operators allow the swap of genes from the head of the
list to the tail, resulting in a drastic diversification. On the other
hand, the original saving list produces good quality solutions, so it
should not be completely distorted during the search. Moreover,
the first few elements in the saving list are those which determine
a larger cost reduction and their order in the list is crucial.

The REDUCED master algorithm performs crossover and muta-
tion only on the first d¼15%, 20% and 25% (where d is an
additional parameter) of the whole chromosome, so as to inten-
sify the search in these genes and not mix them with the ones at
the tail of the chromosome. The initial population is generated in
a similar manner as in SIMPLE, but keeps the final part of the
chromosomes constant. Let l be the length of a chromosome, the
first l¼ bd � lc positions are either the identical permutation
ð1, . . . ,lÞ (10% probability) or a random permutation of integers
in ½1,l� (90% probability); the remaining l�l are always filled with
the sequence ðlþ1, . . . ,lÞ.

The SPLIT master algorithm is a specialization of REDUCED, in
which crossover and mutation are performed separately on the
head of the chromosome (i.e., 15%, 20% and 25% of the whole) and
on the tail (i.e., 85%, 80% and 75% of the whole). This algorithm
shares the advantages of REDUCED, providing in addition possible
refinement in the chromosome tail. SPLIT has the same configura-
tion parameter d as REDUCED and a very similar scheme for
generating the initial population: let l¼ bd � lc, the ‘‘head’’ of
each chromosome is a permutation (either identical or random)
of integers in ½1,l�, while the ‘‘tail’’ is another permutation of
integers in ½lþ1,l�.

Table 1
MSG variants.

Master Psize mr Relevant parameter

SIMPLE 100, 200 1, 9 –

REDUCED 100, 200 1, 9 15%, 20%, 25%

SPLIT 100, 200 1, 9 15%, 20%, 25%

PARAMS 100, 200 1, 9 3, 4

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566558
An extensive statistical analysis has been performed to define
the best configuration of parameters for MSG when applied
to each problem variant. The detailed results are reported
in Sections 3–5. We also defined common ranges for the para-
meters. The population sizes, Psize, considered are 100 and 200
individuals, whereas the mutation rates are 1 and 9 (means 1 and
9 random swaps on average per chromosome are applied). Note
that the number of offspring at each iteration is equal to the
population size, that is 100 and 200 individuals. If we consider all
the possible combinations of master algorithm variants with their
respective parameters, 36 different algorithm instantiations are
evaluated.

Last, we introduce a compact nomenclature to identify an
algorithm instantiation. We write, separated by dots: the name of
the master variant, population size, mutation rate and, if required,
an additional parameter. SIMPLE does not require any further
parameter besides population size and mutation rate, while
PARAMS requires a value for p and SPLIT and REDUCED both require a
value for the d parameter. So, for example, an indicator like
PARAMS.200.1.3 stands for PARAMS master variant with a population
size of 200, and a mutation rate of 1 and p¼3. The MSG variants
are summarized in Table 1. Our experiments were performed on
an Intel Xeon 3 GHz, with 8 GB of RAM, for all problem variants
and algorithms. The detailed solution values for each test set and
for each problem studied can be find at this URL http://apice.
unibo.it/xwiki/bin/view/StefanoBenedettini/Papers.

In the following sections, we illustrate the application of the
master–slave algorithm on three hard combinatorial problems,
for which efficient saving-based heuristics are available.
3. A master–slave Clarke and Wright algorithm

The most famous example of saving heuristics is probably the
Clarke and Wright algorithm (Clarke and Wright, 1964). This
heuristic was one of the first attempts to solve the capacitated

vehicle routing problem (CVRP) and it is still frequently employed
in the Operations Research Community (see, for example, Toth
and Vigo, 2001; Laporte et al., 2000). In what follows, we
introduce the CVRP and the required notation. The Clarke and
Wright algorithm and the parametric enhancements are then
described in detail.

A graph G(V,E) is given, where V is the vertex set and E is the
edge set. The vertex 0 is the depot, such as the special vertex in
which an unlimited number of vehicles of capacity Q are located.
The vertices V\f0g are the customers and each of them demands
qi,iAV\f0g. Each customer has to be visited exactly once. Each
edge ði,jÞAE is associated with a routing cost cijZ0. We define a
route as the tour a vehicle performs starting from the depot and
servicing a set of customers. A route is feasible if the sum of the
customer demands does not exceed the vehicle capacity Q. The
CVRP consists of determining a set of feasible routes with
minimum total routing cost, in which the demand of each
customer is satisfied.

The disaggregated solution considered in the Clarke and
Wright algorithm is composed of single-customer routes. Given
this initial solution, the Clarke and Wright algorithm evaluates
the saving obtained by merging the routes in which customers i

and j are external customers (i.e., connected to the depot), as:

sij ¼ ci0þc0j�cij: ð1Þ

If sij40, the merge operation is convenient and if the sum of
the demands of the two routes does not exceed Q, the merge
operation is feasible. The Clarke and Wright algorithm evaluates
the saving values for each pair of customers a priori, through (1).
Then the saving values are ordered in non-decreasing fashion,
resulting in a saving list. Merge operations are evaluated con-
sidering the order of the saving list and implemented if the new
solution is feasible and more convenient. This greedy algorithm
has Oðn2lognÞ complexity (see Jothi and Raghavachari, 2004).

Two versions of the Clarke and Wright algorithm have been
presented in the literature, namely the parallel and the sequential,
but we presented the parallel implementation which performs
better than the sequential one (Toth and Vigo, 2001). The Clarke
and Wright algorithm is fast and simple, but the gap with respect
to the best known solutions is most of the times large. In order to
improve its performance, enhancements have been proposed in
the literature.

An important class of enhancements consists of more accurate
saving expressions. To this end, Gaskell (1967) and Yellow (1970)
introduced the route-shape parameter l, Yellow (1970) added an
additional term scaled by a parameter m and finally Öncan and
Altınel (2005) included a third term in the saving expression,
weighted by n. The saving expression, including all three addi-
tional terms, results in:

sij ¼ ci0þcj0�lcijþmjc0i�cj0jþnðqiþqjÞ=q, ð2Þ

where q is the average demand, such as q ¼
P

iAVc
qi=jVcj. This

enriched saving expression works well, as shown by Öncan and
Altınel (2005), but the three parameters have to be tuned and this
activity can be time consuming. Battarra et al. (2008b) proposed a
tuning technique producing high quality results (i.e., the gap with
respect to the best known solutions is half of the one obtained
with the non-parametric Clarke and Wright algorithm), in a
limited computing time.

3.1. Experimental results

In order to test the performance of our MSG algorithm, we
considered the same test instances as in Öncan and Altınel (2005),
which consist of a well-known benchmark set for the CVRP.
In greater detail, our benchmark set is composed of seven
instances from Christofides et al. (1979) (CMT), eight instances
from Christofides and Eilon (1969) (E), and 72 instances from
Augerat et al. (1995) (A, B and P). All these instances may be
downloaded at the site http://www.branchandcut.org, as well as the
best known solution values for the Augerat et al. (1995) and the
Christofides and Eilon (1969) instances. Note that the Christofides
et al. (1979) instances have been solved by Öncan and Altınel (2005),
considering double-precision distances. The best known solution
values for such instances are available at the web site http://neo.
lcc.uma.es/radi-aeb/WebVRP/.

The Augerat et al. (1995) instances have been solved to
optimality, whereas the solution values for the instances E-n76-k8

and E-n101-k14 have not been solved to optimality. Moreover, the
instance E-n30-k4 is not mentioned in the web site http://www.
branchandcut.org; the same solution value as in Öncan and Altınel
(2005) is reported.

We implemented 36 versions of the master–slave algorithm,
according to the variants and parameter settings described
in Section 2. We selected the best variant among these candidates
according to the following procedure. Each candidate was run five
times for 5 min on each instance and the average solution ĉ value

http://apice.unibo.it/xwiki/bin/view/StefanoBenedettini/Papers
http://apice.unibo.it/xwiki/bin/view/StefanoBenedettini/Papers
http://www.branchandcut.org
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://www.branchandcut.org
http://www.branchandcut.org

Fig. 1. Comparison among the CVRP candidates. Bars denote the median of the

relative deviation between the solution returned by the candidate and the optimal

(or best known) solution.

Table 2
The CVRP experimental results (solutions with a different number of vehicles

included). Entries are the average percentage deviations from the best known

solutions.

5 min 25 min

SPLIT.200.9.25% MULTISTART-CVRP SPLIT.200.9.25% MULTISTART-CVRP

A 0.279 (0.441) 1.940 (1.022) 0.271 (0.425) 1.925 (1.031)

B 0.150 (0.782) 1.554 (1.181) 0.147 (0.782) 1.542 (1.168)

P �0.067 (1.311) 1.634 (1.684) �0.067 (1.311) 1.622 (1.673)

E 0.375 (0.421) 1.783 (1.473) 0.286 (0.381) 1.728 (1.415)

CMT 1.321 (1.385) 3.550 (1.834) 1.006 (1.194) 3.405 (1.876)

Avg. 0.412(0.868) 2.092 (1.439) 0.329 (0.819) 2.044 (1.433)

Table 3
The CVRP experimental results (solutions with a different number of vehicles

excluded). Entries are the average percentage deviations from the best known

solutions.

5 min 25 min

SPLIT.200.9.25% MULTISTART-CVRP SPLIT.200.9.25% MULTISTART-CVRP

A 0.286 (0.448) 2.048 (1.150) 0.278 (0.431) 2.032 (1.160)

B 0.292 (0.659) 1.746 (1.051) 0.288 (0.660) 1.733 (1.037)

P 0.411 (0.421) 2.910 (2.290) 0.411 (0.421) 2.896 (2.288)

E 0.521 (0.625) 2.113 (1.837) 0.432 (0.620) 1.777 (1.445)

CMT 1.641 (1.498) 3.541 (2.138) 1.362 (1.246) 3.392 (2.172)

Avg. 0.630 (0.730) 2.472 (1.693) 0.554 (0.676) 2.366 (1.620)

2 This is also confirmed by the statistical test on all the three problems we

considered.

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566 559
was taken as the representative result per instance. In order to
compare the algorithm candidates, we computed the relative
deviation c ¼ ðĉ�c�Þ=c� from the optimal/best known solution cn.
The median of the relative deviations is also considered as a
global quality indicator of the candidates. Fig. 1 shows the
comparison among the candidates.

To assess statistical evidence of the differences observed, we
used the paired Wilcoxon test (Conover, 1999), applied with a
one-sided alternative hypothesis (i.e., we want to have statistical
evidence for one algorithm being better than the other) and
p-value equal to 0.05. The test indicates the group of SPLIT.200 as
best candidates and we decided to choose the one with the lowest
median, namely, SPLIT.200.9.25%, as our best variant to be com-
pared against the state-of-the-art.

Table 2 reports the computational results obtained on each test
set (namely A, B, P, E and CMT), by the best MSG (SPLIT.200.9.25%)
and a randomized multistart algorithm (MULTISTART-CVRP). The
randomized multistart algorithm consists of a multistart imple-
mentation of the Öncan and Altınel (2005) algorithm, in which the
parameters of the saving expression (2) are randomly selected
within the interval [0, 5]. The randomized multistart algorithm is
iterated as long as the time limit is reached. Two time limits are
considered, the same as for the MSG algorithm: 5 and 25 min.
Although the multistart algorithm does not represent the state-of-
the-art, this comparison is useful to empirically measure the
effectiveness of the master algorithm for the search. This compar-
ison assesses the effectiveness of the genetic learning mechanism
with respect to a randomized search.2 Results show that MSG
effectively enhances a saving heuristic better than a randomized
search and that the solutions returned are close to the best known
results.

For each algorithm and computing time, the first column in the
table (denoted by the name of the adopted algorithm) reports the
average percentage deviation with respect to the best known
solution values in the literature. The second column reports in
parenthesis the standard deviation. The last line of the table
reports the column averages.

The CW algorithm and its enhancements do not impose any
constraint on the number of vehicles used. Sometimes the MSG
algorithm or the randomized multistart algorithms obtain even
better quality results than the best known solutions, because the
number of employed vehicles is different. Table 3 reports the same
results as Table 2, but the results refer to the minimum cost
solutions in which the number of vehicles employed is the same
as in the best known solutions. Note that sometimes SPLIT.200.9.25%
and MULTISTART-CVRP cannot find any solution with the prescribed
number of vehicles. In this situation, the instance is not included in
the averaged results.

The average percentage deviations from the best known
solutions obtained by the MSG algorithm SPLIT.200.9.25% are
small: the average on all test instances is roughly about the

Fig. 2. Solution quality over time for SPLIT.200.9.25% (CVRP). One data-point for each timeout value. Lines are mere guides to the eyes.

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566560
0.4%, whereas the largest average deviation is 1.3% on the CMT

instances that are the most difficult in the benchmark set. Note
that the average deviations are about five times smaller than the
corresponding deviations for the randomized multistart algo-
rithm. Moreover, the MSG algorithm attains smaller average
standard deviations than the randomized multistart algorithm,
given the intrinsic convergency properties of genetic algorithms.

Five executions of 1 min each are sufficient for the MSG
algorithms to find high quality solutions. A larger computing
time, such as five iterations of 5 min each, can be slightly useful
for the most difficult instances, like the ones in the CMT test set.

To complete our experimental evaluation, we present a
runtime analysis of our best MSG for the CVRP. We decided not
to perform a similar analysis for the multistart because even
with a five-fold increase in computation time the improvements
are negligible. To carry out such an analysis we proceed as
follows: we run SPLIT.200.9.25% 10 times on each instance and
we record the best solution yielded (without any restriction on
the number of vehicles employed). We run these experiments
with a timeout of 30 min. The results from this study are
summarized in Fig. 2. The x-axis reports the timeout, in seconds,
for the experiments. The y-axis reports the average percentage
deviation with respect to the best known solutions on each test
set, namely A, B, P, E and CMT.

This study provides an estimation of how much SPLIT.
200.9.25% is able to exploit longer timeouts. Fig. 2 shows that
running our MSG longer than 400 s does not gain significant
improvements.
4. A master–slave saving heuristic for the fleet size and mix
vehicle routing problem

The FSM-F is a rich CVRP variant, in which a heterogeneous
fleet of vehicles is available. M different types of vehicles can be
used: each type has associated a capacity, qk,kA1, . . . ,M, and a
fixed cost, Fk,kA1, . . . ,M. The number of vehicles for each type is
unlimited. An FSM-F solution consists of a CVRP solution, a set of
feasible routes servicing the customers, and of a fleet assignment,
such as the vehicles performing the routes. The problem objective
is to minimize both the routing costs and the fixed costs
associated with the fleet. For a comprehensive survey on hetero-
geneous vehicle routing problems, the reader can refer to Baldacci
et al. (2008a). In our opinion, the FSM-F is an interesting problem
to test the performance of the MSG algorithm. In fact, this
problem is more general and difficult to solve than the CVRP.
The decisions are not only about routing, but also about the fleet
of vehicles.

In the literature, Golden et al. (1984) proposed a saving-based
algorithm for the FSM-F, in which they considered enhanced
saving expressions. In fact, the Clarke and Wright saving for-
mula (1) does not consider the cost associated with the fleet of
vehicles and, in some instances, it produces very low quality
solutions. The enhanced saving expression, performing more
consistently in Golden et al. (1984), is

sij ¼ c0iþcoj�lcijþdðwÞFuðPðziþzjÞ�zi�zjÞ, ð3Þ

where zi is the load of the route i, P(z) is the capacity of the
smaller vehicle that can serve z, and FuðzÞ the fixed cost of the
vehicle that has a capacity less than of equal to z. The Boolean
parameter dðwÞ equals 1 if w40, 0 otherwise. The parameter l is
responsible for diversifying the search, as the corresponding
parameter in (2). It varies in range [0, 3] and its value is increased
0.1 at each iteration (i.e., 31 executions of the parametric algo-
rithm are performed). Clearly, the saving list resulting from this
saving expression has to be updated whenever a merge is
performed. In fact, when the route i is merged with the route j,
the less expensive vehicle that can serve the merged route is
chosen. Moreover, the quantity zk has to be updated for the
resulting new route k, the savings recalculated for the customers
previously in the routes i or j and the list possibly reordered. This
algorithm results in a larger computing time, both due to these
list rearrangements and for the 31 runs required to tune the
parameter l.

In our experimentation, we do not seek an efficient saving
expression, but an effective master algorithm. The slave algorithm

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566 561
has to remain as simple and fast as possible, whereas decisions
have to be taken by the genetic learning mechanism. This kind of
experiment provides a clear idea of our approach’s performance:
our chromosomes have to carry rich information (i.e., the routing
and the fleet decisions), whereas no optimization is performed at
the slave algorithm level. If the method works, the success is due
to the learning mechanism of the genetic algorithm.

With this approach, our slave algorithm does not consider any
reordering of the saving list and no fixed costs are included in the
saving expression. The slave algorithm evaluates the merge
operations as suggested by the list proposed by the genetic
algorithm and it performs the merge if it is feasible. Whenever
a larger vehicle is required and it is available, it is chosen,
disregarding its fixed cost. In this way, the slave algorithm is
very fast and easy to implement, but the master algorithm is also
responsible for a suitable fleet choice.

The FSM-F slave algorithm terminates its execution when the
merge list is completely analyzed. As a result, as many merges as
possible are implemented and the resulting routes contain a large
number of customers. The final solution consists very likely of few
vehicles with the highest capacity.

Note that a merge operation can decrease the solution quality
(i.e., the merge of two routes may force the use of a larger vehicle
and the associated fixed cost has to be paid, so it may not be
beneficial). As a result, an intermediate solution can be of higher
quality than the final one: for this reason, our slave algorithm
returns the best solution found during the execution.
Fig. 3. Comparison among the FSM-F candidates. Bars denote the median of the

relative deviation between the solution returned by the candidate and the optimal

(or best known) solution.

Table 4
The FSMF experimental results. Entries are the average percentage deviations

from the best known solutions.

5 min 25 min

PARAMS.100.9.3 MULTISTART-HCVRP PARAMS.100.9.3 MULTISTART-HCVRP

G3 0.000 0.213 0.000 0.213

G4 0.196 7.557 0.196 7.557

G5 0.698 4.081 0.698 4.081

G6 0.001 0.079 0.001 0.079

G13 2.709 4.503 2.417 4.503

G14 0.409 0.650 0.409 0.650

G15 2.056 6.336 1.886 6.336

G16 2.622 5.778 2.368 5.778

G17 8.286 7.646 7.332 7.646

G18 5.124 5.638 4.639 5.638

G19 0.686 0.915 0.686 0.915

G20 5.226 6.268 5.226 6.268

Avg. 2.334 4.139 2.155 4.139
4.1. Experimental results

The benchmark set considered is composed of 12 instances
from the literature, originally proposed by Golden et al. (1984).
The instances are available at the web site http://apice54.ingce.
unibo.it/hvrp/testinstances_g.php. We considered the same instances
as in Baldacci et al. (2008a) and Baldacci and Mingozzi (2009) (i.e.,
the ones in which the customer coordinates are provided) and we
refer to the second paper for the updated values of the best known
solutions. Note that the Euclidean distances between customers are
double precision numbers.

The FSM-F represents a challenging problems variant, given
the problem’s intrinsic difficulty. Moreover, the saving algorithm
implemented is the simplest of the ones proposed in Golden et al.
(1984) and does not include in the saving expression any aspect
related to the heterogeneous fleet. We expect a poor performance
from such a slave algorithm. On the other hand, the master
genetic algorithm is expected to detect a better quality fleet, by
permuting the chromosome.

We tested 36 candidates of the master–slave algorithm,
according to the variants described in Section 2. We selected
the best variant among these candidates according to the proce-
dure illustrated in Section 3.1. Fig. 3 shows the comparison
among the candidates.

We decided to choose PARAMS.100.9.3 as the best candidate,
as the one with the significantly lowest median, although
the statistical test could not prove that it was better than
PARAMS.100.9.4.

We compared the best MSG algorithm, namely PARAMS.100.9.3,
with a randomized multistart approach (MULTISTART-HCVRP). The
randomized multistart algorithm consists of repeated iterations of
the most consistent saving algorithm in Golden et al. (1984), such
as the algorithm considering the saving expression (3). At each
iteration, the parameter l is randomly generated in the interval
[0, 5]. The randomized multistart algorithm is iteratively exe-
cuted, as long as the same time limits for the MSG algorithms are
reached (5 and 25 min).

http://apice54.ingce.unibo.it/hvrp/testinstances_g.php
http://apice54.ingce.unibo.it/hvrp/testinstances_g.php

Fig. 4. Solution quality over time for PARAMS.100.9.3 (FSM-F). One data-point for each timeout value. Lines are mere guides to the eyes.

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566562
Results are reported in Table 4. For each instance and for each
algorithm adopted, the average percentage deviation with respect
to the optimal solution is provided. The last line of the table
displays the column averages.

The MSG algorithms produce solutions 2–2.5% away from the
optimal ones, given that this problem is more difficult than the
CVRP. It is interesting to note that the MULTISTART-HCVRP approach
attains solutions that are on average 4.1% away from the optimal,
so the genetic learning mechanism is able to reduce the gap by
almost 2% with respect to a method in which learning mechan-
isms are not adopted. Note that a longer algorithm execution
(i.e., 25 min of computing time) provides a marginal benefit on
the average solution quality.

We conclude this section by presenting the results of the
runtime analysis on PARAMS.100.9.3. We did not perform such
analysis on the multistart because Table 4 shows no improvement
over a five-fold increase in execution time. This study was
performed in the same manner as for the CVRP: we recorded
the best solution returned by PARAMS.100.9.3 in 10 runs on each
instance and we set a timeout of 30 min. Fig. 4 summarizes these
results. The x-axis reports the timeout, in seconds, for the
experiments. The y-axis reports percentage deviation with respect
to the best known solution averaged over our 12 benchmark
instances.

The chart show that, unlike SPLIT.200.9.25%, PARAMS.100.9.3 is
able to take advantage of longer run times.
5. A master–slave Esau–Williams algorithm

The capacitated minimum spanning tree problem (CMSTP) is
a well-known NP-hard combinatorial optimization problem
(see Papadimitriou, 1978), which may be defined as follows.
Consider an undirected graph G¼(V, E), where V¼{0, y, n} is
the vertex set and E¼ fði,jÞ : i,jAVg is the edge set. Vertex 0 is the
root, whereas the remaining vertices iAV\f0g have a non-negative
demand di. Each edge ði,jÞAE is associated with a non-negative
cost cij and the edges incident with the root are called gates. The
CMSTP calls for the determination of a minimum cost spanning
tree such that the demand served on each subtree linked to the
root through a gate does not exceed a given maximum capacity Q.
The CMSTP arises in real world telecommunication network
design problems and in the last decades it has attracted the
attention of many researchers, both for its theoretical and
practical relevance. Several exact and heuristic algorithms
(including approximation algorithms with performance guaran-
tees) have been proposed to solve it.

The Esau–Williams algorithm (EW) is the first method pro-
posed in the literature to solve the CMSTP and it is a constructive
saving-based heuristic similar to the well-known Clarke and
Wright algorithm (Clarke and Wright, 1964). This algorithm is
flexible, fast and easy to implement; these characteristics make
the algorithm an excellent candidate to solve real world complex
instances as well as a building block for metaheuristic approaches
(see Amberg et al., 1996; Patterson et al., 1999; Patterson and
Pirkul, 2000 and Ahuja et al., 2003). Given the interest in this
algorithm, several enhancements were presented in the literature
to improve its performance. A recent and effective enhancement
is the parametric algorithm presented in Öncan and Altınel
(2009), where the improvement of the solution quality comes at
a cost of extra computational time requirement, since a large
number of parameter values is used within a brute force enu-
merative approach.

In the EW algorithm, an initial solution in which each vertex is
directly connected to the root is fed to the algorithm. At each
iteration two subtrees are selected, the merging of which results
in the maximum saving and the capacity constraint is not violated
by the resulting tree. A merge operation on two subtrees consists
of removing the gate with the higher cost and introducing the
least-cost edge connecting the subtrees. More precisely, the
saving obtained by merging subtrees A and B can be computed
as follows:

sAB ¼maxfc0A,c0Bg�cAB, ð4Þ

where c0A ¼minfc0i,iAAg and c0B ¼minfc0j,jABg are the costs of
the gates of subtrees A and B, and c ij ¼minfcij,iAA,jABg is the cost

Fig. 5. Comparison among the CMSTP candidates. Bars denote the median of the

relative deviation between the solution returned by the candidate and the optimal

(or best known) solution.

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566 563
of the edge connecting the subtrees. If sAB40, the merge opera-
tion is convenient and if

P
iAA[BdirQ the merge is feasible. Note

that after a merge operation, the saving values have to be updated
and the most promising couple of subtrees is considered as the
merge candidate for the next iteration. This algorithm is simple,
easy to implement and its computational complexity is Oðn2lognÞ

(see Jothi and Raghavachari, 2004).
In order to improve the performance of the Esau–Williams

algorithm, different enhancements have been proposed in the
literature. Jothi and Raghavachari (2004) proposed a parametric
Esau–Williams enhancement, in which the saving expression
includes a new term considering the bin packing nature of the
CMSTP. The new saving expression is the following:

sAB ¼maxfc0A,c0Bg�cAB

X
iAA

di

 !d

, ð5Þ

where d is a parameter in the range 0–1. The modified saving
formula favors the merge operations in which the first subtree is
servicing the largest possible demand.

Following a similar reasoning, Öncan and Altınel (2009)
proposed a more sophisticated saving formula, in which three
parameters are involved:

sAB ¼maxfc0A,c0Bg�acABþbjc0A�c0Bjþg
X

iAA[B

di

 !,
d, ð6Þ

where d is the average demand. Note that this saving formula
mimics the one considered by Öncan and Altınel (2005) in
enhancing the performance of the Clarke and Wright algorithm.
The performance of this saving expression has been tested by
tuning the parameters through an enumerative procedure. The
parameter a variation range is [0.1, 2], the parameters b,g
variation range is [0, 2] and the increasing step for each para-
meter is 0.1. The resulting number of parameter vectors ða,b,gÞ
considered is 8820, thus the computational time required is
increased by almost four orders of magnitude. However, the
improvement obtained with respect to the Esau–Williams algo-
rithm is remarkable.

5.1. Experimental results

We tested our approach using the same test instances as
in Öncan and Altınel (2009), which represent a classical bench-
mark set for the CMSTP. Namely, the instances we solved are from
the tc40, te40, tc80, te80, cm50, cm100 and cm200 test sets, where
the first part of the set names illustrate the instance character-
istics. The instances denoted as tc have the root located in a
central position with respect to the other vertices and each vertex
requires unit demand. The te instances have the root in an
eccentric position with respect to the other vertices (i.e., in a
corner) and each vertex requires unit demand. The cm set has
customers with non-unit demand. The second part of the instance
set name denotes the number of vertices involved. Each set
consists of 15 instances: for each capacity value, 5 instances are
given. The instances from the same set, with the same capacity
and same number of customers are identified by their relative
number, denoted by Id., in the following.

All the instances are included in the ORLIB library, at the web
address http://people.brunel.ac.uk/�mastjjb/jeb/info.html. The
best known solutions are the ones reported by Öncan and
Altınel (2009), except for the results for the sets cm50, 100 and
200 with Q¼200 and 400. These instances have been recently
considered by Uchoa et al. (2008) and some of the solution values
were updated.

We implemented 36 versions of the master–slave algorithm,
according to the variants described in Section 2. We selected the
best variant among these candidates according to the procedure
illustrated in Section 3.1. Fig. 5 shows the comparison among the
candidates.

The comparison shows that the group of variants PARAMS.100 is
the one with the significantly best performance. The statisti-
cal test could not distinguish between PARAMS.200.9.3 and
PARAMS.200.9.4; however, we chose the first one because it has
the lowest median relative cost. PARAMS.200.9.3 generates the
initial population according to Eq. (6).

The best MSG algorithm, namely PARAMS.200.9.3, is compared
with a randomized multistart approach, namely MULTISTART-CMST.
The MULTISTART-CMST algorithm is based on the iterative execution
of the Öncan and Altınel (2009) parametric Esau and Williams
algorithm. The three parameters of the saving expression (6) are
randomly generated at each iteration, by considering a uniform
distribution in the interval [0, 5]. The randomized multistart
algorithm is executed for the same overall time as for the MSG
algorithm, i.e., 5 and 25 min.

Results are summarized in Table 5. The average percentage
deviations from the best known solutions and the average

http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

Table 5
The CMST computational results. Entries are the average percentage deviations from the best known solutions.

5 min 25 min

PARAMS.200.9.3 MULTISTART-CMST PARAMS.200.9.3 MULTISTART-CMST

tc40Q3 0.105 (0.151) 1.384 (0.614) 0.028 (0.056) 1.384 (0.614)

tc40Q5 0.643 (0.464) 1.527 (0.271) 0.643 (0.464) 1.527 (0.271)

tc40Q10 0.000 (0.000) 0.320 (0.640) 0.000 (0.000) 0.320 (0.640)

tc80Q5 3.381 (0.808) 4.164 (0.855) 2.667 (0.852) 4.001 (0.610)

tc80Q10 1.963 (0.999) 2.959 (0.919) 1.387 (0.884) 2.890 (0.836)

tc80Q20 0.710 (0.620) 0.766 (0.969) 0.71 (0.620) 0.766 (0.969)

te40Q3 �0.036 (0.072) 0.780 (0.516) �0.036 (0.072) 0.780 (0.516)

te40Q5 0.318 (0.399) 2.354 (0.755) 0.217 (0.434) 2.354 (0.755)

te40Q10 0.584 (0.657) 2.628 (1.709) 0.584 (0.657) 2.628 (1.709)

te80Q5 0.771 (0.400) 1.303 (0.564) 0.544 (0.371) 1.248 (0.544)

te80Q10 2.578 (0.501) 3.764 (0.825) 2.161 (0.229) 3.715 (0.864)

te80Q20 1.093 (1.224) 3.711 (2.418) 0.790 (1.116) 3.549 (2.356)

cm50Q200 0.567 (0.633) 1.819 (1.272) 0.546 (0.650) 1.819 (1.272)

cm50Q400 1.271 (0.835) 2.862 (0.888) 1.138 (0.778) 2.862 (0.888)

cm50Q800 1.883 (0.903) 2.997 (1.510) 1.605 (0.840) 2.997 (1.510)

cm100Q200 14.888 (1.814) 20.043 (2.424) 11.918 (1.764) 19.438 (3.068)

cm100Q400 6.017 (1.291) 8.908 (1.744) 5.297 (1.315) 7.649 (0.806)

cm100Q800 1.101 (0.480) 1.977 (1.170) 0.986 (0.522) 1.759 (0.868)

cm200Q200 27.005 (2.485) 25.441 (3.056) 22.36 (1.675) 24.863 (2.716)

cm200Q400 20.475 (4.415) 21.281 (4.272) 15.173 (3.454) 19.062 (3.803)

cm200Q800 8.837 (2.573) 8.453 (3.450) 4.756 (1.758) 7.274 (2.769)

Avg. 4.484 (1.034) 5.688 (1.469) 3.499 (0.881) 5.375 (1.352)

Fig. 6. Solution quality over time for PARAMS.200.9.3 (CMSTP). One data-point for each timeout value. Lines are mere guides to the eyes.

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566564
standard deviations are reported for each test set and for the
PARAMS.200.9.3 and the MULTISTART-CMST algorithms. Moreover, the
last line of the table displays the column averages.

The PARAMS.200.9.3 algorithm performs better than the MULTISTART-
CMST approach, on average. The deviations on each instance set are
smaller than those reported in Öncan and Altınel (2009) and
in Battarra et al. (to appear), where the parametric EW algorithm
is tuned by a genetic-based heuristic.

We observe that the PARAMS.200.9.3 algorithm does not per-
form better than the MULTISTART-CMST when applied to the cm200

instances in the case of computing time equal to 5 min. The
MULTISTART-CMST algorithm is not able to make any genetic
algorithm iteration in executions of 1 min, because the slave
algorithm needs a longer computing time on large-sized
instances. The single minute is completely used up to evaluate
the fitness of the initial population and the PARAMS.200.9.3
approach turns out to be a randomized iterative algorithm itself
(i.e., the performance is set by the quality of the initial
population).

When the computing time of each execution is increased to
5 min (i.e., 25 min in total), the PARAMS.200.9.3 algorithm improves
its performance by roughly 1%, whereas the MULTISTART-CMST algo-
rithm only by about 0.3% (note that the improvement is mostly to
be ascribed to the performance achieved on the large-sized

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566 565
instances). Even a few iterations of the genetic algorithm (i.e.,
roughly 150–250 iterations per 5-min execution, on the cm200

instances) improve the solution quality substantially. In smaller
instances, the PARAMS.200.9.3 algorithm can iterate a sufficient
number of times even in 1 min of computing time (i.e., roughly
700–800 and 4200–4500 iteration per min execution, on cm50

and cm100, respectively) and the algorithm drastically outper-
forms MULTISTART-CMST.

A runtime analysis of PARAMS.200.9.3 concludes this section.
The experimental procedure is the same as the one employed for
the previous two problems. Fig. 6 summarizes these results. The
x-axis reports the timeout, in seconds, for the experiments. The
y-axis reports percentage deviation with respect to the best
known solution averaged over five test sets as shown in Fig. 6.
In the chart we put together all tc instances because performances
do not significantly differ from one another over the possible
capacity values. The same is true for te instances. On the contrary,
cm instances show greater variability as both capacity Q and
computation time increase.

Even with short execution times, PARAMS.200.9.3 already attains a
good performance on tc, te and cm50 instances. Longer timeouts do
not allow it to close the gap to optimality. The noticeable sudden
increase in solution quality in cm100 and 200 instances around 150 s
timeout is a consequence of the large computation time required by
those instances. As stated before, a short runtime does not allow
PARAMS.200.9.3 to perform any iterations of the high-level genetic
algorithm and performances are the same as a simple randomized
multistart. As soon as runtime grows, the genetic algorithm has the
possibility to perform some iterations, so the performance quickly
increases. Longer execution times also mean a sizable improvement:
around 7% on cm200 and around 3% on cm100.
6. Conclusions

In this paper, we have introduced an MSG algorithm able to
improve the performance of any saving algorithm. The genetic
master algorithm evolves toward the most suitable saving lists, or
chromosomes, and the saving slave algorithm computes the
solution quality, based on the saving list. This approach is general
and can be applied to any saving algorithm.

We have tested the performance of the MSG algorithm by
considering three NP-hard problems from the literature, namely
the CVRP, the FSMF, and the CMSTP. Extensive experimental
testings and comparison against the state-of-the-art results have
showed the robustness of the approach and demonstrated that
the master algorithm evolves to high quality solutions within
reasonable computing times.
Acknowledgement

The authors would like to thank the Writing Center of Kadir Has
University for their precious contribution in revising this manuscript.
Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.engappai.2011.01.007.
References

Ahuja, R.K., Orlin, J.B., Sharma, D., 2003. A composite very large-scale neighbor-
hood structure for the capacitated minimum spanning tree problem. Opera-
tions Research Letters 31, 185–194.
Amberg, A., Domschke, W., Voss, S., 1996. Capacitated minimum spanning trees:
algorithms using intelligent search. In: Combinatorial Optimization: Theory
and Practice, pp. 9–39.

Augerat, P., Belenguer, J.M., Benavent, E., Corberan, A., Naddef, D., Rinaldi, G., 1995.
Computational results with a branch and cut code for the capacitated vehicle
routing problem. Technical Report RR 949-M, University Joseph Fourier,
Grenoble, France.

Baldacci, R., Mingozzi, A., 2009. A unified exact method for solving different
classes of vehicle routing problems. Mathematical Programming 120,
347–380.

Baldacci, R., Battarra, M., Vigo, D., 2008a. Routing a Heterogeneous Fleet of
Vehicles. Springer US (Chapter 1, pp. 3–27).

Battarra, M., Golden, B.L., Vigo, D., 2008b. Tuning a parametric Clarke–Wright
heuristic for vehicle routing through a genetic algorithm. Journal of the
Operational Research Society 59, 1568–1572.

Battarra, M., Öncan, T., Altinel, K._I., Golden, B., Vigo, D., Phillips, E., in press. An
evolutionary approach for tuning parametric Esau and Williams heuristics.
Journal of the Operational Research Society.

Begur, S.V., Miller, D.M., Weaver, J.R., 1997. An integrated spatial DSS for
scheduling and routing home-health-care nurses. Interfaces 27, 35–48.

Cetinkaya, S., Uster, H., Easwaran, G., Keskin, B.B., 2009. An integrated outbound
logistics model for Frito-lay: coordinating aggregate-level production and
distribution decisions. Interfaces 39, 460–475.

Chan, Y., Baker, S.F., 2005. The multiple depot, multiple traveling salesmen facility-
location problem: vehicle range, service frequency, and heuristic implementa-
tions. Mathematical and Computer Modelling 41, 1035–1053.

Chau, K.W., 2004. A two-stage dynamic model on allocation of construction
facilities with genetic algorithm. Automation in Construction 13, 481–490.

Christofides, N., Eilon, S., 1969. An algorithm for the vehicle routing dispatching
problem. Operational Research Quarterly 20, 309–318.

Christofides, N., Mingozzi, A., Toth, P., 1979. The vehicle routing problem. In:
Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (Eds.), Combinatorial Optimi-
zation. Wiley, Chichester.

Clarke, G., Wright, J.W., 1964. Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research 12, 568–581.

Conover, W.J., 1999. Practical Nonparametric Statistics, third ed. John Wiley & Sons.
Corominas, A., Garcia-Villoria, A., Pastor, R., 2010. Fine-tuning a parametric Clarke and

Wright heuristic by means of EAGH (empirically adjusted greedy heuristics).
Journal of the Operational Research Society 61, 1309–1314.

Daskin, M.S., 2002. Private communication.
de Souza, M.C., Duhamel, C., Ribeiro, C.C., 2004. A grasp heuristic for the

capacitated minimum spanning tree problem using a memory-based local
search strategy. In: Metaheuristics: computer decision-making. Kluwer
Academic Publishers, Norwell, MA, USA, pp. 627–657.

Doyuran, T., Catay, B., 2011. A robust enhancement to the Clarke–Wright savings
algorithm. Journal of the Operational Research Society 62, 223–231.

El-Araby, E.E., Yorino, N., Sasaki, H., 2003. A two level hybrid ga/slp for facts
allocation problem considering voltage security. International Journal of
Electrical Power & Energy Systems 25, 327–335.

Erkut, E., Myroon, T., Strangway, K., 2000. Transalta redesigns its service-delivery
network. Interfaces 30, 54–69.

Esau, L.R., Williams, K.C., 1966. On teleprocessing system design. IBM Systems
Journal 5, 142–147.

Faulin, J., Sarobe, P., Simal, J., 2005. The DSS LOGDIS optimizes delivery routes for
FRILAC’s frozen products. Interfaces 35, 202–214.

Faulin, J., Gilibert, M., Juan, A.A., Vilajosana, X., Ruiz, R., 2008. Sr-1: a simulation-
based algorithm for the capacitated vehicle routing problem. In: WSC ’08:
Proceedings of the 40th Conference on Winter Simulation. Winter Simulation
Conference, pp. 2708–2716.

Fleischmann, B., 1990. The vehicle routing problem with multiple use of vehicles.
Technical report, Fachbereich Wirschaftswissenschaften, Universitat Hamburg.

Gajpal, Y., Abad, P., 2010. Saving-based algorithms for vehicle routing problem
with simultaneous pickup and delivery. Journal of the Operational Research
Society 61, 1498–1509.

Gaskell, T.J., 1967. Bases for vehicle fleet scheduling. Operational Research
Quarterly 18, 281–295.

Georgopoulou, C.A., Giannakoglou, K.C., 2009. Two-level two-objective evolution-
ary algorithms for solving unit commitment problems. Applied Energy 86,
1229–1239.

Golden, B.L., Magnanti, T.L., Nguyen, H.Q., 1977. Implementing vehicle routing
algorithms. Networks 2, 113–148.

Golden, B.L., Assad, A.A., Levy, L., Gheysens, F., 1984. The fleet size and mix vehicle
routing problem. Computers & Operations Research 11, 49–66.

Gronalt, M., Hartl, R.F., Reimann, M., 2003. New savings based algorithms for time
constrained pickup and delivery of full truckloads. European Journal of
Operational Research 151, 520–535.

Husband, P., Mill, F., 1991. Simulated coevolution as the mechanism for emergent
planning and scheduling. In: Belew, R., Booker, L. (Eds.), Proceedings of the
Fourth International Conference on Genetic Algorithms, pp. 264–270.

Jothi, R., Raghavachari, B., 2004. Revisiting Esau–Williams’ algorithm: on the
design of local access networks. In: Proceedings 7th INFORMS Telecommuni-
cations Conference (Telecom), Boca Raton, Florida, pp. 104–107.

Juan, A.A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B., 2010. On the use of
Monte Carlo simulation, cache and splitting techniques to improve the Clarke
and Wright savings heuristics. Journal of the Operational Research Society,
published online, doi:10.1057/jors.2010.29.

10.1016/j.engappai.2011.01.007
10.1057/jors.2010.29

M. Battarra et al. / Engineering Applications of Artificial Intelligence 24 (2011) 555–566566
Kant, G., Jacks, M., Aantjes, C., 2008. Coca-cola enterprises optimizes vehicle routes
for efficient product delivery. Interfaces 38, 40–50.

Khajavirad, A., Michalek, J., Simpson, T., 2009. An efficient decomposed multi-
objective genetic algorithm for solving the joint product platform selection
and product family design problem with generalized commonality. Structural
and Multidisciplinary Optimization 39, 187–201.

Lacomme, P., Prins, C., Ramdane-Cherif, W., 2005. Evolutionary algorithms for
periodic arc routing problems. European Journal of Operational Research 165,
535–553.

Van Landeghem, H.R.G., 1988. A bi-criteria heuristic for the vehicle routing
problem with time windows. European Journal of Operational Research 36,
217–226.

Laporte, G., Gendreau, M., Potvin, J.-Y., Semet, F., 2000. Classical and modern
heuristics for the vehicle routing problem. International Transactions in
Operational Research 7, 285–300.

Lee, Y.-J., Atiquzzaman, M., 2005. Least cost heuristic for the delay-constrained
capacitated minimum spanning tree problem. Computer Communications 28,
1371–1379.

Öncan, T., Altınel, I.K., 2009. Parametric enhancements of the Esau–Williams
heuristic for the capacitated minimum spanning tree problem. Journal of the
Operational Research Society 60, 259–267.

Öncan, T., Altınel, K., 2005. A new enhancement of the Clarke and Wright savings
heuristic for the capacitated vehicle routing problem. Journal of the Opera-
tional Research Society 56, 954–961.

Papadimitriou, C.H., 1978. The complexity of the capacitated tree problem.
Networks 8, 217–230.
Patterson, R., Pirkul, H., 2000. Heuristic procedure neural networks for the CMST
problem. Computers and Operations Research 27, 1171–1200.

Patterson, R., Pirkul, H., Rolland, E., 1999. A memory adaptive reasoning technique

for solving the capacitated minimum spanning tree problem. Journal of
Heuristics 5, 159–180.

Potter, M.A., De Jong, K.A., 2000. Cooperative coevolution: an architecture for
evolving coadapted subcomponents. Evolutionary Computation 8 (1), 1–29.

Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-Cumplido, M., Bousoňo-Calzón, C.,
2005. A two-phase heuristic evolutionary algorithm for personalizing course
timetables: a case study in a spanish university. Computers & Operations

Research 32, 1761–1776.
Shestak, V., Chong, E.K.P., Siegel, H.J., Maciejewski, A.A., Benmohamed, L., Wang, I.-J.,

Daley, R., 2008. A hybrid branch-and-bound and evolutionary approach for
allocating strings of applications to heterogeneous distributed computing systems.

Journal of Parallel and Distributed Computing 68, 410–426.
Toth, P., Vigo, D., 2001. The Vehicle Routing Problem. SIAM, Philadelphia, PA.
Uchoa, E., Fukasawa, R., Lysgaard, J., Pessoa, A., Poggi da Arag~ao, M., Andrade, D.,

2008. Robust branch-cut-and-price for the capacitated minimum spanning
tree problem over a large extended formulation. Mathematical Programming,

Series A 112, 443–472.
Yang, J., Zhang, M., He, B., Yang, C., 2009. Bi-level programming model and hybrid

genetic algorithm for flow interception problem with customer choice.
Computers & Mathematics with Applications 57, 1985–1994.

Yellow, P., 1970. A computational modification to the savings method of vehicle
scheduling. Operational Research Quarterly 21, 281–283.

	Leveraging saving-—based algorithms by master-slave genetic algorithms
	Introduction
	The master-slave genetic algorithm
	Genetic master-slave implementations

	A master-slave Clarke and Wright algorithm
	Experimental results

	A master-slave saving heuristic for the fleet size and mix vehicle routing problem
	Experimental results

	A master-slave Esau-Williams algorithm
	Experimental results

	Conclusions
	Acknowledgement
	Supplementary data
	References

