Advanced Search

Show simple item record

dc.contributor.authorNijholt, Eddie
dc.contributor.authorOcampo-Espindola, Jorge Luis
dc.contributor.authorEroglu, Deniz
dc.contributor.authorKiss, Istvan Z.
dc.contributor.authorPereira, Tiago
dc.date.accessioned2023-10-19T15:12:08Z
dc.date.available2023-10-19T15:12:08Z
dc.date.issued2022
dc.identifier.issn2041-1723
dc.identifier.urihttps://doi.org/10.1038/s41467-022-32282-4
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5353
dc.description.abstractNetworks of weakly coupled oscillators had a profound impact on our understanding of complex systems. Studies on model reconstruction from data have shown prevalent contributions from hypernetworks with triplet and higher interactions among oscillators, in spite that such models were originally defined as oscillator networks with pairwise interactions. Here, we show that hypernetworks can spontaneously emerge even in the presence of pairwise albeit nonlinear coupling given certain triplet frequency resonance conditions. The results are demonstrated in experiments with electrochemical oscillators and in simulations with integrate-and-fire neurons. By developing a comprehensive theory, we uncover the mechanism for emergent hypernetworks by identifying appearing and forbidden frequency resonant conditions. Furthermore, it is shown that microscopic linear (difference) coupling among units results in coupled mean fields, which have sufficient nonlinearity to facilitate hypernetworks. Our findings shed light on the apparent abundance of hypernetworks and provide a constructive way to predict and engineer their emergence.en_US
dc.description.sponsorshipFAPESP Cemeai Grant [2013/07375-0]; Newton Advanced Fellow of the Royal Society [NAF\R1\180236]; Serrapilheira Institute [Serra-1709-16124]; TUBITAK [118C236]; BAGEP Award of the Science Academy; CONACYT; National Science Foundation [CHE-1900011]en_US
dc.description.sponsorshipWe thank Sajjad Bakrani, Zachary G. Nicolaou, Marcel Novaes, Edmilson Roque, Robert Ronge and Jeroen Lambfor enlightening discussions. T.P. was supported in part by FAPESP Cemeai Grant No. 2013/07375-0 and is a Newton Advanced Fellow of the Royal Society NAF\R1\180236. T.P. and E.N. were partially supported by Serrapilheira Institute (Grant No. Serra-1709-16124). D.E. was supported by TUBITAK Grant No. 118C236 and the BAGEP Award of the Science Academy. JLO-E acknowledges financial support from CONACYT. I.Z.K. acknowledges support from National Science Foundation (grant CHE-1900011).en_US
dc.language.isoengen_US
dc.publisherNature Portfolioen_US
dc.relation.ispartofNature Communicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDynamicsEn_Us
dc.titleEmergent hypernetworks in weakly coupled oscillatorsen_US
dc.typearticleen_US
dc.authoridEroglu, Deniz/0000-0001-6725-6949
dc.authoridPereira, Tiago/0000-0001-7866-880X
dc.authoridNijholt, Eddie/0000-0001-5984-4572
dc.authoridPereira, Tiago/0000-0001-5934-4375
dc.identifier.issue1en_US
dc.identifier.volume13en_US
dc.departmentN/Aen_US
dc.identifier.wosWOS:000890754500001en_US
dc.identifier.doi10.1038/s41467-022-32282-4en_US
dc.identifier.scopus2-s2.0-85136009025en_US
dc.institutionauthorN/A
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidEroglu, Deniz/GVS-9233-2022
dc.authorwosidPereira, Tiago/G-9620-2019
dc.identifier.pmid35977934en_US
dc.khas20231019-WoSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record