Browsing by Author "Bathaei, Mohammad Javad"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Review Citation Count: 18Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications(Wiley, 2023) Istıf, Emın; Bathaei, Mohammad Javad; Istif, Emin; Karimi, Seyed Nasir Hosseini; Beker, LeventRecent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.Article Citation Count: 0Investigation of dynamic micromechanical properties of biodegradable elastic material by continuous stiffness measurement analysis(Sage Publications Ltd, 2023) Istıf, Emın; Istif, Emin; Bathaei, Mohammad Javad; Beker, LeventMicromechanical properties of polymeric materials play a critical role in various biological applications in terms of their biocompatibility and mechanical durability. Apart from material properties such as modulus and density, viscoelastic properties play a crucial role during the design and fabrication of devices. Here, we investigated the viscoelastic properties of poly (glycerol sebacate) (PGS), a widely used bioresorbable elastic material, through the nanoindentation technique, configured by the continuous stiffness measurement (CSM) method at frequencies from 10 Hz to 50 Hz. The results revealed that the storage modulus (E') depends on the test frequency and cannot be ignored as the results showed significant changes. Additionally, increasing the curing temperature of PGS specimens between 150 to 170 & DEG;C allows modifying the storage modulus of samples between 0.52 MPa and 1.05 MPa at 10 Hz. The results were also confirmed using the dynamic mechanical measurements to validate the reliability of the CSM nanoindentation technique.Article Citation Count: 19Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors(Wiley-V C H Verlag Gmbh, 2023) Istıf, Emın; Singh, Rahul; Mirzajani, Hadi; Istif, Emin; Akhtar, Muhammad Junaid; Abbasiasl, Taher; Beker, LeventBiodegradable sensors based on integrating conductive layers with polymeric materials in flexible and stretchable forms have been established. However, the lack of a generalized microfabrication method results in large-sized, low spatial density, and low device yield compared to the silicon-based devices manufactured via batch-compatible microfabrication processes. Here, a batch fabrication-compatible photolithography-based microfabrication approach for biodegradable and highly miniaturized essential sensor components is presented on flexible and stretchable substrates. Up to 1600 devices are fabricated within a 1 cm(2) footprint and then the functionality of various biodegradable passive electrical components, mechanical sensors, and chemical sensors is demonstrated on flexible and stretchable substrates. The results are highly repeatable and consistent, proving the proposed method's high device yield and high-density potential. This simple, innovative, and robust fabrication recipe allows complete freedom over the applicability of various biodegradable materials with different properties toward the unique application of interests. The process offers a route to utilize standard micro-fabrication procedures toward scalable fabrication of highly miniaturized flexible and stretchable transient sensors and electronics.Article Citation Count: 2A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid(Wiley-v C H verlag Gmbh, 2023) Istıf, Emın; Mirlou, Fariborz; Mirzajani, Hadi; Bathaei, Mohammad Javad; Istif, Emin; Shomalizadeh, Narges; Beker, LeventDermal interstitial fluid (ISF) is emerging as a rich source of biomarkers that complements conventional biofluids such as blood and urine. However, the impact of ISF sampling in clinical applications has been limited owing to the challenges associated with extraction. The implementation of microneedle-based wearable devices that can extract dermal ISF in a pain-free and easy-to-use manner has attracted growing attention in recent years. Here, a fully integrated touch-activated wearable device based on a laser-drilled hollow microneedle (HMN) patch for continuous sampling and sensing of dermal ISF is introduced. The developed platform can produce and maintain the required vacuum pressure (as low as approximate to -53 kPa) to collect adequate volumes of ISF (approximate to 2 mu L needle-1 h-1) for medical applications. The vacuum system can be activated through a one-touch finger operation. A parametric study is performed to investigate the effect of microneedle array size, vacuum pressure, and extraction duration on collected ISF. The capability of the proposed platform for continuous health monitoring is further demonstrated by the electrochemical detection of glucose and pH levels of ISF in animal models. This HMN-based system provides an alternative tool to the existing invasive techniques for ISF collection and sensing for medical diagnosis and treatment. A fully-integrated touch-activated wearable device is developed for continuous sampling and electrochemical analysis of interstitial fluid. The elastic self-recovery of the vacuum generation system enables a wide range of negative pressures and extraction rates. The developed device can successfully detect glucose and pH levels and holds the potential for continuous sensing of multiple biomarkers in extracted interstitial fluid.imageArticle Citation Count: 1A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid (Adv. Mater. 2/2024)(Wiley-v C H verlag Gmbh, 2024) Istıf, Emın; Mirlou, Fariborz; Mirzajani, Hadi; Bathaei, Mohammad Javad; Istif, Emin; Shomalizadeh, Narges; Beker, Levent[No Abstract Available]