Browsing by Author "Bilget Guven, Ebru"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0Newly Synthesized 6-Substituted Piperazine/Phenyl-9-cyclopentyl Containing Purine Nucleobase Analogs Act as Potent Anticancer Agents and Induce Apoptosis via Inhibiting Src in Hepatocellular Carcinoma Cells(Royal Soc Chemistry, 2023) Bilget Guven, Ebru; Durmaz Sahin, Irem; Altiparmak, Duygu; Servili, Burak; Essiz, Sebnem; Cetin-Atalay, Rengul; Tuncbilek, MeralNewly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl-containing purine nucleobase analogs were tested for their in vitro anticancer activity against human cancer cells. Compounds 15, 17-24, 49, and 56 with IC50 values less than 10 mu M were selected for further examination on an enlarged panel of liver cancer cell lines. Experiments revealed that compound 19 utilizes its high cytotoxic potential (IC50 < 5 mu M) to induce apoptosis in vitro. Compound 19 displayed a KINOMEscan selectivity score S35 of 0.02 and S10 of 0.01 and demonstrated a significant selectivity against anaplastic lymphoma kinase (ALK) and Bruton's tyrosine kinase (BTK) over other kinases. Compounds 19, 21, 22, 23, and 56 complexed with ALK, BTK, and (discoidin domain-containing receptor 2) DDR2 were analyzed structurally for binding site interactions and binding affinities via molecular docking and molecular dynamics simulations. Compounds 19 and 56 displayed similar interactions with the activation loop of the kinases, while only compound 19 reached toward the multiple subsites of the active site. Cell cycle and signaling pathway analyses exhibited that compound 19 decreases phosho-Src, phospho-Rb, cyclin E, and cdk2 levels in liver cancer cells, eventually inducing apoptosis.Review Citation Count: 28Transducer Technologies for Biosensors and Their Wearable Applications(Mdpi, 2022) Polat, Emre Ozan; Cetin, M. Mustafa; Tabak, Ahmet Fatih; Bilget Guven, Ebru; Uysal, Bengu Ozugur; Arsan, Taner; Kabbani, AnasThe development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.