Browsing by Author "Hantush,M.M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - Scopus: 30Nutrient Dynamics in Flooded Wetlands. I: Model Development(2013) Hantush,M.M.; Kalin,L.; Isik,S.; Yucekaya,A.Wetlands are rich ecosystems recognized for ameliorating floods, improving water quality, and providing other ecosystem benefits. This part of a two-paper series presents a relatively detailed process-based model for nitrogen and phosphorus retention, cycling, and removal in flooded wetlands. The model captures salient features of nutrient dynamics and accounts for complex interactions among various physical, biogeochemical, and physiological processes. The model simulates oxygen dynamics and the impact of oxidizing and reducing conditions on nitrogen transformation and removal, and approximates phosphorus precipitation and releases into soluble forms under aerobic and anaerobic conditions, respectively. Nitrogen loss pathways of volatilization and denitrification are explicitly accounted for on a physical basis. Processes in surface water and the bottom-active soil layer are described by a system of coupled ordinary differential equations. A finite-difference numerical scheme is implemented to solve the coupled system of ordinary differential equations for various multiphase constituents' concentrations in the water column and wetland soil. The numerical solution algorithm is verified against analytical solutions obtained for simplified transport and fate scenarios. Quantitative global sensitivity analysis revealed consistent model performance with respect to critical parameters and dominant nutrient processes. A hypothetical phosphorus loading scenario shows that the model is capable of capturing the phenomenon of phosphorus precipitation and release under oxic and anoxic conditions, respectively. © 2013 American Society of Civil Engineers.Article Citation - Scopus: 11Nutrient Dynamics in Flooded Wetlands. Ii: Model Application(2013) Kalin,L.; Hantush,M.M.; Isik,S.; Yucekaya,A.; Jordan,T.In this paper, the authors applied and evaluated the wetland nutrient model that was described in Paper I. Hydrologic and water quality data from a small restored wetland located on Kent Island,Maryland, which is part of the Delmarva Peninsula on the eastern shores of the Chesapeake Bay, was used for this purpose. The model was assessed through various methods against the observed data in simulating nitrogen (N), phosphorus (P), and total suspended sediment (TSS) dynamics. Time series plots of observed and simulated concentrations and loads generally compared well; better performance was demonstrated with dissolved forms of nitrogen, i.e., ammonia and nitrate. Through qualitative and quantitative sensitivity analysis, dominant processes in the study wetland were scrutinized. Nitrification, plant uptake, and mineralization were the most important processes affecting ammonia. Denitrification in the sediment layer and diffusion to bottom sediments were identified as key processes for nitrate. Settling and resuspension were the most important processes for particulate matter (organic N, sediment) and sediment-bound phosphate (inorganic P). Order of parameter sensitivities and dominant processes exhibited seasonality. Uncertainty bands created from Monte Carlo simulations showed that parameter uncertainty is relatively small; however, uncertainty in the wetland inflow rates and loading concentrations have much more bearing on model predictive uncertainty. N, P, and TSS mass balance analysis showed that the wetland removed approximately 23, 33, and 46%, respectively, of the incoming load (runoff + atmospheric deposition) over the two-year period, with more removal in year 1 (34, 43, and 55%, respectively), which had a long stretch of a dry period. The developed model can be employed for exploring wetland response to various climatic and input conditions, and for deeper understanding of key processes in wetlands. © 2013 American Society of Civil Engineers.