Browsing by Author "Kassa, Sankit"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Article Citation - WoS: 30Citation - Scopus: 34A Cost- and Energy-Efficient Sram Design Based on a New 5 I-P Majority Gate in Qca Nanotechnology(Elsevier, 2024) Kassa, Sankit; Ahmadpour, Seyed-Sajad; Lamba, Vijay; Misra, Neeraj Kumar; Navimipour, Nima Jafari; Kotecha, KetanQuantum-dot Cellular Automata (QCA) is a revolutionary paradigm in the Nano-scale VLSI market with the potential to replace the traditional Complementary Metal Oxide Semiconductor system. To demonstrate its usefulness, this article provides a QCA-based innovation structure comprising a 5-input (i-p) Majority Gate, which is one of the basic gates in QCA, and a Static Random Access Memory (SRAM) cell with set and reset functionalities. The suggested design, with nominal clock zones, provides a reliable, compact, efficient, and durable configuration that helps achieve the optimal size and latency while decreasing power consumption. Based on the suggested 5 i-p majority gate, the realized SRAM architecture improves energy dissipation by 33.95 %, cell count by 31.34 %, and area by 33.33 % when compared to the most recent design designs. Both the time and the cost have been decreased by 30 % and 53.95 %, respectively.Article Citation - WoS: 15Citation - Scopus: 18A Nano-Design of a Quantum-Based Arithmetic and Logic Unit for Enhancing the Efficiency of the Future Iot Applications(Aip Publishing, 2025) Ahmadpour, Seyed Sajad; Zaker, Maryam; Navimipour, Nima Jafari; Misra, Neeraj Kumar; Zohaib, Muhammad; Kassa, Sankit; Hakimi, MusawerThe Internet of Things (IoT) is an infrastructure of interconnected devices that gather, monitor, analyze, and distribute data. IoT is an inevitable technology for smart city infrastructure to ensure seamless communication across multiple nodes. IoT, with its ubiquitous application in every sector, ranging from health-care to transportation, energy, education, and agriculture, comes with serious challenges as well. Among the most significant ones is security since the majority of IoT devices do not encrypt normal data transmissions, making it easier for the network to breach and leak data. Traditional technologies such as CMOS and VLSI have the added disadvantage of consuming high energy, further creating avenues for security threats for IoT systems. To counter such problems, we require a new solution to replace traditional technologies with a secure IoT. In contrast to traditional solutions, quantum-based approaches offer promising solutions by significantly reducing the energy footprint of IoT systems. Quantum-dot Cellular Automata (QCA) is one such approach and is an advanced nano-technology that exploits quantum principles to achieve complex computations with the advantages of high speed, less occupied area, and low power consumption. By reducing the energy requirements to a minimum, QCA technology makes IoT devices secure. This paper presents a QCA-based Arithmetic Logic Unit (ALU) as a solution to IoT security problems. The proposed ALU includes more than 12 logical and arithmetic operations and is designed using majority gates, XOR gates, multiplexers, and full adders. The proposed architecture, simulated in QCADesigner 2.0.3, achieves an improvement of 60.45% and 66.66% in cell count and total occupied area, respectively, compared to the best of the existing designs, proving to be effective and efficient.Article A New Design of Arithmetic and Logic Unit for Enhancing the Security of Future Internet of Things Devices Using Quantum-Dot Technology(Pergamon-Elsevier Science Ltd, 2025) Zaker, Maryam; Ahmadpour, Seyed Sajad; Navimipour, Nima Jafari; Zohaib, Muhammad; Misra, Neeraj Kumar; Kassa, Sankit; Alsaleh, Omar I.The Internet of Things (IoT) is a network of interconnected devices that collect, monitor, analyze, and exchange data. This technology plays a crucial role in the smart city infrastructure by seamlessly interconnecting various nodes. The extensive application and recognition of IoT across multiple city domains, such as healthcare, transportation, energy, education, and agriculture, bring significant challenges, with security among the most pressing. Traditional hardware technologies like Complementary Metal Oxide Semiconductor (CMOS) and Very Large Scale Integration (VLSI) suffer from limitations such as high power consumption and insufficient scalability, which hinder secure and sustainable IoT deployment. Such limitations have prompted the need to seek other technologies that would serve the dual purpose of providing security as well as energy. Quantum-based technologies can become adequate candidates offering promising solutions to make IoT devices and sustainable systems more secured. Quantum-dot Cellular Automata (QCA) has been proposed as a nanotechnology with the potential of consuming ultra-low powers, less area, and high-speed operation. QCA enhances security through sustainable computing objectives by minimizing energy usage. To improve the future security and efficiency of IoT hardware, this paper suggests a QCA-based Arithmetic Logic Unit (ALU). This ALU can generate more than 12 logical and arithmetic operations. Designed together with the majority gates, XOR gates, multiplexers, and full adders, the ALU is simulated using the QCA-Designer 2.0.3. Simulated results indicate improvements in the number of cells and reduced occupied area relative to the earlier designs. These results indicate the potential of QCA technology in enabling secure, energy-efficient, and compact computing architecture applicable in the future IoT.Article Citation - WoS: 1Citation - Scopus: 1A New Fault-Tolerance Majority Voter Circuit for Quantum-Based Nano-Scale Digital Systems(Springer, 2025) Ahmadpour, Seyed-Sajad; Navimipour, Nima Jafari; Mosleh, Mohammad; Noorallahzadeh, Mojtaba; Kassa, Sankit; Ahmed, SuhaibQuantum-dot cellular automata (QCA) technology has gained attention lately due to its ability to reduce energy dissipation and minimize circuit area. However, the existing research shows that a critical challenge arises from the lack of circuit resistance in QCA systems when confronted with defects. This issue directly impacts circuit stability and output generation. Moreover, the 3-input majority gate (MV3) is a foundational component within QCA circuits, making its improvement crucial for developing fault-tolerant circuits. One approach is to design MV3 that incorporates essential quantum cells within a single clock cycle. Thus, this paper presents a unique cellular structure for the MV3 gate, utilizing simple quantum cells. The proposed gate, comprising only twelve cells, serves as a building block for QCA circuits. It boasts several key features, including low power consumption, efficient output polarity (+/- 9.93e00-1), and high reliability. Furthermore, to show the efficiency of the suggested gate, it is employed in realizing a 2:1 multiplexer and a full adder/subtractor. Lastly, the proposed MV3 gate is utilized to develop a simultaneous multi-logic gate which is producing several vital digital circuits, such as AND, OR, NOT, NAND, Copy, Subtractor, and Adder. The circuits are designed using QCADesigner and QCAPro, with power estimation included in the process. The comparative analysis reveals that the proposed structures significantly enhance the trade-off between complexity, fault tolerance, and power consumption compared to previous designs.Article Citation - WoS: 6Citation - Scopus: 8A New Median Filter Circuit Design Based on Atomic Silicon Quantum-Dot for Digital Image Processing and IoT Applications(IEEE-Inst Electrical Electronics Engineers Inc, 2025) Ahmadpour, Seyed-Sajad; Avval, Danial Bakhshayeshi; Navimipour, Nima Jafari; Rasmi, Hadi; Heidari, Arash; Kassa, Sankit; Patidar, MukeshDigital image processing (DIP) is the ability to manipulate digital photographs via algorithms for pattern detection, segmentation, enhancement, and noise reduction. In addition, the Internet of Things (IoT) acts as the eye and system for all DIP in various applications. It can possess a camera or another image sensor in order to capture real-time data from its environment. All vital data is processed by image processing in such a way that it recognizes the object, detects an anomaly, and automatically decides in real-time. In addition, in an IoT system, the median filter is the technique used for noise reduction by substituting the value of the pixel with the central value of the surrounding pixels. It provides speed and efficiency for quick analysis in all IoT systems. However, the images can get corrupted, especially in resource-constrained IoT devices with small cameras, because of random glitches. Moreover, using new quantum technology like atomic-scale silicon dangling bond (DB) logic circuits, which have advanced in fabrication and become a strong contender for field-coupled nano-computing, can solve previous problems in IoT systems. In this article, we propose a unique quantum CSM based on two new proposed Mux and De-mux. The proposed CSM can be used for computational circuits like median filter circuits (MFC) in a wide range of digital circuits, specifically IoT devices. The proposed design is verified and validated using the powerful SiQAD tool. When comparing CSM to the newest designs, the suggested quantum circuit uses 85% less energy and takes up 61% less area.Correction A New Quantum-Enhanced Approach To Ai-Driven Medical Imaging System (Vol 28 , 213 , 2024)(Springer, 2025) Ahmadpour, Seyed-Sajad; Avval, Danial Bakhshayeshi; Darbandi, Mehdi; Navimipour, Nima Jafari; Ul Ain, Noor; Kassa, SankitArticle Citation - WoS: 14Citation - Scopus: 17A novel design of coplanar 8-bit ripple carry adder using field-coupled quantum-dot cellular automata nanotechnology(Springer Heidelberg, 2023) Kassa, Sankit; Misra, Neeraj Kumar; Ahmadpour, Seyed Sajad; Lamba, Vijay; Vadthiya, NarendarQuantum-dot cellular automata (QCA) is a prominent research field that can replace MOS technology due to constraints of short-channel effects, power consumption and lithography costs. This manuscript presents novel and efficient designs of various combinational circuits that are XOR gate, half adders (HA), full adders (FA), half subtractor (HS), full subtractor (FS), ripple carry adder (RCA) and (2 x 1) multiplexer. This study presents an innovative concept for digital circuits that can be implemented in a single layer by using 90 & DEG; cells in clock zones. The suggested circuit architectures are relatively basic and straightforward to construct a robust QCA layout. One may reduce the overall size and the number of QCA cells by using the aforementioned designs and incorporating them into bigger circuits, such as the 4-bit and 8-bit RCA. Every design suggested in the study is compared to a design already published in the literature, and it is discovered that the suggested designs are much superior in terms of latency, area, number of cells and gate counts. QCADesigner tool confirms the functional correctness of proposed circuits. All newly created FAs, Design 1, Design 2, Design 3 and Design 4, exhibit cell count improvements of 18.88%, 40%, 46.66% and 4.44%, respectively, compared to the best-reported design. The area efficiency improves by up to 83.6% and 35.11%, respectively, while the cell count improves by 67.8% and 25.15% for 4-bit and 8-bit RCA adders, indicating that they are more suited for computational sciences.Article Citation - WoS: 6Citation - Scopus: 7An Ultra-Efficient Design of Fault-Tolerant 3-Input Majority Gate (ftmg) With an Error Probability Model Based on Quantum-Dots(Pergamon-Elsevier Science Ltd, 2023) Ahmadpour, Seyed-Sajad; Navimipour, Nima Jafari; Kassa, Sankit; Misra, Neeraj Kumar; Yalcin, SenayQuantum-dot cellular automata (QCA) has recently attracted significant notice thanks to their inherent ability to decrease energy dissipation and decreasing area, which is the primary need of digital circuits. However, the lack of resistance of QCA circuits under defects in previous works is a vital challenge affecting the stability of the circuit and output production. In addition, with the high defect rate in QCA, suggesting resistance and stable structures is critical. Furthermore, the 3input majority gate is a fundamental component of QCA circuits; therefore, improving this essential gate would enable the development of fault-tolerant circuits. This paper recommends a 3-input majority gate which is 100% fault-tolerant against single-cell omission defects. Moreover, the fundamental gates are introduced based on the proposed gate. In addition, an adder and a 1:2 decoder are also designed. Using QCADesigner 2.0.3 and QCAPro software, simulations of structures and analysis of power consumption are performed.
