Browsing by Author "Patidar, Mukesh"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Energy-Efficient Code Conversion Using Quantum-Dot Nano-Architectures for Internet of Things (IoT) Applications(Springer, 2026) Chugh, Hemanshi; Patidar, Mukesh; Ahmadpour, Seyed-Sajad; Zohaib, MuhammadInternet of Things (IoT) is a developing technological trend in which common real-world objects are connected with technologies of sensors, actuators, and communication units, allowing data collection, sharing, and processing via the Internet. One of the important circuits in IoT systems is code converter circuits, which are critical components in data formatting, arithmetic processing, and error-resistant processing in these systems, and hence, have a direct influence on performance and energy resources. However, complementary metal-oxide-semiconductor-based realizations of these converters suffer important drawbacks, including high occupied area, increased power dissipation, propagation delays, and longer latency, and are not suitable in ultra-compact and energy-constrained IoT devices. To overcome these challenges, emerging technologies like the quantum-dot cellular automata (QCA) are offering new alternatives, featuring ultra-low power consumption, low area, and high processing speed, which would make QCA technologies suitable for next-generation IoT applications. This paper proposes high-density and power-efficient bidirectional code converter circuits (BCD to Excess-3-B2X3C and Excess-3 to BCD-X3B2C converters) utilizing QCA technology. In addition, significant improvements are demonstrated by the comparative evaluations, which include an improvement of 7.89% in cells, a reduction of 25% in area-delay cost (A x D2), and a 43.75% in figure of merit (FoM), respectively. Additionally, QCADesigner and QCAPro simulation and power analysis indicate that the switching energy is generally low throughout a wide variety of tunneling energies. The presented QCA-based single layer is more scalable than current designs, which makes it suitable for future IoT integration.Article Citation - WoS: 11Citation - Scopus: 15A New Median Filter Circuit Design Based on Atomic Silicon Quantum-Dot for Digital Image Processing and IoT Applications(IEEE-Inst Electrical Electronics Engineers Inc, 2025) Ahmadpour, Seyed-Sajad; Avval, Danial Bakhshayeshi; Navimipour, Nima Jafari; Rasmi, Hadi; Heidari, Arash; Kassa, Sankit; Patidar, MukeshDigital image processing (DIP) is the ability to manipulate digital photographs via algorithms for pattern detection, segmentation, enhancement, and noise reduction. In addition, the Internet of Things (IoT) acts as the eye and system for all DIP in various applications. It can possess a camera or another image sensor in order to capture real-time data from its environment. All vital data is processed by image processing in such a way that it recognizes the object, detects an anomaly, and automatically decides in real-time. In addition, in an IoT system, the median filter is the technique used for noise reduction by substituting the value of the pixel with the central value of the surrounding pixels. It provides speed and efficiency for quick analysis in all IoT systems. However, the images can get corrupted, especially in resource-constrained IoT devices with small cameras, because of random glitches. Moreover, using new quantum technology like atomic-scale silicon dangling bond (DB) logic circuits, which have advanced in fabrication and become a strong contender for field-coupled nano-computing, can solve previous problems in IoT systems. In this article, we propose a unique quantum CSM based on two new proposed Mux and De-mux. The proposed CSM can be used for computational circuits like median filter circuits (MFC) in a wide range of digital circuits, specifically IoT devices. The proposed design is verified and validated using the powerful SiQAD tool. When comparing CSM to the newest designs, the suggested quantum circuit uses 85% less energy and takes up 61% less area.

