Browsing by Author "Savasci, A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Data-Driven Local Control Design for Dead Band Control of Load Tap Changers(Institute of Electrical and Electronics Engineers Inc., 2024) Savasci, A.; Ceylan, O.; Paudyal, S.This study presents an off-line optimization-guided machine learning approach for coordinating the local control rules of on-load tap changers (OLTCs) and step-voltage regula-tors (SVRs). Based on a bang-bang control rule, these legacy devices autonomously regulate the feeder voltage around the nominal level by varying the tap position in the lower or raise direction. The characterizing parameter of the local control rule is the dead band, which affects the number of tap switching in operation and is directly related to the economical use life of the equipment. The bandwidth is typically set within a standard voltage range and is generally kept constant in daily operation. However, adjusting the bandwidth dynamically can prevent excessive tap switching while maintaining satisfactory voltage regulation for varying loading and distributed generation conditions. Our approach aims to set the bandwidth parameter systematically and efficiently through a machine learning-based scheme, which is trained with a dataset formed by solving the distribution network optimal power flow (DOPF) problem. The performance of learning the bandwidth parameter is demonstrated on the modified 33-node feeder, which is promising for integrated voltage control schemes. © 2024 IEEE.Conference Object Citation - Scopus: 0Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids(IEEE Computer Society, 2024) Ceylan, Oğuzhan; Ceylan, O.; Paudyal, S.This study presents machine learning-based dispatch strategies for legacy voltage regulation devices, i.e., onload tap changers (OLTCs), step-voltage regulators (SVRs), and switched-capacitors (SCs) in modern distribution networks. The proposed approach utilizes k-nearest neighbor (KNN), random forest (RF), and neural networks (NN) to map nodal net active and reactive injections to the optimal legacy controls and resulting voltage magnitudes. To implement these strategies, first, an efficient optimal power flow (OPF) is formulated as a mixed-integer linear program that obtains optimal decisions of tap positions for OLTCs, SVRs, and on/off status of SCs. Then, training and testing datasets are generated by solving the OPF model for daily horizons with 1-hr resolution for varying loading and photovoltaic (PV) generation profile. Case studies on the 33-node feeder demonstrate high-accuracy mapping between the input feature and the output vector, which is promising for integrated Volt/VAr control schemes. © 2024 IEEE.