Browsing by Author "Tabassum, Nauman"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 0A Bicriteria Model to Determine Pareto Optimal Pulse Vaccination Strategies(Wiley, 2024) Samanlioglu, Funda; Tabassum, Nauman; Karaca, Tolga Kudret; Bilge, Ayse HumeyraThe aim of this paper is to determine approximate Pareto optimal (efficient) pulse vaccination strategies for epidemics modeled by the susceptible-infected-removed (SIR) without population dynamics, characterized by a single epidemic wave. Pulse vaccination is the application of the vaccination campaign over a limited time interval, by vaccinating susceptible individuals at a constant vaccination rate. A pulse vaccination strategy includes the determination of the beginning date and duration of the campaign and the vaccination rate. SIR with vaccination (SIRV) epidemic model is applied during pulse vaccination campaign, resulting in final proportions of removed (Rf) and vaccinated (Vf) individuals at the end of the epidemic. The burden of the epidemic is estimated in terms of Rf and Vf; two criteria are simultaneously minimized: vaccination cost and treatment cost of infected individuals and other economic losses due to sickness that are assumed to be proportional to Vf and Rf, respectively. To find approximate efficient solutions to this bicriteria problem, ODE and genetic algorithm toolboxes of MATLAB are integrated (GA-ODE). In GA-ODE, an augmented weighted Tchebycheff program is used as the evaluation function, calculated by solving the SIRV model and obtaining Rf and Vf values. Sample approximate efficient vaccination strategies are determined for diseases with a basic reproduction number (R0) 1.2 to 2.0. Consequently, obtained strategies are characterized as short-period campaigns that start as early as possible, i.e., as soon as vaccines are available and the vaccination rate increases with the severity of the disease (R0) and the importance weight given to minimization of Rf.Master Thesis Computation of Two-Variable Mixed Element Network Functions(Kadir Has Üniversitesi, 2017) Tabassum, Nauman; Özmen, Atillain this dissertation the algorithm known as “Standard Decomposition Technique (SDT)” is used together with Belevitch’s canonic representation of scattering polynomial for two-port networks operate on high frequency to find the analytical solutions for “Fundamental equation set (FES)”. This FES is extracted by using Belevitch canonic polynomials “ ??(?? ??) ?(?? ??) and ??(?? ??)” used for the description of mixed lumped and distributed lossless two-port cascaded networks in two variables of degree five and the obtained solutions are further used to synthesis the realizable networks. The solution to the problem is also classified into two cases first case is discussed for three lumped and two distributed (???? = 3 ???? = 2 ) and the second is for three distributed and two lumped important (???? = 2 ???? = 3 ) the solution for both these cases are expressed separately with conclusive examples