1. Home
  2. Browse by Author

Browsing by Author "Zohaib, Muhammad"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 0
    Citation - Scopus: 0
    High-Speed and Area-Efficient Arithmetic and Logic Unit Architecture Using Quantum-Dot Cellular Automata for Digital Signal Processing
    (Elsevier, 2025) Zohaib, Muhammad; Navimipour, Nima Jafari; Aydemir, Mehmet Timur; Ahmadpour, Seyed-Sajad
    Signal processing has significantly influenced our lives in many domains, including telecommunications, education, healthcare, industry, and security. The efficiency of signal processing heavily relies on the Arithmetic and Logic Unit (ALU), which stands as an essential hardware component. In addition, ALU is a fundamental part of a central processing unit (CPU), leading to fundamental operations inside the processor. However, the growing demand for small, robust hardware systems has led researchers to create nano-electronic technologies under consideration. One of the leading technologies in this field is Quantum-dot cellular automata (QCA), which demonstrates promising value as a possible alternative to complementary metal-oxide-semiconductor (CMOS) designs since it enables compact circuit designs with minimal power consumption. The existing QCA-based ALU designs face limitations in cell count density together with high occupied area and high delay, which reduces their performance for real-time signal processing. This research presents a 1-bit ALU through a QCA-optimized approach for DSP applications. QCADesigner is used to validate and verify all proposed designs. Results show a statistically significant improvement in cell count reduction of 46.84 % and a total occupied area of 64.28 % lower than the most advanced version published to date.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 3
    A Nano-Design of a Quantum-Based Arithmetic and Logic Unit for Enhancing the Efficiency of the Future Iot Applications
    (Aip Publishing, 2025) Jafari Navimipour, Nima; Zaker, Maryam; Navimipour, Nima Jafari; Misra, Neeraj Kumar; Zohaib, Muhammad; Kassa, Sankit; Hakimi, Musawer; Computer Engineering
    The Internet of Things (IoT) is an infrastructure of interconnected devices that gather, monitor, analyze, and distribute data. IoT is an inevitable technology for smart city infrastructure to ensure seamless communication across multiple nodes. IoT, with its ubiquitous application in every sector, ranging from health-care to transportation, energy, education, and agriculture, comes with serious challenges as well. Among the most significant ones is security since the majority of IoT devices do not encrypt normal data transmissions, making it easier for the network to breach and leak data. Traditional technologies such as CMOS and VLSI have the added disadvantage of consuming high energy, further creating avenues for security threats for IoT systems. To counter such problems, we require a new solution to replace traditional technologies with a secure IoT. In contrast to traditional solutions, quantum-based approaches offer promising solutions by significantly reducing the energy footprint of IoT systems. Quantum-dot Cellular Automata (QCA) is one such approach and is an advanced nano-technology that exploits quantum principles to achieve complex computations with the advantages of high speed, less occupied area, and low power consumption. By reducing the energy requirements to a minimum, QCA technology makes IoT devices secure. This paper presents a QCA-based Arithmetic Logic Unit (ALU) as a solution to IoT security problems. The proposed ALU includes more than 12 logical and arithmetic operations and is designed using majority gates, XOR gates, multiplexers, and full adders. The proposed architecture, simulated in QCADesigner 2.0.3, achieves an improvement of 60.45% and 66.66% in cell count and total occupied area, respectively, compared to the best of the existing designs, proving to be effective and efficient.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 0
    A Nano-Scale Design of Arithmetic and Logic Unit for Energy-Efficient Signal Processing Devices Based on a Quantum-Based Technology
    (Springer, 2025) Jafari Navimipour, Nima; Zohaib, Muhammad; Navimipour, Nima Jafari; Aydemir, Mehmet Timur; Aydemir, Mehmet Timur; Ahmadpour, Seyed-Sajad; Computer Engineering; Electrical-Electronics Engineering
    Signal processing had a significant impact on the development of many elements of modern life, including telecommunications, education, healthcare, industry, and security. The semiconductor industry is the primary driver of signal processing innovation, producing ever-more sophisticated electronic devices and circuits in response to global demand. In addition, the central processing unit (CPU) is described as the "brain" of a computer or all electronic devices and signal processing. CPU is a critical electronic device that includes vital components such as memory, multiplier, adder, etc. Also, one of the essential components of the CPU is the arithmetic and logic unit (ALU), which executes the arithmetic and logical operations within all types of CPU operations, such as addition, multiplication, and subtraction. However, delay, occupied areas, and energy consumption are essential parameters in ALU circuits. Since the recent ALU designs experienced problems like high delay, high occupied area, and high energy consumption, implementing electronic circuits based on new technology can significantly boost the performance of entire signal processing devices, including microcontrollers, microprocessors, and printed devices, with high-speed and low occupied space. Quantum dot cellular automata (QCA) is an effective technology for implementing all electronic circuits and signal processing applications to solve these shortcomings. It is a transistor-less nanotechnology being explored as a successor to established technologies like CMOS and VLSI due to its ultra-low power dissipation, high device density, fast operating speed in THz, and reduced circuit complexity. This research proposes a ground-breaking ALU that upgrades electrical devices such as microcontrollers by applying cutting-edge QCA nanotechnology. The primary goal is to offer a novel ALU architecture that fully utilizes the potential of QCA nanotechnology. Using a new and efficient approach, the fundamental gates are skillfully utilized with a coplanar layout based on a single cell not rotated. Furthermore, this work presents an enhanced 1-bit and 2-bit arithmetic logic unit in quantum dot cellular automata. The recommended design includes logic, arithmetic operations, full adder (FA) design, and multiplexers. Using the powerful simulation tools QCADesigner, all proposed designs are evaluated and verified. The simulation outcomes indicates that the suggested ALU has 42.48 and 64.28% improvements concerning cell count and total occupied area in comparison to the best earlier single-layer and multi-layer designs.