Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12469/47
Browse
Browsing Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu by Publisher "Hindawi Publishing Corporation"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 6A Low-Complexity Time-Domain Mmse Channel Estimator for Space-time/Frequency Block-Coded Ofdm Systems(Hindawi Publishing Corporation, 2006) Şenol, Habib; Çırpan, Hakan Ali; Panayırcı, ErdalFocusing on transmit diversity orthogonal frequency-division multiplexing (OFDM) transmission through frequency-selective channels this paper pursues a channel estimation approach in time domain for both space-frequency OFDM (SF-OFDM) and space-time OFDM (ST-OFDM) systems based on AR channel modelling. The paper proposes a computationally efficient pilot-aided linear minimum mean-square-error (MMSE) time-domain channel estimation algorithm for OFDM systems with transmitter diversity in unknown wireless fading channels. The proposed approach employs a convenient representation of the channel impulse responses based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion no matrix inversion is required in the proposed MMSE estimator. Subsequently optimal rank reduction is applied to obtain significant taps resulting in a smaller computational load on the proposed estimation algorithm. The performance of the proposed approach is studied through the analytical results and computer simulations. In order to explore the performance the closed-form expression for the average symbol error rate (SER) probability is derived for the maximum ratio receive combiner (MRRC). We then consider the stochastic Cramer-Rao lower bound(CRLB) and derive the closed-form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance. Simulation results confirm our theoretical analysis and illustrate that the proposed algorithms are capable of tracking fast fading and improving overall performance. Copyright (C) 2006 Hindawi Publishing Corporation. All rights reserved.Editorial Citation - WoS: 6Citation - Scopus: 6Synchronization in Wireless Communications(Hindawi Publishing Corporation, 2009) Steendam, Heidi; Ghogho, Mounir; Luise, Marco; Panayırcı, Erdal; Serpedin, Erchin[Abstract Not Available]Article Citation - WoS: 5Citation - Scopus: 10MAP channel-estimation-based PIC receiver for downlink MC-CDMA systems(Hindawi Publishing Corporation, 2008) Doğan, Hakan; Panayırcı, Erdal; Çırpan, Hakan Ali; Fleury, Bernard HenriWe propose a joint MAP channel estimation and data detection technique based on the expectation maximization (EM) method with paralel interference cancelation (PIC) for downlink multicarrier (MC) code division multiple access (CDMA) systems in the presence of frequency selective channels. The quality of multiple access interference (MAI) which can be improved by using channel estimation and data estimation of all active users affects considerably the performance of PIC detector. Therefore data and channel estimation performance obtained in the initial stage has a significant relationship with the performance of PIC. So obviously it is necessary to make excellent joint data and channel estimation for initialization of PIC detector. The EM algorithm derived estimates the complex channel parameters of each subcarrier iteratively and generates the soft information representing the data a posterior probabilities. The soft information is then employed in a PIC module to detect the symbols efficiently. Moreover the MAP-EM approach considers the channel variations as random processes and applies the Karhunen-Loeve (KL) orthogonal series expansion. The performance of the proposed approach is studied in terms of bit-error rate (BER) and mean square error (MSE). Throughout the simulations extensive comparisons with previous works in literature are performed showing that the new scheme can offer superior performance.