Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://gcris.khas.edu.tr/handle/20.500.12469/47
Browse
Browsing Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu by Scopus Q "Q1"
Now showing 1 - 20 of 47
- Results Per Page
- Sort Options
Article Citation Count: 5Analysis of Mixed-Element Structures Formed With Shunt Capacitors Separated by Transmission Lines(IEEE-Inst Electrical Electronics Engineers Inc, 2019) Şengül, Metin Y.; Çakmak, GökhanIn this brief, the analysis of mixed-element structures formed with shunt capacitors separated by commensurate transmission lines is performed first time in the literature. First, a low-pass lumped-element ladder network is considered. Then the series inductors are replaced with commensurate transmission lines. As a result, a practically important mixed-element structure is obtained. Then the description of the structure by means of two frequency variables (one for shunt capacitors and one for transmission lines) is detailed: Explicit expressions for the coefficients of the descriptive two-variable polynomials in terms of the coefficients of the single variable boundary polynomials are derived for various numbers of elements, which are obtained first time in the literature. Finally, a mixed-element broadband matching network is designed to illustrate the usage of the obtained expressions. If it is preferred not to have shunt capacitors, they can be replaced with open-ended stubs via Richard's transformation. So the resultant circuit is extremely suitable for microstrip fabrication.Article Citation Count: 11Bound-free electron-positron pair production in relativistic heavy-ion collisions(Amer Physical Soc., 2009) Şengül, Metin Y.; Güçlü, Mehmet C.; Fritzsche, S.The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.Article Citation Count: 22Broadband Decoupling and Matching of a Superdirective Two-Port Antenna Array(IEEE-INST Electrical Electronics Engineers Inc, 2008) Volmer, Christian; Şengül, Metin Y.; Weber, Joern; Stephan, Ralf; Hein, Matthias A.Decoupling and matching networks may be used to improve the performance of compact antenna arrays where mutual radiator coupling has caused a degradation of the diversity capabilities. A popular network consists of a 180 degrees rat-race directional coupler which decouples the antenna ports followed by impedance matching networks at each port. Researchers however usually neglect the presence of losses both within the antenna array and the decoupling and matching network. For this reason we have built various narrowband and broadband matching networks and compare their performances with the help of calibrated far-field measurement data.Article Citation Count: 5Code shift keying impulse modulation for UWB communications(IEEE-INST Electrical Electronics Engineers Inc, 2008) Erküçük, Serhat; Kim, Dong In; Kwak, Kyung SupIn this paper the system performance of M-ary code shift keying (MCSK) impulse modulation is studied in detail and compared to M-ary pulse position modulation (MPPM) under single- and multi-user scenarios. For that bounds on the semi-analytic symbol-error rate (SER) expressions are derived and simulation studies are conducted. When practical implementations of MCSK and MPPM are considered it is shown that MCSK can provide about 2 dB performance gain over MPPM as it reduces the effects of multipath delays on the decision variables by randomizing locations of the transmit pulse.Article Citation Count: 9Complete density calculations of q-state Potts and clock models: Reentrance of interface densities under symmetry breaking(Amer Physical Soc, 2020) Artun, E. Can; Berker, A. NihatAll local bond-state densities are calculated for q-state Potts and clock models in three spatial dimensions, d = 3. The calculations are done by an exact renormalization group on a hierarchical lattice, including the density recursion relations, and simultaneously are the Migdal-Kadanoff approximation for the cubic lattice. Reentrant behavior is found in the interface densities under symmetry breaking, in the sense that upon lowering the temperature, the value of the density first increases and then decreases to its zero value at zero temperature. For this behavior, a physical mechanism is proposed. A contrast between the phase transition of the two models is found and explained by alignment and entropy, as the number of states q goes to infinity. For the clock models, the renormalization-group flows of up to 20 energies are used.Article Citation Count: 13Conditional Power and Rate Adaptation for MQAM/OFDM Systems Under CFO With Perfect and Imperfect Channel Estimation Errors(IEEE-INST Electrical Electronics Engineers Inc, 2015) Dong, Zhicheng; Fan, Pingzhi; Panayırcı, Erdal; Lei, XianfuIn this paper a new conditional power and rate adaptation scheme for orthogonal frequency-division multiplexing (OFDM) systems is proposed in the presence of carrier frequency offset (CFO) with perfect and imperfect channel state information (CSI). The conventional adaptive scheme is shown to be a special case of the conditionally adaptive scheme technique that enables the resulting nonconvex optimization problem which is solved in a feasible way. It leads to a solution for optimal power adaptation that maximizes the spectral efficiency of an OFDM system using M-ary quadrature amplitude modulation (MQAM) under average power and instantaneous bit error rate (BER) constraints. Closed-form expressions for the average spectral efficiency (ASE) of adaptive OFDM systems are derived for perfect and imperfect CSI cases. The theoretical results and computer simulations show that range of the conditional adaptation becomes narrow and the performance of constant power and continuous rate is very close to that of the conditionally adaptive power and continuous rate for higher CFO or high signal-to-noise ratio (SNR) values.Article Citation Count: 6Correlation of ternary liquid--liquid equilibrium data using neural network-based activity coefficient model(Springer, 2014) Özmen, AtillaLiquid--liquid equilibrium (LLE) data are important in chemical industry for the design of separation equipments and it is troublesome to determine experimentally. In this paper a new method for correlation of ternary LLE data is presented. The method is implemented by using a combined structure that uses genetic algorithm (GA)--trained neural network (NN). NN coefficients that satisfy the criterion of equilibrium were obtained by using GA. At the training phase experimental concentration data and corresponding activity coefficients were used as input and output respectively. At the test phase trained NN was used to correlate the whole experimental data by giving only one initial value. Calculated results were compared with the experimental data and very low root-mean-square deviation error values are obtained between experimental and calculated data. By using this model tie-line and solubility curve data of LLE can be obtained with only a few experimental data.Article Citation Count: 9Design of Practical Broadband Matching Networks With Mixed Lumped and Distributed Elements(IEEE-INST Electrical Electronics Engineers Inc, 2014) Şengül, Metin Y.Computer-aided design (CAD) tools are always preferred for designing broadband matching networks. However these tools give excellent results when the suitable matching network topology and initial element values are provided. Therefore in this brief a new initialization algorithm is proposed to get suitable network topology and element values for CAD tools. Then the power transfer capability of the matching network can be improved by using any CAD tool. It is clear from the example studied that the new method generates excellent initials.Article Citation Count: 25Design of practical matching networks with lumped elements via modeling(IEEE, 2007) Yarman, Sıddık Binboğa; Şengül, Metin Y.; Kılınç, AliIt is a common practice to utilize commercially available software tools to design matching networks for wireless communication systems. Most of these tools require a properly selected matching network topology with good initial element values. Therefore in this paper a practical method is presented to generate matching networks with initial element values. In the implementation process of the proposed method first the driving point immitance data for the matching network is obtained in a straight forward manner without optimization. Then it is modeled as a realizable bounded-real input reflection coefficient which in turn yields the desired matching network with reasonable element values. Eventually the initial design is improved by optimizing the performance of the matched system employing the commercially available computer-aided design (CAD) packages. An example is given to illustrate the utilization of the proposed method. It is shown that new method provides excellent results as a front-end when utilized together with CAD tools.Article Citation Count: 9Devil's staircase continuum in the chiral clock spin glass with competing ferromagnetic-antiferromagnetic and left-right chiral interactions(Amer Physical Soc., 2017) Caglar, Tolga; Berker, A. NihatThe chiral clock spin-glass model with q = 5 states with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations is studied in d = 3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature antiferromagnetic bond concentration p random chirality strength and right-chirality concentration c. The system has a ferromagnetic phase a multitude of different chiral phases a chiral spin-glass phase and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devil's staircases where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase bordered by fragments of regular and temperature-inverted devil's staircases are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.Article Citation Count: 4Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission(Korean Inst Communicatıons Sciences (KICS), 2016) Erdoğan, Eylem; Güçlüoğlu, TansalIn this paper the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function cumulative distribution function and moment generating function of the SNR. Then both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability diversity and array gains are obtained. In addition impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.Article Citation Count: 7Energy efficient robust scheduling of periodic sensor packets for discrete rate based wireless networked control systems(Elsevier, 2020) Şadi, Yalçın; Uçar, Seyhan; Şadi, Yalçın; Coleri, SinemWireless networked control systems (WNCSs) require the design of a robust scheduling algorithm that meets the stringent timing and reliability requirements of control systems, despite the limited battery resources of sensor nodes and adverse properties of wireless communication for delay and packet errors. In this article, we propose a robust delay and energy constrained scheduling algorithm based on the exploitation of the mostly pre-known periodic data generation nature of sensor nodes in control systems. We first formulate the joint optimization of scheduling, power control and rate adaptation for discrete rate transmission model, in which only a finite set of transmission rates are supported, as a Mixed-Integer Non-linear Programming problem and prove its NP-hardness. Next, we propose an optimal polynomial-time power control and rate adaptation algorithm for minimizing the transmission time of a node subset. We then design a novel polynomial-time heuristic scheduling algorithm based on first determining the concurrently transmitting node subsets and then distributing them uniformly over time by a modified Karmarkar-Karp algorithm. We demonstrate the superior performance of the proposed scheduling algorithm in terms of robustness, delay and runtime on the Low-Rate Wireless Personal Area Network (LR-WPAN) simulation platform, which we developed in network simulator-3 (ns3).Article Citation Count: 11Energy Efficient SCMA Supported Downlink Cloud-RANs for 5G Networks(IEEE, 2020) Erküçük, Serhat; Erküçük, Serhat; Anpalagan, Alagan; Woungang, IsaacCloud-radio access networks (C-RANs) are regarded as a promising solution to provide low cost services among users through the centralized coordination of baseband units for 5G wireless networks. The coordinated multi-point access, visualization and cloud computing technologies enable C-RANs to provide higher capacity and wider coverage, as well as manage the interference and mobility in a centralized coordinated way. However, C-RANs face many challenges due to massive connectivity and spectrum scarcity. If not properly handled, these challenges may degrade the overall performance. Recently, the non-orthogonal multiple access (NOMA) scheme has been suggested as an attractive solution to support multi-user resource sharing in order to improve the spectrum and energy efficiency in 5G wireless networks. In this paper, among various NOMA schemes, we consider and implement the sparse code multiple access (SCMA) scheme to jointly optimize the codebook (CB) and power allocation in the downlink of C-RANs, where the utilization of SCMA in C-RANs to improve the energy efficiency has not been investigated in detail in the literature. To solve this NP-hard joint optimization problem, we decompose the original problem into two sub-problems: codebook allocation and power allocation. Using the conflict graph, we propose the throughput aware SCMA CB selection (TASCBS) method, which generates a stable codebook allocation solution within a finite number of steps. For the power allocation solution, we propose the iterative level-based power allocation (ILPA) method, which incorporates different power allocation approaches (e.g., weighted and NOMA successive interference cancellation (SIC)) into different levels to satisfy the maximum power requirement. Simulation results show that the sum data rate and energy efficiency performances of SCMA supported C-RANs depend on the selected power allocation approach. In terms of energy efficiency, the performance significantly improves with the number of users when the NOMA-SIC aware geometric water-filling based power allocation method is used.Article Citation Count: 10Fault-tolerant training of neural networks in the presence of MOS transistor mismatches(IEEE-INST Electrical Electronics Engineers Inc, 2001) Öğrenci, Arif Selçuk; Dündar, Günhan; Balkır, SinaAnalog techniques are desirable for hardware implementation of neural networks due to their numerous advantages such as small size low power and high speed. However these advantages are often offset by the difficulty in the training of analog neural network circuitry. In particular training of the circuitry by software based on hardware models is impaired by statistical variations in the integrated circuit production process resulting in performance degradation. In this paper a new paradigm of noise injection during training for the reduction of this degradation is presented. The variations at the outputs of analog neural network circuitry are modeled based on the transistor-level mismatches occurring between identically designed transistors Those variations are used as additive noise during training to increase the fault tolerance of the trained neural network. The results of this paradigm are confirmed via numerical experiments and physical measurements and are shown to be superior to the case of adding random noise during training.Article Citation Count: 6Growth and shape stability of Cu-Ni core-shell nanoparticles: an atomistic perspective(Royal Soc Chemistry, 2018) İlker, Efe; Madran, Melihat; Konuk, Mine; Durukanoğlu, SondanThe growth and shape stability of bi-metallic cubic Cu-Ni nanoparticles are studied using atomic-level simulations. Cubic nano-crystals coated with an ultra-thin Cu layer can be readily obtained when Ni cubic nanoparticles are used as the seeds. At elevated temperatures the Cu seed with extending Ni branches preserves its shape compared to the Ni seed with extending Cu branches.Article Citation Count: 112IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications(IEEE-Inst Electrical Electronics Engineers Inc, 2017) Baykaş, Tunçer; Narmanlıoğlu, Ömer; Baykas, Tuncer; Uysal, Murat; Panayırcı, ErdalThe IEEE has established the standardization group 802.15.7r1 "Short Range Optical Wireless Communications", which is currently in the process of developing a standard for visible light communication (VLC). As with any other communication system, realistic channel models are of critical importance for VLC system design, performance evaluation, and testing. This article presents the reference channel models that were endorsed by the IEEE 802.15.7r1 Task Group for evaluation of VLC system proposals. These were developed for typical indoor environments, including home, office, and manufacturing cells. While highlighting the channel models, we further discuss physical layer techniques potentially considered for IEEE 802.15.7r1.Article Citation Count: 8An Improved Adaptive Subspace Tracking Algorithm Based on Approximated Power Iteration(IEEE-INST Electrical Electronics Engineers Inc, 2018) Panayırcı, Erdal; Zheng, Jian-Sheng; Dong, Zhicheng; Panayırcı, Erdal; Wu, Zhi-Qiang; Ren, QingnuobuA subspace tracking technique has drawn a lot of attentions due to its wide applications. The main objective of this approach is to estimate signal or noise subspace basis for the sample covariance matrix. In this paper we focus on providing a fast stable and adaptive subspace tracking algorithm that is implemented with low computational complexity. An alternative realization of the fast approximate power iteration (FAPI) method termed modified FAPI (MFAPI) is also presented. Rather than solving an inverse square root of a matrix employed in the FAPI the MFAPI applies the matrix product directly to ensure the orthonormality of the subspace basis matrix at each recursion. This approach yields a simpler derivation and is numerically stable while maintaining a similar computational complexity as compared with that of the FAPI. Furthermore we present a detailed mathematical proof of the numerical stability of our proposed algorithm. Computer simulation results indicate that the MFAPI outperforms many classical subspace tracking algorithms particularly at the transient-state step.Article Citation Count: 19Iterative channel estimation and decoding of turbo coded SFBC-OFDM systems(IEEE, 2007) Doğan, Hakan; Çırpan, Hakan Ali; Panayırcı, ErdalWe consider the design of turbo receiver structures for space-frequency block coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in the presence of unknown frequency and time selective fading channels. The Turbo receiver structures for SFBC-OFDM systems under consideration consists of an iterative MAP Expectation/Maximization (EM) channel estimation algorithm soft MMSE-SFBC decoder and a soft MAP outer-channel-code decoder. MAP-EM employs iterative channel estimation and it improves receiver performance by re-estimating the channel after each decoder iteration. Moreover the MAP-EM approach considers the channel variations as random processes and applies the Karhunen-Loeve (KL) orthogonal series expansion. The optimal truncation property of the KL expansion can reduce computational load on the iterative estimation approach. The performance of the proposed approaches are studied in terms of mean square error and bit-error rate. Through computer simulations the effect of a pilot spacing on the channel estimator performance and sensitivity of turbo receiver structures on channel estimation error are studied. Simulation results illustrate that receivers with turbo coding are very sensitive to channel estimation errors compared to receivers with convolutional codes. Moreover superiority of the turbo coded SFBC-OFDM systems over the turbo coded STBC-OFDM systems is observed especially for high Doppler frequencies.Article Citation Count: 5Joint Detection of Primary Systems Using UWB Impulse Radios(IEEE-INST Electrical Electronics Engineers Inc, 2011) Erküçük, Serhat; Lampe, Lutz; Schober, RobertRegulation in Europe and Japan requires the implementation of detect-and-avoid (DAA) techniques in some bands for the coexistence of licensed primary systems and secondary ultra wideband (UWB) systems. In a typical coexistence scenario a primary system may have potentially interdependent uplink-downlink communication channels (e. g. simultaneous uplink-downlink communications in a frequency division duplex system) overlapping with the frequency band of a UWB system. If such interdependencies of primary systems' activities are known the UWB system's ability to detect primary systems can be improved. In this study we are interested in determining the possible gains in the detection performance when taking interdependencies into account for practically implementable detection methods. Contrary to selecting the detection thresholds individually for each band as in a conventional detection approach the bands are jointly processed. To this end maximum a posteriori (MAP) decision variables are generated at the receiver and bias terms are introduced to achieve a desired trade-off between the probabilities of detection and false alarm. In addition to finding the optimal detection results based on the Neyman-Pearson (NP) test a suboptimal but practically implementable approach is also considered and the gain compared to conventional independent detection is quantified for various practical scenarios. The results obtained from this study can be used for improving the primary system detection performance of UWB systems as well as for cognitive radios that perform spectrum sensing in multiple bands.Article Citation Count: 27Joint Optimization of Wireless Network Energy Consumption and Control System Performance in Wireless Networked Control Systems(IEEE-INST Electrical Electronics Engineers Inc, 2017) Şadi, Yalçın; Ergen, Sinem ColeriCommunication system design for wireless networked control systems requires satisfying the high reliability and strict delay constraints of control systems for guaranteed stability with the limited battery resources of sensor nodes despite the wireless networking induced non-idealities. These include non-zero packet error probability caused by the unreliability of wireless transmissions and non-zero delay resulting from packet transmission and shared wireless medium. In this paper we study the joint optimization of control and communication systems incorporating their efficient abstractions practically used in real-world scenarios. The proposed framework allows including any non-decreasing function of the power consumption of the nodes as the objective any modulation scheme and any scheduling algorithm. We first introduce an exact solution method based on the analysis of the optimality conditions and smart enumeration techniques. Then we propose two polynomial-time heuristic algorithms based on intelligent search space reduction and smart searching techniques. Extensive simulations demonstrate that the proposed algorithms perform very close to optimal and much better than previous algorithms at much smaller runtime for various scenarios.
- «
- 1 (current)
- 2
- 3
- »