Ballı, Tuğçe

Loading...
Profile Picture
Name Variants
T. Ballı
Ballı, TUĞÇE
Altuğlu T.
Altuǧlu T.
Ballı, T.
Balli, Tugce
B., Tugce
Tugce, Balli
TUĞÇE BALLI
Tuğçe Ballı
BALLI, Tuğçe
B., Tuğçe
Ballı T.
Ballı, Tuğçe
Ballı,T.
Balli T.
Balli,Tugce
Balli,T.
B.,Tugce
Tuğçe BALLI
BALLI, TUĞÇE
Job Title
Dr. Öğr. Üyesi
Email Address
tugce.balli@khas.edu.tr
Main Affiliation
Management Information Systems
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals Report Points

SDG data could not be loaded because of an error. Please refresh the page or try again later.
Scholarly Output

6

Articles

4

Citation Count

0

Supervised Theses

1

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 0
    Citation - Scopus: 0
    Differentiating Functional Connectivity Patterns in Adhd and Autism Among the Young People: a Machine Learning Solution
    (Sage Publications inc, 2025) Ballı, Tuğçe; Balli, Tugce; Roeyers, Herbert; Wiersema, Jan R.; Camkerten, Sami; Ozturk, Ozan Cem; Sonuga-Barke, Edmund; Management Information Systems
    Objective: ADHD and autism are complex and frequently co-occurring neurodevelopmental conditions with shared etiological and pathophysiological elements. In this paper, we attempt to differentiate these conditions among the young people in terms of intrinsic patterns of brain connectivity revealed during resting state using machine learning approaches. We had two key objectives: (a) to determine the extent to which ADHD and autism could be effectively distinguished via machine learning from one another on this basis and (b) to identify the brain networks differentially implicated in the two conditions.Method: Data from two publicly available resting-state functional magnetic resonance imaging (fMRI) resources-Autism Brain Imaging Data Exchange (ABIDE) and the ADHD-200 Consortium-were analyzed. A total of 330 participants (65 females and 265 males; mean age = 11.6 years), comprising equal subgroups of 110 participants each for ADHD, autism, and healthy controls (HC), were selected from the data sets ensuring data quality and the exclusion of comorbidities. We identified region-to-region connectivity values, which were subsequently employed as inputs to the linear discriminant analysis algorithm.Results: Machine learning models provided strong differentiation between connectivity patterns in participants with ADHD and autism-with the highest accuracy of 85%. Predominantly frontoparietal network alterations in connectivity discriminate ADHD individuals from autism and neurotypical group. Networks contributing to discrimination of autistic individuals from neurotypical group were more heterogeneous. These included language, salience, and frontoparietal networks.Conclusion: These results contribute to our understanding of the distinct neural signatures underlying ADHD and autism in terms of intrinsic patterns of brain connectivity. The high level of discriminability between ADHD and autism, highlights the potential role of brain based metrics in supporting differential diagnostics.