Support Vector Machines Based Target Tracking Techniques
| gdc.relation.journal | 2006 IEEE 14th Signal Processing And Communications Applications, Vols 1 and 2 | en_US |
| dc.contributor.author | Özer, Sedat | |
| dc.contributor.author | Çırpan, Hakan Ali | |
| dc.contributor.author | Kabaoğlu, Nihat | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:06:52Z | |
| dc.date.available | 2019-06-27T08:06:52Z | |
| dc.date.issued | 2006 | |
| dc.description.abstract | This paper addresses the problem of aplying powerful statistical pattern classification algorithms based on kernels to target tracking. Rather than directly adapting a recognizer we develop a localizer directly using the regression form of the Support Vector Machines (SVM). The proposed approach considers using dynamic model together as feature vectors and makes the hyperplane and the support vectors follow the changes in these features. The performance of the tracker is demostrated in a sensor network scenario with a moving target in a polynomial route. | en_US] |
| dc.identifier.citationcount | 0 | |
| dc.identifier.isbn | 978-1-4244-0238-0 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/1239 | |
| dc.language.iso | tr | en_US |
| dc.publisher | IEEE | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | Support Vector Machines Based Target Tracking Techniques | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Özer, Sedat | en_US |
| gdc.author.institutional | Çırpan, Hakan Ali | en_US |
| gdc.author.institutional | Kabaoğlu, Nihat | en_US |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.department | Yüksekokullar, Teknik Bilimler Meslek Yüksekokulu | en_US |
| gdc.description.endpage | + | |
| gdc.description.startpage | 369 | en_US |
| gdc.identifier.wos | WOS:000245347800094 | en_US |
| gdc.wos.citedcount | 1 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Support vector machines based target tracking techniques.pdf
- Size:
- 688.48 KB
- Format:
- Adobe Portable Document Format
- Description: