Support Vector Machines Based Target Tracking Techniques

dc.contributor.authorÖzer, Sedat
dc.contributor.authorÇırpan, Hakan Ali
dc.contributor.authorKabaoğlu, Nihat
dc.date.accessioned2019-06-27T08:06:52Z
dc.date.available2019-06-27T08:06:52Z
dc.date.issued2006
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.departmentYüksekokullar, Teknik Bilimler Meslek Yüksekokuluen_US
dc.description.abstractThis paper addresses the problem of aplying powerful statistical pattern classification algorithms based on kernels to target tracking. Rather than directly adapting a recognizer we develop a localizer directly using the regression form of the Support Vector Machines (SVM). The proposed approach considers using dynamic model together as feature vectors and makes the hyperplane and the support vectors follow the changes in these features. The performance of the tracker is demostrated in a sensor network scenario with a moving target in a polynomial route.en_US]
dc.identifier.citation0
dc.identifier.endpage+
dc.identifier.isbn978-1-4244-0238-0
dc.identifier.startpage369en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/1239
dc.identifier.wosWOS:000245347800094en_US
dc.institutionauthorÖzer, Sedaten_US
dc.institutionauthorÇırpan, Hakan Alien_US
dc.institutionauthorKabaoğlu, Nihaten_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.journal2006 IEEE 14th Signal Processing And Communications Applications, Vols 1 and 2en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSupport Vector Machines Based Target Tracking Techniquesen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Support vector machines based target tracking techniques.pdf
Size:
688.48 KB
Format:
Adobe Portable Document Format
Description: