Graph Optimized Locality Preserving Projection Via Heuristic Optimization Algorithms

gdc.relation.journal 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019) en_US
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.author Taşkın, Gülşen
dc.contributor.other Management Information Systems
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2020-12-18T21:40:34Z
dc.date.available 2020-12-18T21:40:34Z
dc.date.issued 2019
dc.description.abstract Dimensionality reduction has been an active research topic in hyperspectral image analysis due to complexity and non-linearity of the hundreds of the spectral bands. Locality preserving projection (LPP) is a linear extension of the manifold learning and has been very effective in dimensionality reduction compared to linear methods. However, its performance heavily depends on construction of the graph affinity matrix, which has two parameters need to be optimized: k-nearest neighbor parameter and heat kernel parameter. These two parameters might be optimally chosen simply based on a grid search when using only one representative kernel parameter for all the features, but this solution is not feasible when considering a generalized heat kernel in construction the affinity matrix. In this paper, we propose to use heuristic methods, including harmony search (HS) and particle swarm optimization (PSO), in exploring the effects of the heat kernel parameters on embedding quality in terms of classification accuracy. The preliminary results obtained with the experiments on the hyperspectral images showed that HS performs better than PSO, and the heat kernel with multiple parameters achieves better performance than the isotropic kernel with single parameter. en_US
dc.identifier.citationcount 0
dc.identifier.issn 2153-6996 en_US
dc.identifier.issn 2153-6996
dc.identifier.uri https://hdl.handle.net/20.500.12469/3578
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.rights info:eu-repo/semantics/embargoedAccess en_US
dc.subject Dimensionality reduction en_US
dc.subject Manifold learning en_US
dc.subject Harmony search en_US
dc.subject Particle swarm optimization en_US
dc.title Graph Optimized Locality Preserving Projection Via Heuristic Optimization Algorithms en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Ceylan, Oğuzhan en_US
gdc.author.institutional Ceylan, Oğuzhan
gdc.coar.access embargoed access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
gdc.description.endpage 3068 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 3065 en_US
gdc.identifier.wos WOS:000519270603026 en_US
gdc.wos.citedcount 0
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files