Breaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognition

dc.authoridDong, Zhicheng/0000-0003-3415-7682
dc.authoridLiu, Xiaofeng/0000-0002-8185-1477
dc.authorwosidWang, Haozhi/AGU-4577-2022
dc.authorwosidhong, xiaobin/E-7032-2012
dc.contributor.authorPanayırcı, Erdal
dc.contributor.authorWang, Qing
dc.contributor.authorChen, Luyong
dc.contributor.authorFu, Guanyang
dc.contributor.authorLiu, Xiaofeng
dc.contributor.authorDong, Zhicheng
dc.contributor.authorPanayirci, Erdal
dc.date.accessioned2024-10-15T19:40:46Z
dc.date.available2024-10-15T19:40:46Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Wang, Haozhi; Wang, Qing; Chen, Luyong; Fu, Guanyang; Liu, Xiaofeng; Dong, Zhicheng] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China; [Dong, Zhicheng] Tibet Univ, Sch Informat Sci & Technol, Lasha 850000, Tibet, Peoples R China; [Panayirci, Erdal] Kadir Has Univ, Dept Elect & Elect Engn, TR-34083 Istanbul, Turkiyeen_US
dc.descriptionDong, Zhicheng/0000-0003-3415-7682; Liu, Xiaofeng/0000-0002-8185-1477en_US
dc.description.abstractIntelligent electromagnetic signature recognition is one of the key technologies in Internet of Things (IoT) device connection, which can improve system security and speed up the authentication process. In practical scenarios, as the number of IoT devices increases, electromagnetic features, such as fingerprint and modulation signals also increase substantially. However, since intelligent recognition technology, such as automatic modulation classification (AMC), requires a large amount of labeled data to train the neural network classifier, it is challenging to collect so much labeled data. To address the performance degradation challenges with small training data, we propose an efficient semisupervised electromagnetic recognition framework to break the performance gap with the fully supervised learning scheme. This framework can fully use the unlabeled electromagnetic data collected during the authentication process for self-training to improve the classifier's performance. According to the idea of consistency regularization, we design a signal augmentation method and propose an ensemble pseudolabel design algorithm to improve confidence. Moreover, we perform a convex combination of electromagnetic features to smooth the model decision boundary while generalizing to unknown data distribution regions. Experimental results on the modulated data demonstrate the performance superiority of the proposed algorithm, i.e., use less than 5% of data with no more than 10% performance drop.en_US
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1109/JIOT.2023.3295397
dc.identifier.endpage3174en_US
dc.identifier.issn2327-4662
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage3161en_US
dc.identifier.urihttps://doi.org/10.1109/JIOT.2023.3295397
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6391
dc.identifier.volume11en_US
dc.identifier.wosWOS:001153911600117
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvex combinationen_US
dc.subjectelectromagnetic signature recognitionen_US
dc.subjectensemble pseudolabelen_US
dc.subjectsemisupervised learning (SSL)en_US
dc.subjectsignal augmentation methodsen_US
dc.titleBreaking the Performance Gap of Fully and Semisupervised Learning in Electromagnetic Signature Recognitionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isAuthorOfPublication.latestForDiscovery5371ab5d-9cd9-4d1f-8681-a65b3d5d6add

Files