Indoor Positioning Using Federated Kalman Filter
dc.authorid | Kerestecioglu, Feza/0000-0001-9722-9458; | |
dc.authorwosid | Kerestecioglu, Feza/AAF-8910-2019 | |
dc.authorwosid | AYABAKAN, TARIK/AAD-7830-2021 | |
dc.contributor.author | Kerestecioğlu, Feza | |
dc.contributor.author | Kerestecioglu, Feza | |
dc.date.accessioned | 2023-10-19T15:11:49Z | |
dc.date.available | 2023-10-19T15:11:49Z | |
dc.date.issued | 2018 | |
dc.department-temp | [Aybakan, Tarik] Istanbul Naval Shipyard, Underwater Syst Div, Istanbul, Turkey; [Kerestecioglu, Feza] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkey | en_US |
dc.description | 3rd International Conference on Computer Science and Engineering (UBMK) -- SEP 20-23, 2018 -- Sarajevo, BOSNIA & HERCEG | en_US |
dc.description.abstract | In this paper, the performance of a multi-sensor fusion technique, namely Federated Kalman Filter (FKF) is studied in the context of indoor positioning problem. Kalman filters having centralized and decentralized structures are widely used in outdoor positioning and navigation applications. Global Positioning System (GI'S) is the most commonly used system for outdoor positioning/navigation, which cannot be used indoors due to the signal loss. In this study, a decentralized structure for FKF is applied in indoor positioning problem by taking its outdoor navigation performance into consideration. Simulations are perl4med with distance measurements, which are assumed to be calculated by using Received Signal Strength (RSS). Results gathered via different simulations are evaluated as promising for future studies. | en_US |
dc.description.sponsorship | BMBB,Istanbul Teknik Univ,Gazi Univ,ATILIM Univ,Int Univ Sarajevo,Kocaeli Univ,TURKiYE BiLiSiM VAKFI | en_US |
dc.identifier.citation | 6 | |
dc.identifier.endpage | 488 | en_US |
dc.identifier.isbn | 978-1-5386-7893-0 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 483 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5238 | |
dc.identifier.wos | WOS:000459847400093 | en_US |
dc.identifier.wosquality | N/A | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2018 3rd International Conference on Computer Science and Engineering (Ubmk) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | federated Kalman filter | en_US |
dc.subject | data fusion | en_US |
dc.subject | indoor positioning | en_US |
dc.title | Indoor Positioning Using Federated Kalman Filter | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3b717ed5-ce95-4f19-b9d0-f544789c28da | |
relation.isAuthorOfPublication.latestForDiscovery | 3b717ed5-ce95-4f19-b9d0-f544789c28da |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5238.pdf
- Size:
- 268.71 KB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text