Indoor Positioning Using Federated Kalman Filter

dc.authorid Kerestecioglu, Feza/0000-0001-9722-9458;
dc.authorwosid Kerestecioglu, Feza/AAF-8910-2019
dc.authorwosid AYABAKAN, TARIK/AAD-7830-2021
dc.contributor.author Aybakan, Tarik
dc.contributor.author Kerestecioğlu, Feza
dc.contributor.author Kerestecioglu, Feza
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:11:49Z
dc.date.available 2023-10-19T15:11:49Z
dc.date.issued 2018
dc.department-temp [Aybakan, Tarik] Istanbul Naval Shipyard, Underwater Syst Div, Istanbul, Turkey; [Kerestecioglu, Feza] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkey en_US
dc.description 3rd International Conference on Computer Science and Engineering (UBMK) -- SEP 20-23, 2018 -- Sarajevo, BOSNIA & HERCEG en_US
dc.description.abstract In this paper, the performance of a multi-sensor fusion technique, namely Federated Kalman Filter (FKF) is studied in the context of indoor positioning problem. Kalman filters having centralized and decentralized structures are widely used in outdoor positioning and navigation applications. Global Positioning System (GI'S) is the most commonly used system for outdoor positioning/navigation, which cannot be used indoors due to the signal loss. In this study, a decentralized structure for FKF is applied in indoor positioning problem by taking its outdoor navigation performance into consideration. Simulations are perl4med with distance measurements, which are assumed to be calculated by using Received Signal Strength (RSS). Results gathered via different simulations are evaluated as promising for future studies. en_US
dc.description.sponsorship BMBB,Istanbul Teknik Univ,Gazi Univ,ATILIM Univ,Int Univ Sarajevo,Kocaeli Univ,TURKiYE BiLiSiM VAKFI en_US
dc.identifier.citationcount 6
dc.identifier.endpage 488 en_US
dc.identifier.isbn 978-1-5386-7893-0
dc.identifier.startpage 483 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/5238
dc.identifier.wos WOS:000459847400093 en_US
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2018 3rd International Conference on Computer Science and Engineering (Ubmk) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject federated Kalman filter en_US
dc.subject data fusion en_US
dc.subject indoor positioning en_US
dc.title Indoor Positioning Using Federated Kalman Filter en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication 3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isAuthorOfPublication.latestForDiscovery 3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5238.pdf
Size:
268.71 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text