SPINAL: scalable protein interaction network alignment
Loading...
Date
2013
Authors
Erten, Cesim
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Motivation: Given protein-protein interaction (PPI) networks of a pair of species a pairwise global alignment corresponds to a one-to-one mapping between their proteins. Based on the presupposition that such a mapping provides pairs of functionally orthologous proteins accurately the results of the alignment may then be used in comparative systems biology problems such as function prediction/verification or construction of evolutionary relationships. Results: We show that the problem is NP-hard even for the case where the pair of networks are simply paths. We next provide a polynomial time heuristic algorithm SPINAL which consists of two main phases. In the first coarse-grained alignment phase we construct all pairwise initial similarity scores based on pairwise local neighborhood matchings. Using the produced similarity scores the fine-grained alignment phase produces the final one-to-one mapping by iteratively growing a locally improved solution subset. Both phases make use of the construction of neighborhood bipartite graphs and the contributors as a common primitive. We assess the performance of our algorithm on the PPI networks of yeast fly human and worm. We show that based on the accuracy measures used in relevant work our method outperforms the state-of-the-art algorithms. Furthermore our algorithm does not suffer from scalability issues as such accurate results are achieved in reasonable running times as compared with the benchmark algorithms.
Description
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
93
WoS Q
Q1
Scopus Q
N/A
Source
Volume
29
Issue
7
Start Page
917
End Page
924