Predicting Path Loss Distributions of a Wireless Communication System for Multiple Base Station Altitudes From Satellite Images

dc.authorwosid Ates, Hasan/M-5160-2013
dc.authorwosid Baykas, Tuncer/Y-8284-2019
dc.contributor.author Shoer, Ibrahim
dc.contributor.author Baykaş, Tunçer
dc.contributor.author Gunturk, Bahadir K.
dc.contributor.author Ates, Hasan F.
dc.contributor.author Baykas, Tuncer
dc.date.accessioned 2024-10-15T19:39:37Z
dc.date.available 2024-10-15T19:39:37Z
dc.date.issued 2022
dc.department Kadir Has University en_US
dc.department-temp [Shoer, Ibrahim; Gunturk, Bahadir K.; Ates, Hasan F.] Koc Univ, Dept Elect Engn, Istanbul, Turkey; [Shoer, Ibrahim; Gunturk, Bahadir K.; Ates, Hasan F.] Istanbul Medipol Univ, Sch Engn & Nat Sci, Istanbul, Turkey; [Shoer, Ibrahim; Baykas, Tuncer] Kadir Has Univ, Dept Elect Engn, Istanbul, Turkey en_US
dc.description.abstract It is expected that unmanned aerial vehicles (UAVs) will play a vital role in future communication systems. Optimum positioning of UAVs, serving as base stations, can be done through extensive field measurements or ray tracing simulations when the 3D model of the region of interest is available. In this paper, we present an alternative approach to optimize UAV base station altitude for a region. The approach is based on deep learning; specifically, a 2D satellite image of the target region is input to a deep neural network to predict path loss distributions for different UAV altitudes. The neural network is designed and trained to produce multiple path loss distributions in a single inference; thus, it is not necessary to train a separate network for each altitude. en_US
dc.description.sponsorship TUBITAK [215E324] en_US
dc.description.sponsorship This work was supported by TUBITAK Grant 215E324. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ICIP46576.2022.9897467
dc.identifier.endpage 2475 en_US
dc.identifier.isbn 9781665496209
dc.identifier.issn 1522-4880
dc.identifier.startpage 2471 en_US
dc.identifier.uri https://doi.org/10.1109/ICIP46576.2022.9897467
dc.identifier.uri https://hdl.handle.net/20.500.12469/6334
dc.identifier.wos WOS:001058109502113
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof IEEE International Conference on Image Processing (ICIP) -- OCT 16-19, 2022 -- Bordeaux, FRANCE en_US
dc.relation.ispartofseries IEEE International Conference on Image Processing ICIP
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject convolutional neural networks en_US
dc.subject deep learning en_US
dc.subject path loss estimation en_US
dc.subject UAV networks en_US
dc.title Predicting Path Loss Distributions of a Wireless Communication System for Multiple Base Station Altitudes From Satellite Images en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be

Files