PREDICTING PATH LOSS DISTRIBUTIONS OF A WIRELESS COMMUNICATION SYSTEM FOR MULTIPLE BASE STATION ALTITUDES FROM SATELLITE IMAGES

dc.authorwosidAtes, Hasan/M-5160-2013
dc.authorwosidBaykas, Tuncer/Y-8284-2019
dc.contributor.authorBaykaş, Tunçer
dc.contributor.authorGunturk, Bahadir K.
dc.contributor.authorAtes, Hasan F.
dc.contributor.authorBaykas, Tuncer
dc.date.accessioned2024-10-15T19:39:37Z
dc.date.available2024-10-15T19:39:37Z
dc.date.issued2022
dc.departmentKadir Has Universityen_US
dc.department-temp[Shoer, Ibrahim; Gunturk, Bahadir K.; Ates, Hasan F.] Koc Univ, Dept Elect Engn, Istanbul, Turkey; [Shoer, Ibrahim; Gunturk, Bahadir K.; Ates, Hasan F.] Istanbul Medipol Univ, Sch Engn & Nat Sci, Istanbul, Turkey; [Shoer, Ibrahim; Baykas, Tuncer] Kadir Has Univ, Dept Elect Engn, Istanbul, Turkeyen_US
dc.description.abstractIt is expected that unmanned aerial vehicles (UAVs) will play a vital role in future communication systems. Optimum positioning of UAVs, serving as base stations, can be done through extensive field measurements or ray tracing simulations when the 3D model of the region of interest is available. In this paper, we present an alternative approach to optimize UAV base station altitude for a region. The approach is based on deep learning; specifically, a 2D satellite image of the target region is input to a deep neural network to predict path loss distributions for different UAV altitudes. The neural network is designed and trained to produce multiple path loss distributions in a single inference; thus, it is not necessary to train a separate network for each altitude.en_US
dc.description.sponsorshipTUBITAK [215E324]en_US
dc.description.sponsorshipThis work was supported by TUBITAK Grant 215E324.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi10.1109/ICIP46576.2022.9897467
dc.identifier.endpage2475en_US
dc.identifier.isbn9781665496209
dc.identifier.issn1522-4880
dc.identifier.scopusqualityN/A
dc.identifier.startpage2471en_US
dc.identifier.urihttps://doi.org/10.1109/ICIP46576.2022.9897467
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6334
dc.identifier.wosWOS:001058109502113
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartofIEEE International Conference on Image Processing (ICIP) -- OCT 16-19, 2022 -- Bordeaux, FRANCEen_US
dc.relation.ispartofseriesIEEE International Conference on Image Processing ICIP
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectconvolutional neural networksen_US
dc.subjectdeep learningen_US
dc.subjectpath loss estimationen_US
dc.subjectUAV networksen_US
dc.titlePREDICTING PATH LOSS DISTRIBUTIONS OF A WIRELESS COMMUNICATION SYSTEM FOR MULTIPLE BASE STATION ALTITUDES FROM SATELLITE IMAGESen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscoveryab26f923-9923-42a2-b21e-2dd862cd92be

Files